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Abstract: Antibacterial nonwoven fabrics, incorporated with Ag, have been applied as masks and air
conditioner filters to prevent the spread of disease from airborne respiratory pathogens. In this work,
we present a comparison study of Ag ions: Ag and AgCu nanoparticles (NPs) coated onto nonwoven
fabrics intended for use as air conditioner antibacterial filters. We illustrate their color changes and
durability running in air conditioners using antibacterial activity testing and X-ray Photoelectron
Spectroscopic (XPS) analysis. We found that AgCu NPs showed the best antibacterial efficacy and
durability. XPS analysis indicated that the Ag concentration, on both the AgCu and Ag- NP-coated
fibers, changed little. On the contrary, the Ag concentration on Ag ion-coated fibers decreased by
~30%, and the coated NPs aggregated over time. The color change in AgCu NP-coated fabric, from
yellow to white, is caused by oxide shell formation over the NPs, with nearly 46% oxidized silver.
Our results, both from antibacterial evaluation and wind blowing tests, indicate that AgCu NP-coated
fibers have higher durability, while Ag ion-coated fibers have little durability in such applications.
The enhanced durability of the AgCu NP-coated antibacterial fabrics can be attributed to stronger
NP–fiber interactions and greater ion release.

Keywords: Ag and AgCu nanoparticles; air conditioner; antibacterial filter; durability; nonwoven

1. Introduction

Over the last two decades, the incorporation of Ag-based nanoparticles (NPs) and
ions has been widely employed in the textile and health care industries [1–5]. These in-
clude cloths, masks [6,7], water disinfection, air conditioner filters [8–13], and wound
dressing [14,15], used due to their higher antibacterial efficacy and broader spectrum of at-
tack [16,17]. Recently, Ag NP-coated nonwoven fibers have been receiving attention for their
protection against COVID-19 when used either as masks [18–21] or air filters [11,22–24].

Apart from the monometallic nanoparticles applied as textile finishing agents, bimetal-
lic NPs have received much interest because of their optical, electrical, magnetic, and
catalytic capabilities, and especially their excellent antibacterial properties, which differ
dramatically from their monometallic counterparts in most circumstances [25,26]. Bimetallic
NPs are made by mixing two distinct metal elements to produce a variety of morphologies
and architectures basically synthesized by chemical reduction and biosynthesis in recent
studies [27,28]. AgCu NP, as a typical alloy, has been thoroughly studied by us [29–31] and
others [32–38] and has been found to possess enhanced antibacterial efficacy, greater than
either Ag or Cu NPs, used alone or mixed together [32,39]. This has resulted in reduced
cytotoxicity [40] as well.

The durability of an antibacterial fiber is associated with its application requirements
(e.g., anti-washing is important for the textiles and filters used in water treatment [41,42],
but anti-wind blowing is more important for air conditioner filters). Changing the shape
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and size of Ag NPs has been used to change the colors of textiles [43,44], although they
mostly appear yellow for spherical Ag NP-coated fibers, similarly to Ag NP aqueous
dispersions. It is a challenge to determine the color change for textiles treated with Ag ions
or NPs [41], although changing the color of the textiles when varying the Ag NP shape is
one of the choices [43]. However, the fabrics finished with nano-Ag in different shapes still
have the problem of discoloration and degradation, caused over time and by exposure to
sunshine [43].

High-Efficacy Particulate (HEPA) filters are extremely efficacious at screening most
bacteria and viruses due to their tiny pores (which may be up to 100 nm) [45], but they have
high wind resistance (high energy consumption). The most important issue is the risk of the
HEPA filters acting as a reservoir for contamination of the indoor air environment [24,46],
which means that the filter itself can behave as a source for contamination of the air envi-
ronment with airborne pathogenic microorganisms if it is not coated with an antibacterial
agent [47]. The fabrication of nanofiber nonwovens by electrospinning with the need
to fight COVID-19 has recently made significant progress in industrialization. Chinese
manufacturers have made nanofiber-filtering nonwovens that can filter viruses, achieve
laundering, and be reused for masks [48]. The electrospinning nonwoven filter research
progress can be found in a recently reviewed paper [49].

