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Abstract: Sulfur-containing macrocycles have attracted substantial interest because they exhibit
unique characteristics due to their polygonal ring-shaped skeleton. In this study, a thianthrene-
based cyclic tetramer with the sulfur linker, thiacalix[4]-2,8-thianthrene (TC[4]TT), was successfully
prepared from a cyclo-p-phenylenesulfide derivative using acid-induced intramolecular condensation.
Single crystal X-ray diffraction revealed that TC[4]TT adopts an alternative octagonal form recessed
to the inner side. Its internal cavity included small solvents, such as chloroform and carbon disulfide.
Due to its polygonal geometry, TC[4]TT laminated in a honeycomb-like pattern with a porous channel.
Furthermore, TC[4]TT showed fluorescence and phosphorescence emission in a CH2Cl2 solution at
ambient and liquid nitrogen temperatures. Both emission bands were slightly redshifted compared
with those of the reference compounds (di(thanthren-2-yl)sulfane (TT2S) and thianthrene (TT)). This
work describes a sulfur-containing thiacalixheterocycle-based macrocyclic system with intriguing
supramolecular chemistry based on molecular tiling and photophysical properties in solution.

Keywords: macrocycles; molecular tiling; solvent recognition; thiacalixarenes; thianthrene;
fluorescence/phosphorescence dye

1. Introduction

Thiacalixarenes are categorized as thioether-type macrocyclic compounds, which
can adopt unique polygonal geometries by connecting aromatic hydrocarbons with sul-
fur linkers [1,2]. The compounds possess specific internal cavities formed by polygonal
frameworks, depending on the number of building blocks, and demonstrate unusual inclu-
siveness. Based on their structural features, thiacalixarenes have been extensively studied
as a platform of host–guest chemistry, such as the extraction of metal ions [3–10], transport
materials [11], catalysts [12], crystal engineering/supramolecular architectures [13–30],
guest adsorption materials [31–33], and chemosensors [34–47]. Hence, thiacalixarenes
show potential as highly useful molecular skeletons for porous molecular recognition
materials [48]. Furthermore, a new breed of calixarene derivatives built with aromatic hete-
rocycles, e.g., thiophene [49–51], dithienothiophene [52], pyridine [53–56], pyrimidine [57],
and triazine [58], have been synthesized. These derivatives have attracted much attention
due to their proper inclusiveness, electrochemical properties, and molecular geometries
based on the introduction of heteroatoms. We recently reported the synthesis of a sulfur-
double bridged acene-based thiacalixarene derivative and revealed that its crystal structure
shows honeycomb-like packing due to its unique hexagonal geometry and solvent inclu-
sion within its internal cavity [59]. Embedding the folded thiaacenes into thiacalixarenes
provides further polygonality and rigidity. Due to molecular tiling in the solid-state, porous
channels utilizing a macrocyclic scaffold should form. This molecular design will be neces-
sary for the development of sulfur-rich organic functional solid materials. However, there
have been few reports on large thiacalixarenes composed of bicyclic or higher heterocycles,
and the insight is insufficient.
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We focus on the 1,4-dithiin-embedded heterocycle compound, thianthrene (TT; Figure 1
(center)), as a building block. TT is a nonplanar heterocycle bent by sulfur. When developing
sulfur-rich π-electron systems, it is important to attain remarkable electrochemical [60–64],
photophysical [65–67], and molecular dynamics properties [68,69]. Parola et al. (2007)
successfully synthesized the smallest family, thiacalix[2]-1,9-thianthrene (Figure 1 (left)),
which was bridged at the 1,9-positions of the TT unit, from a thiacalix[4]arene derivative
under high-temperature [70]. They revealed that this macrocycle adopts a flattened cone
conformation with a concave internal cavity that can capture metal cations [71]. Conversely,
investigating how the number of TT units and the ring sizes act on their characteristics
is important for clarifying the features of this family. TT units should be connected at
other sides instead of 1,9-positions to expand the macrocyclic ring sizes. Thus, we attempt
to synthesize a larger cyclic tetramer bridged at the 2,8-positions of TT, thiacalix[4]-2,8-
thianthrene (TC[4]TT; Figure 1 (right)).

Molecules 2023, 28, x FOR PEER REVIEW 2 of 14 
 

 

design will be necessary for the development of sulfur-rich organic functional solid mate-
rials. However, there have been few reports on large thiacalixarenes composed of bicyclic 
or higher heterocycles, and the insight is insufficient. 