Although Montazer et al. [50] developed a chemical treatment to prevent this, it en-
tails additional costs. While some researchers proposed using a colorless Ag NP-chitosan
complex coating [51] for the treatment of fabrics, we found that its color can be changed to
yellow at higher temperatures, e.g., 110 ◦C, or by light exposure in air for one month. Re-
cently, Richardson et al. [52] developed Ag–phenolic (plant polyphenols and antimicrobial
Ag ions) coatings on textiles, which can inhibit lipid-enveloped viruses over one thousand
times more efficiently than coatings composed of other metal ions, while maintaining their
efficacy, even after five washes. Despite this appearing interesting for actual application, its
cost may be too high. La et al. [53] recently reported an Ag/graphene-integrated nonwoven
polypropylene filter, which is prepared by reducing Ag ions on the surface of graphene
nanoplatelets (GNPs) using plant extract. Shiu et al. [54] developed a new filter prepared
by Ag@ZIF-8@PP melt-blown nonwoven fabrics with higher air filtration and antibacterial
efficacy. Cu is another antimicrobial agent, especially for COVID-19; it has been found that
Cu (including CuO) exhibits better performance [55–57] than Ag. For example, Perelshtein
et al. [58] evaluated a CuO NP-coated nonwoven fabric air filter; their results showed that
the CuO NP-coated filter was not only antimicrobial but also detrimental to H1N1 influenza
and two SARS-CoV-2 variants. It also demonstrated good stability and mechanical proper-
ties. Watson et al. [24] developed a novel antimicrobial treatment for air filters, the approach
being to modify an existing filter with a broad-range biocide, chlorhexidine digluconate
(CHDG), which is applied to porous filters across the HVAC sector. The advantage is that
the filter can quickly kill bacteria and viruses, compared with a metal-based antibacterial
coating. Druvari et al. [59] extended this technology and developed a facile and eco-friendly
process for the biocidal treatment of commercial high-efficiency particulate air filters for
air-cleaning filters. Ag nanowires have also been coated on fabrics as air filters by Park
et al. [60]; they found that the overall filtration and antibacterial efficiency of the fibers were
significantly improved without affecting the pressure drop.

There are many methods to prepare antibacterial fibers by Ag deposition, which have
been extensively summarized in recent review articles [61–63], including roll-to-roll coat-
ing (economical and extensively used by manufacturers) using Ag NPs or aqueous Ag
salts, vacuum sputtering deposition, in situ chemical reduction, etc. They all involve the
adhesion of Ag NPs or ions to the fibers, which plays a significant role in their durabil-
ity. To increase their adhesion, surface modifications of the nonwoven fabric were used,
including radiation-induced graft polymerization [64], functionalized amino-terminated
hyperbranched polymer ripening [65], chitosan finishing, electron static interaction on
protein-coated fibers [66], plasma treatment [67–69], etc. For practical applications, water-
based NPs dispersion using an appropriate binder is the primary technique, and when
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using sputtering deposition and plasma, especially air-pressure plasma treatment, com-
bined with roll-to-roll treatment, the NPs coating can be competitive processes for some
specific applications.

Although Ag NP coatings have been used for air conditioner filters, there are limited
data on their durability. At the same time, our recent studies of AgCu NPs indicated that
they showed excellent antibacterial efficacy, which can reduce Ag consumption if they meet
the same antibacterial efficacy. Our intention here is focused on evaluating the durability
of AgCu NP coatings for nonwoven fabrics as air filters. We also explored their advantages,
comparing Ag NPs and Ag ions with PVP-PVA stabilizers, coated onto nonwoven fabric,
without using any surface modification processes or special binders. We found that AgCu
NP-coated fabrics showed the highest durability, while Ag ion-coated fabrics, with and
without PVP-PVA stabilizers, showed the poorest.