We focus on the 1,4-dithiin-embedded heterocycle compound, thianthrene (TT; Fig-
ure 1 (center)), as a building block. TT is a nonplanar heterocycle bent by sulfur. When 
developing sulfur-rich π-electron systems, it is important to attain remarkable electro-
chemical [60–64], photophysical [65–67], and molecular dynamics properties [68,69]. Pa-
rola et al. (2007) successfully synthesized the smallest family, thiacalix[2]-1,9-thianthrene 
(Figure 1 (left)), which was bridged at the 1,9-positions of the TT unit, from a thia-
calix[4]arene derivative under high-temperature [70]. They revealed that this macrocycle 
adopts a flattened cone conformation with a concave internal cavity that can capture metal 
cations [71]. Conversely, investigating how the number of TT units and the ring sizes act 
on their characteristics is important for clarifying the features of this family. TT units 
should be connected at other sides instead of 1,9-positions to expand the macrocyclic ring 
sizes. Thus, we attempt to synthesize a larger cyclic tetramer bridged at the 2,8-positions 
of TT, thiacalix[4]-2,8-thianthrene (TC[4]TT; Figure 1 (right)). 

 
Figure 1. Molecular structures of thianthrene and thianthrene-based macrocyclic derivatives. 

While the macrocyclization of the smallest components is among the facile methods, 
for TC[4]TT synthesis, the preparation of 2,8-dihalogenated TT is not simple due to the 
formation of a regioisomer [72]. Conversely, some groups have certified that the acid-in-
duced intramolecular condensation reaction [73] is advantageous for the formation of the 
TT skeleton in macrocyclic systems [59,74,75]. These results motivated us to induce 
TC[4]TT from the cyclo-p-phenylenesulfide derivative. Herein, we report the synthesis, 
crystal structure, and properties of TC[4]TT and its related compounds. TC[4]TT adopted 
an alternative concave octagonal structure and included relatively small solvents in the 
internal cavity. This macrocycle formed a honeycomb-type arrangement and channel 
stacking based on a polygonal structure with a hollow crystal structure. Furthermore, 
TC[4]TT demonstrated fluorescence and phosphorescence emission in the diluted solu-
tion as with thianthrene derivatives. 

2. Results and Discussion 
2.1. Synthesis 

The synthetic route used to generate TC[4]TT is illustrated in Scheme 1. 4-Bromo-1-
chloro-2-iodobenzene (1) was treated with turbo Grignard reagent to selectively translate 
the iodine of 1, and then, the generated arylmagnesium compound was reacted with S-
methyl benzenesulfonothioate as an electrophile to afford (5-bromo-2-chlorophenyl)(me-

S

S

thianthrene
(TT)

1
2

3
4 5 6

7

8
910

S

S

SS

S

S

thiacalix[2]-1,9-thianthrene

sulfur-bridging
at 1,9-positions

in 2007

S

S

S S

S

S

S

S

SS

S

Ssulfur-bridging
at 2,8-positions

thiacalix[4]-2,8-thianthrene
(TC[4]TT)

This work

Figure 1. Molecular structures of thianthrene and thianthrene-based macrocyclic derivatives.

While the macrocyclization of the smallest components is among the facile methods,
for TC[4]TT synthesis, the preparation of 2,8-dihalogenated TT is not simple due to the
formation of a regioisomer [72]. Conversely, some groups have certified that the acid-
induced intramolecular condensation reaction [73] is advantageous for the formation of
the TT skeleton in macrocyclic systems [59,74,75]. These results motivated us to induce
TC[4]TT from the cyclo-p-phenylenesulfide derivative. Herein, we report the synthesis,
crystal structure, and properties of TC[4]TT and its related compounds. TC[4]TT adopted
an alternative concave octagonal structure and included relatively small solvents in the
internal cavity. This macrocycle formed a honeycomb-type arrangement and channel
stacking based on a polygonal structure with a hollow crystal structure. Furthermore,
TC[4]TT demonstrated fluorescence and phosphorescence emission in the diluted solution
as with thianthrene derivatives.

2. Results and Discussion
2.1. Synthesis

The synthetic route used to generate TC[4]TT is illustrated in Scheme 1. 4-Bromo-1-
chloro-2-iodobenzene (1) was treated with turbo Grignard reagent to selectively translate
the iodine of 1, and then, the generated arylmagnesium compound was reacted with S-
methyl benzenesulfonothioate as an electrophile to afford (5-bromo-2-chlorophenyl)(methyl)
sulfane (2) quantitatively. When Compound 2 was oxidized using m-chloroperbenzoic
acid (mCPBA), 4-bromo-1-chloro-2-(methylsulfinyl)benzene (3) was obtained quantitatively.
Subsequently, a Pd-catalyzed homocoupling reaction using potassium thioacetate as a sulfur
source [76] of 3 afforded symmetrical diarylsulfide, bis(4-chloro-3-(methylsulfinyl)phenyl)
sulfane (4), in 43% yield. Conversely, applying this Pd-mediated coupling reaction to
2 yielded bis(4-chloro-3-(methylthio)phenyl)sulfane (5) in a good yield. Although sub-
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sequent oxidation of 5 applying 1.5 equivalents of mCPBA generated 4 in 54% yield, a
byproduct in which the sulfur linker was also oxidized was obtained in 14% yield. In both
routes, the yield in two steps from Compound 2 was ca. 40%. In the next step, we conducted
the macrocyclization of prepared 4 and 4,4′-thiobisbenzenethiol and detected the presence
of cyclo-p-phenylenesulfide precursor 6 by electrospray ionization mass spectrometry (ESI-
MS, Figure S13). However, separating and purifying this compound was difficult because
the obtained crude products included polymer macromolecules. Hence, the crude product
was used without further purification. Finally, the synthesis of TC[4]TT was achieved by
intramolecular condensation using trifluoromethanesulfonic acid followed by demethy-
lation of pyridine in 5% yield (from Compound 4). High-resolution mass spectrometry
(HRMS) detected its ion peak at m/z = 983.8527. The 1H nuclear magnetic resonance
(NMR) spectrum provided simple peaks that could be associated with the AB-X style of
the 2,8-substituted TT unit (Figure S11), and similarly, six carbon signals of the TT unit
were observed in the 13C NMR spectrum (Figure S12). Thus, these spectroscopies revealed
that TC[4]TT exhibits high-symmetric geometry due to a macrocyclic skeleton. Moreover,
TC[4]TT showed considerably poor solubility in common organic solvents. Finally, the
molecular structure of TC[4]TT was determined by single-crystal X-ray analysis, as will
be described later. In this intramolecular reaction, other products which are presumed
to be cyclic hexamer or larger oligomers, were obtained in trace amounts. Furthermore,
the reference linear dimer, di(thianthrene-2-yl)sulfane (TT2S), was obtained from prepared
2-bromothianthrene (7) by Pd-mediated coupling in 46% yield. This linear dimer adopted
a U-shaped geometry in the crystal structure.
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Scheme 1. Synthesis of TC[4]TT and its reference compound TT2S. mCPBA: m-chloroperoxybenzoic
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thioacetate; DMA: N,N’-dimethylacetamide; TfOH: trifluoromethanesulfonic acid.
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2.2. Crystal Structure

Single crystals of TC[4]TT were obtained by slowly evaporating CHCl3 and CS2. Both
crystals belonged to the I2 space group with a monoclinic crystal system. The inwardly
folded (Figure 2a, painted in red) and protruding TT (painted in blue) units alternatively
shaped a macrocyclic skeleton and adopted concave octagonal geometry. Interestingly,
this conformer was energetically unstable as a single molecule in vacuo compared with its
structural isomer in which all TT units are flared, and the estimated total energy difference
was ca. 0.13 kcal mol−1 (Figure S22). The folding angles of the constituent TT units were
124.9(1) and 136.1(1)◦. The inwardly folded TT bent sharply compared with the linear
dimer TT2S (corresponding angles: 137.1(1) and 130.4(1)◦). The TT units distorted as a
result of macrocyclization. The distances between the sulfur bridges were 9.71 and 10.4 Å,
respectively. Although the distance between two flared TT units was 12.8 Å, the distance
was 5.62 Å at the narrowest part and 9.70 Å at the widest parts of the collapsed TT units
(Figure 2b,c). Thus, TC[4]TT possesses a specially shaped internal cavity. In the crystal
structure, the solvents (CHCl3 and CS2) were included in the cavity of TC[4]TT, and the
composition ratio of compound and solvent was 1:2 (Figure 2d,e; (TC[4]TT)(CHCl3)2 and
(TC[4]TT)(CS2)2). For CHCl3 and CS2, the two molecules in the cavity fit in a V-shape
along with the lamination direction. Although we attempted to incorporate solvents with
different sizes, such as benzene, 1,4-dioxane, and chlorobenzene, into TC[4]TT, parsable
crystals were not obtained. In donor–acceptor-type complex formations with C60 and
C70, distinct complexation could not be observed. This result shows that TC[4]TT can
selectively capture relatively small molecules in the crystal state. Thus, TC[4]TT can expect
selective inclusion with small organic molecules and metal ions similar to thiacalixarene
derivatives. Notably, intermolecular interactions between TC[4]TT and each encapsulated
solvent were not observed, suggesting that the solvent molecules just fit in the cavity.
Conversely, differences were observed in the intermolecular packing forces acting among
TC[4]TT, while (TC[4]TT)(CHCl3)2 and (TC[4]TT)(CS2)2 were the same crystal system. The
clathrate crystal of TC[4]TT and CHCl3 contains some C–H···π interactions and C–H···S
contacts [77] between four adjacent molecules. Its columnar stacking was also built by
C–H···π interactions along the ac axis and C–H···S contacts along the b axis (Figure S15).
In comparison, (TC[4]TT)(CS2)2 was formed by some atomic contacts, such as C–C, C–
S, and S–S contacts, in addition to these interactions (Figure S17). The density of the
crystals was 1.591 for (TC[4]TT)(CHCl3)2 and 1.491 for (TC[4]TT)(CS2)2. The crystal of
(TC[4]TT)(CS2)2 was packed more densely than that of (TC[4]TT)(CHCl3)2. Thus, coupled
with the pseudo hexagonal geometry consisting of imminent sulfur of TT and the linker,
TC[4]TT was arranged in a honeycomb style with a channel structure due to molecular
tiling. These results suggest that TC[4]TT exhibits adsorption and transport properties and
shows potential as an organic porous solid material.

2.3. Photophysical Properties

We investigated the photophysical properties of TC[4]TT and TT2S because these
compounds showed fluorescence emission on thin-layer chromatography (TLC) plates
during purification. The CH2Cl2 solution of TC[4]TT (c = 2.0 × 10−5 mol L−1) showed
an absorption maximum at 271 nm with broad shoulder bands at 290–360 nm, which
could be ascribed to the π–π* transitions (Figure 3a). The molar extinction coefficient (ε)
at λmax = 271 nm was 92,500 L mol−1 cm−1, higher than those of TT2S and TT (65,500 and
37,600 L mol−1 cm−1, respectively), depending on the number of TT units. Furthermore,
the absorption wavelength of TC[4]TT was slightly redshifted compared with those of TT2S
and TT (λmax = 268 and 258 nm). This redshift stems from a decline in the gap between the
highest occupied molecular orbital (HOMO) and the lowest unoccupied molecular orbital
(LUMO), as shown in Figure 4. The simulated absorption spectrum of TC[4]TT by the
quantum chemical calculation also agreed with the experimental result (time-dependent
density-functional theory calculation at the RB3LYP/6-31(d,p) level, Figure S20). The
absorption bands were composed primarily of S0 → S2, S3, and S8 electronic transitions
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(Table S4). This result suggested that widely and circularly distributed HOMOs and LUMOs
based on the macrocyclic skeleton, including the sulfur linkers, could affect the electronic
transitions. In addition, the quantum chemical calculation supported that the energy gaps
of S0 → Sn (n > 1) of TC[4]TT were lower than those of TT2S (Figure S21 and Table S5).
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I; and (c) side view II. Ellipsoids represent a 50% probability. Crystal packing diagrams of
(d) (TC[4]TT)(CHCl3)2 and (e) (TC[4]TT)(CS2)2.
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Figure 3. (a) Absorption spectra of TC[4]TT, TT2S, and TT in a CH2Cl2 solution. (b) Emission
spectra of TC[4]TT, TT2S, and TT in a CH2Cl2 solution at room temperature and 77 K. The solution
concentration is 2.0 × 10−5 mol L−1. The excitation wavelengths are 271 (TC[4]TT), 268 (TT2S), and
258 nm (TT). Phosphorescence spectra at 77 K were measured with a delay of 15 ms.
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TC[4]TT generates a blue emission on the TLC plate under irradiation with a UV
lamp (λ = 365 nm). In a dilute CH2Cl2 solution, emission bands at λmax = 447 nm were
observed under ambient conditions (Figure 3b). Similarly, TT2S exhibited emission bands
at λmax = 446 nm. These compounds showed insignificantly redshifted emission bands
compared to that of TT (λmax = 436 nm). The quantum yields (Φ) of TC[4]TT and TT2S
were 7 and 6%, respectively. Although these values were slightly higher than that of TT
(Φ = 3%), the emission efficiency remained low. Thus, the nonradiative process mostly
results from the geometric vibrations of the TT unit at the excitation despite the advantages
of a rigid skeleton generated from macrocyclization. That is, TC[4]TT possesses a highly
flexible molecular geometry.

Subsequently, a frozen CH2Cl2 solution of TC[4]TT at liquid nitrogen temperature
(77 K) showed a new emission band at λmax = 516 nm in the long wavelength region. The
reference compounds TT2S and TT also exhibited redshifted emission bands at λmax = 508
and 504 nm at 77 K. These low-temperature spectra were measured with a 15 ms delay,
and the lifetimes were 45 ms for TC[4]TT and 34 ms for TT2S, which could be identified
as phosphorescence emission. The phosphorescence emission maximum of TC[4]TT was
gradually redshifted, which could indicate that the energy gap of the lowest singlet (S1) and
triplet excited state (T1) was narrower than those of TT2S and TT. The efficient intersystem
crossing process might be prompted by rigidity arising from macrocyclization with the
sulfur linker. The quantum chemical calculation supported that the energy gap between
S1 and T1 of TC[4]TT is 0.629 eV. This was lower than those of TT2S (0.795 eV) and TT
(0.751 eV, Figure S23 and Table S6). We found that TC[4]TT shows potential as an organic
phosphorescence characteristic, as with other thianthrene derivatives. Macrocylization
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of chromophores might be a useful molecular design for pure organic phosphorescence
materials. Room-temperature phosphorescence behavior on crystals based on molecular
tiling is currently under investigation.

3. Conclusions

In conclusion, we successfully prepared a thianthrene-based cyclic tetramer linked
with sulfur, thiacalix[4]-2,8-thianthrene (TC[4]TT), by acid-induced intramolecular con-
densation of a cyclo-p-phenylenesulfide derivative. In addition, we clarified its molecular
structure and its fundamental photochemical properties. TC[4]TT adopts a cage-shaped
and concave octagonal geometry due to four bent thianthrenes and four sulfur linkers in
the crystal state. Furthermore, based on its polygonal skeleton with an internal cavity, this
compound forms a unique honeycomb-style channel architecture stemming from molec-
ular tiling. Small solvent molecules (CHCl3 and CS2) are included in the cavity, which
exhibits unusual inclusiveness, as with thiacalixarene derivatives. That is, the compound
can be applied to adsorbed porous materials. Intriguingly, the diluted CH2Cl2 solution of
TC[4]TT demonstrates fluorescence emission at ambient temperature and phosphorescence
emission at liquid nitrogen temperature. Notably, phosphorescence emission bands are
redshifted compared to those of thianthrene and its sulfur-bridged dimer. This result indi-
cates that macrocyclization by a sulfur bridge might load an efficient intersystem crossing
system for phosphorescence emission. Thus, we found that TC[4]TT can be utilized as a
chemical sensor. Molecular recognition ability, solid-state phosphorescence emission, and
electrochemical properties are currently being studied.

4. Materials and Methods
General Information

All reagents were commercially sourced. Melting points were determined using a
Yanaco MP-500P micro melting point apparatus. 1H (400 or 600 MHz) and 13C (100 or
150 MHz) nuclear magnetic resonance spectra were recorded using Bruker AVANCE 400
and 600 instruments. The following abbreviations were used to describe the multiplici-
ties: singlet (s); doublet (d); doublet of doublets (dd); and multiplet (m). The diffraction
data for TT2S (100.15 K, ccdc#: 2270347), (TC[4]TT)(CHCl3)2 (100.15 K, ccdc#: 2270345),
and (TC[4]TT)2(CS2)2 (100.15 K, ccdc#: 2270346) were collected using a Rigaku XtaLAB
Synergy-S system with multilayer mirror-monochromatized CuKa radiation (l = 1.54184 Å)
at Kitasato University. Raw frame data were integrated using CrysAlisPro software [78].
Using Olex2 [79], the crystal structures were solved employing SHELXT [80] and refined
using full-matrix least squares in F2 (SHELXL) [81]. Absorption spectra were recorded
using a JASCO (JASCO corporation, Tokyo, Japan) V-560 instrument. Fluorescence spectra
were collected using a JASCO FP-8550 spectrofluorometer. Fluorescence quantum yields
(Φ) were confirmed using a JASCO ILF-135 | 120 mm dia. Φ Integrating Sphere. Phospho-
rescence spectra and lifetimes were collected using a JASCO FP-8550 spectrofluorometer
combined with a PMU-130 liquid nitrogen cooling unit. IR spectra were recorded using a
JASCO FT/IR-4600 spectrometer. High-solution mass spectrometry (HRMS) spectra were
recorded on a Thermo Scientific Exactive Plus Orbitrap Mass spectrometer for ionization.
Only relatively intense peaks were reported. All calculations were performed at the Re-
search Center for Computational Science (Okazaki, Japan) using the Gaussian 16 Program
(Revision C.01) [82]. The optimized structures were estimated at the RB3LYP/6-31G(d,p)
level of theory. Frequency calculations were conducted to ensure that these structures were
local minima. TD-DFT calculations based on the respective optimized structures were
conducted using the RB3LYP/6-31G(d,p) level.

Synthesis of 2. In a 200 mL two-necked recovery flask, 4-bromo-1-chloro-2-iodobenzene
(1, 8.16 g, 25.7 mmol) and dry THF (30 mL) were mixed under argon atmosphere, and
the mixture was cooled to −78 ◦C. The THF solution of i-PrMgCl·LiCl (1.3 M, 23.7 mL,
30.9 mmol) was slowly added and stirred for 12 h. The prepared magnesium reagent was
added to a solution of prepared S-methylbenzenesulfonothioate (5.33 g, 28.3 mmol) [83]
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in dry THF (15 mL) at −78 ◦C. The resulting solution was stirred at ambient temperature
for 2 h and then quenched with sat. NH4Claq., extracted with CH2Cl2 and dried over
anhydrous Na2SO4. The organic solution was concentrated under reduced pressure. The
residue was purified by column chromatography on silica gel using hexane as an eluent to
afford (5-bromo-2-chlorophenyl)(methyl)sulfane (2, 6.04 g, 25.4 mmol) as a colorless block
in 99% yield. Mp = 54–55 ◦C. 1H NMR (600 MHz, CDCl3) δ 7.22–7.21 (m, 1H), 7.18 (d,
J = 1.2 Hz, 2H), 2.48 (s, 3H). 13C NMR (150 MHz, CDCl3) δ 140.4, 130.60, 130.56, 128.4, 127.8,
121.1, and 15.3. UV–vis (CH2Cl2, c = 1.0 × 10−5 M) λmax (ε) 258 (8000) nm. IR (KBr) 3027,
2991, 2921, 2369, 1866, 1677, 1569, 1543, 1446, 1369, 1318, 1249, 1139, 1123, 1110, 1092, 1076,
1030, 956, 841, 795, 778, 671, 539, and 426 cm−1. HRMS (ESI, positive mode): m/z calcd for
C7H6ClBrS [M]+ 235.9057; found 235.9058.

Synthesis of 3. Compound 2 (1.00 g, 4.21 mmol), mCPBA (1.12 g, 4.21 mmol), NaHCO3
(357 mg, 4.21 mmol), and CH2Cl2 (50 mL) were mixed in a 200 mL recovery flask. The
mixture was stirred at 0 ◦C for 2 h. The reaction mixture was quenched with Na2S2O3aq.,
and then the organic layer was extracted with CH2Cl2 and dried over MgSO4. After
filtration, the solution was evaporated under reduced pressure. The residue was purified
by column chromatography on silica gel using EtOAc as an eluent to afford 3 (1.06 g,
4.21 mmol) as a colorless block in 99% yield. Mp = 77–78 ◦C. 1H NMR (400 MHz, CDCl3) δ
8.07 (d, J = 1.6 Hz, 1H), 7.57 (dd, J = 1.6 and 8.4 Hz, 1H), 7.27 (d, J = 8.4 Hz, 1H), 2.84 (s,
3H). 13C NMR (100 MHz, CDCl3) δ 145.6, 135.1, 131.2, 128.6, 128.4, 122.4, and 41.6. UV–vis
(CH2Cl2, c = 2.0 × 10−5 M) λmax (ε) 236 (12,000) nm. IR (KBr) 3072, 3053, 3006, 1697, 1443,
1430, 1366, 1302, 1233, 1142, 1104, 1072, 1058, 1023, 971. 955, 895, 812, 693, 681, 555, 542, 451,
and 403 cm−1. HRMS (ESI, positive mode): m/z calcd for C7H6BrClOS [M + H]+ 252.9084;
found 252.9087.

Synthesis of 4 from 3. Compound 3 (537 mg, 2.12 mmol), Pd(dba)2 (61 mg, 0.11 mmol),
dppf (82 mg, 0.15 mmol), KSAc (121 mg, 1.06 mmol), and K3PO4 (270 mg, 1.27 mmol)
were added to a 30 mL Schlenk tube in toluene (1.1 mL) and acetone (0.5 mL) under an
argon atmosphere. The reaction mixture was stirred for 6 h under reflux. After cooling to
ambient temperature, the suspension was quenched with NH4Claq. The aqueous layer was
extracted with Et2O, and the organic layer was washed with brine and dried over MgSO4.
The organic phase was passed through celite and concentrated. The residue was purified
by column chromatography on silica gel using EtOAc as an eluent to afford 4 (174 mg,
0.46 mmol) as a colorless needle in 43% yield. Mp = 145–147 ◦C. 1H NMR (400 MHz, CDCl3)
δ 7.93 (d, J = 2.0 Hz, 1H), 7.88 (d, J = 2.0 Hz, 1H), 7.43–7.34 (m, 4H), 2.84 (s, 3H), 2.83 (s, 3H).
13C NMR (100 MHz, CDCl3) δ 145.3, 145.2, 136.14, 136.13, 134.3, 134.2, 130.94, 130.88, 129.13
129.10, 127.5, 127.4, 41.8, and 41.7. UV–vis (CH2Cl2, c = 2.0 × 10−5 M) λmax (ε) 290 (10,500),
259 (21,400) nm. IR (KBr) 3446, 3065, 2996, 2912, 1636, 1567, 1445, 1415, 1365, 1291, 1247,
1146, 1088, 1062, 1023, 960, 897, 830, 699, 557, 459, 413, and 402 cm−1. HRMS (ESI, positive
mode): m/z calcd for C14H12Cl2O2S3 [M + H]+ 378.9449; found 378.9450.

Synthesis of 5. Compound 2 (3.84 g, 16.2 mmol), Pd(dba)2 (465 mg, 0.81 mmol),
dppf (628 mg, 1.13 mmol), KSAc (924 mg, 8.09 mmol), and K3PO4 (2.06 g, 9.70 mmol)
were added to a 50 mL Schlenk tube in toluene (8.1 mL) and acetone (4.0 mL) under an
argon atmosphere. The reaction mixture was stirred for 6 h under reflux. After cooling to
ambient temperature, the suspension was quenched with NH4Claq. The aqueous layer was
extracted with Et2O, and the organic layer was washed with brine and dried over MgSO4.
The organic phase was passed through celite and concentrated. The residue was purified
by column chromatography on silica gel using EtOAc/hexane (1:9, v/v) as the eluent to
afford 5 (2.09 g, 6.02 mmol) as a colorless needle in 74% yield. Mp = 100–102 ◦C. 1H NMR
(400 MHz, CDCl3) δ 7.26 (d, J = 8.0 Hz, 2H), 7.01 (d, J = 2.0 Hz, 2H), 6.99 (dd, J = 2.0 and
8.4 Hz, 2H), 2.41 (s, 6H). 13C NMR (100 MHz, CDCl3) δ 139.3, 134.5, 130.9, 130.0, 127.8,
127.3, and 15.1. UV–vis (CH2Cl2, c = 2.0 × 10−5 M) λmax (ε) 260 (37,500) nm. IR (KBr) 3059,
2985, 2916, 1884, 1559, 1454, 1428, 1361, 1269, 1247, 1155, 1118, 1095, 1030, 956, 857, 845, 815,
674, 555, 464, and 434 cm−1. HRMS (ESI, positive mode): m/z calcd for C14H12Cl2S3 [M]+

345.9473; found 345.9471.
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Synthesis of 4 from 5. Compound 5 (189 mg, 0.54 mmol), mCPBA (217 mg, 0.82 mmol),
NaHCO3 (69 mg, 0.82 mmol), and CH2Cl2 (5 mL) were added to a 50 mL recovery flask. The
mixture was stirred at 0 ◦C for 2 h. The reaction mixture was quenched with Na2S2O3aq.,
and then the organic layer was extracted with CH2Cl2 and dried over MgSO4. After
filtration, the solution was evaporated under reduced pressure. The residue was purified
by column chromatography on silica gel using EtOAc as an eluent to afford 4 (112 mg,
0.30 mmol) as a colorless block in 54% yield.

Compound 7 was prepared according to the bromination of thianthrene [84].
Synthesis of di(thianthren-2-yl)sulfane (TT2S). Compound 7 (433 mg, 1.47 mmol),

Pd(dba)2 (42 mg, 0.07 mmol), dppf (57 mg, 0.10 mmol), KSAc (84 mg, 0.73 mmol), and
K3PO4 (187 mg, 0.88 mmol) were added to a 30 mL Schlenk tube in toluene (2.0 mL)
and acetone (1.0 mL) under an argon atmosphere. The reaction mixture was stirred for
12 h under reflux. After cooling to ambient temperature, the suspension was quenched
with NH4Claq. The aqueous layer was extracted with CH2Cl2, and the organic layer was
washed with brine and dried over MgSO4. The organic phase was passed through celite
and concentrated. The residue was purified by column chromatography on silica gel using
CH2Cl2/hexane (1:1, v/v) as the eluent to afford TT2S (155 mg, 0.34 mmol) as a colorless
block in 46% yield. Mp = 149–150 ◦C. 1H NMR (400 MHz, CD2Cl2) δ 7.51–7.45 (m, 4H), 7.44
(d, J = 1.6 Hz, 2H), 7.41 (d, J = 8.0 Hz, 2H), 7.30–7.24 (m, 4H), 7.20 (dd, J = 2.0 and 8.0 Hz,
2H), 13C NMR (100 MHz, CDCl3) δ 136.9, 135.6, 135.3, 135.1, 135.0, 130.8, 130.3, 129.2, 128.9,
128.7, 127.9, and 127.7. UV–vis (CH2Cl2, c = 2.0 × 10−5 M) λmax (ε) 268 (65,500) nm. IR
(KBr) 3047, 1562, 1441, 1359, 1254, 1105, 876, 816, 743, 661, 592, 475, and 450 cm−1. HRMS
(ESI, positive mode): m/z calcd for C24H14S5 [M]+ 461.9694; found 461.9691.

Synthesis of thiacalix[4]thianthrene (TC[4]TT). Compound 4 (303 mg, 0.80 mmol),
4,4′-thiobisbenzenethiol (200 mg, 0.80 mmol), K2CO3 (221 mg, 1.60 mmol), and dry DMA
(64 mL) were added to a 100 mL Schlenk tube under an argon atmosphere. The mixture
was stirred at 150 ◦C for 2 days. After cooling to ambient temperature, the mixture was
poured into 10% acetic acid (160 mL). The water layer was extracted with CH2Cl2, and the
organic phase was washed with NaHCO3aq. and then dried over MgSO4. The organic
solution was evaporated under reduced pressure. After the ocherous powder was collected,
329 mg of crude product involving Compound 6 was obtained. In the next step, the crude
product, P2O5 (77 mg, 0.54 mmol), and trifluoromethanesulfonic acid (3.5 mL) were added
to a 50 mL two-necked recovery flask under an argon atmosphere. The reaction mixture
was stirred at 65 ◦C for 2 days and then poured into ice water. After the precipitates were
collected by filtration, the residue was dissolved in pyridine (25 mL) and refluxed for
24 h. The reaction mixture was cooled to ambient temperature, and MeOH was added.
The resulting precipitate was collected and then subjected to column chromatography on
silica gel using CS2 as the eluent to afford thiacalix[4]thianthrene (14 mg, 0.01 mmol) as a
colorless block in 5% yield from Compound 4 in 2 steps. Mp = 203 ◦C (decomp.). 1H NMR
(600 MHz, CS2/CDCl3) δ 7.31 (d, J = 7.8 Hz, 8H), 7.19–7.15 (m, 16H), 13C NMR (150 MHz,
CS2/CDCl3) δ 136.6, 135.2, 134.5, 130.5, 130.0, and 128.9. UV–vis (CH2Cl2, c = 2.0 × 10−5 M)
λmax (ε) 271 (92,500) nm. IR (KBr) 1557, 1442, 1363, 1252, 1107, 905, 712, 731, and 450 cm−1.
HRMS (ESI, positive mode): m/z calcd for C48H24S12 [M]+ 983.8521; found 983.8527.

Supplementary Materials: The following supporting information can be downloaded at: https://
www.mdpi.com/article/10.3390/molecules28145462/s1: Figures S1–S12: The copies of 1H and 13C
NMR charts; Figure S13: ESIMS spectra of crude products in macrocyclization; Figures S14–S19:
Molecular and crystal structures of (TC[4]TT)(CHCl3)2, (TC[4]TT)(CS2)2, and TT2S; Figures S20–S21:
Simulated absorption spectra of TC[4]TT and TT2S; Figure S22: Optimized structures of TC[4]TT
and its structural isomer; Figure S23: TD-DFT calculated energy diagrams at singlet (S1) and triplets
(Tn) for TC[4]TT, TT2S, and TT; Table S1: Crystal data for (TC[4]TT)(CHCl3)2, (TC[4]TT)(CS2)2, and
TT2S; Tables S2–S3: Selected bond lengths of TT units of (TC[4]TT)(CHCl3)2 and (TC[4]TT)(CS2)2;
Tables S4–S5: Calculated photophysical data for TC[4]TT and TT2S; Table S6: TD-DFT calcu-
lated energy levels at S1 and Tn for TC[4]TT, TT2S, and TT. References [85–87] are cited in the
supplementary materials.
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