2. Results

Firstly, we checked the appearance of the coated nonwoven fabrics as deposited and
after running for various periods (0–30 days). After running as depicted in Figure 1a,
Figure 1b shows the color change in the various Ag-coated fabrics at different times. After
a month, the color of the Ag NPs changed from beige to light brown (Table 1), while that of
the AgCu NPs changed from yellow to white. In the case of the fabric coated with Ag ions
and PVP-PVA stabilizer, after one month, the color changed from light beige to light gray;
without PVA-PVP stabilizer, its color changed from white to light gray.
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Figure 1. (a) Schematic of simulation of Ag-coated nonwoven fiber filters for air conditioning
applications; (b) Photographs of nonwoven fibers with different Ag coatings and running times.

Table 1. Comparison of appearances of Ag-coated fibers after different running times.

Samples Blank Ag NPs AgCu NPs Ag Ions Ag Ions-
PVA-PVP

As prepared white beige yellow white light beige
15 days white light brown white light gray light gray
30 days white light brown white light gray light gray

Figures 2 and 3 are antibacterial efficacies determined by the Zone of Inhibition (ZOI)
on Ag-coated fabrics under different running conditions. Before this test, we performed
a comparison experiment of the ZOI of various pretreatments of fabric samples, shown
in Figure S1 in the Supplementary Information. We found that, with a certain amount
of deionized water (e.g., fifty µL) to wet the fabric, the antibacterial performance was
more obvious and easier to compare; therefore, we used this modification to present the
antibacterial activities of the fabric samples. Figure 3a shows that the initial antibacterial
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efficacies for S. aureus are better for both AgCu NPs and Ag NPs compared to Ag ion-
coated fibers. Figure 3b shows that there are similar antibacterial efficacies for all samples,
except for PVP/PVA and Ag ion-coated fibers, which have better efficacy against E. coli
bacteria at the initial stage. However, after running for half a month, little antibacterial
efficacy remained for the Ag ion-coated fabric, regardless of whether it was coated with
PVP-PVA or not for both bacterial strains. For Ag NP-coated fabrics, there was an increase
in antibacterial efficacy after two weeks, followed by a decrease after one month of running.
In contrast, for the AgCu NP-coated fabric, the antibacterial efficacy increased after running
for both a half and a full month. AgCu NP-coated fabric had the best antibacterial efficacy
and durability, followed by Ag NPs, while the worst cases were Ag ion-coated fabrics, with
or without stabilizers.
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Figure 2. Zone of Inhibition of S. aureus and E. coli on Ag-nonwoven fibers with different running
conditions and treatments. The labeled red letter in the photos indicate the following: A—as
prepared; B—running for two weeks; C—running for four weeks. (a,e) Ag NPs, (b,f) AgCu NPs,
(c,g) Ag ions; and (d,h) PVA/PVP-Ag ion-coated samples. The black circles indicate the edges of the
inhibition zones.

Molecules 2023, 28, x FOR PEER REVIEW 4 of 14 
 

 

deionized water (e.g., fifty µL) to wet the fabric, the antibacterial performance was more 
obvious and easier to compare; therefore, we used this modification to present the anti-
bacterial activities of the fabric samples. Figure 3a shows that the initial antibacterial effi-
cacies for S. aureus are be er for both AgCu NPs and Ag NPs compared to Ag ion-coated 
fibers. Figure 3b shows that there are similar antibacterial efficacies for all samples, except 
for PVP/PVA and Ag ion-coated fibers, which have be er efficacy against E. coli bacteria 
at the initial stage. However, after running for half a month, li le antibacterial efficacy 
remained for the Ag ion-coated fabric, regardless of whether it was coated with PVP-PVA 
or not for both bacterial strains. For Ag NP-coated fabrics, there was an increase in anti-
bacterial efficacy after two weeks, followed by a decrease after one month of running. In 
contrast, for the AgCu NP-coated fabric, the antibacterial efficacy increased after running 
for both a half and a full month. AgCu NP-coated fabric had the best antibacterial efficacy 
and durability, followed by Ag NPs, while the worst cases were Ag ion-coated fabrics, 
with or without stabilizers. 

 
Figure 2. Zone of Inhibition of S. aureus and E. coli on Ag-nonwoven fibers with different running 
conditions and treatments. The labeled red le er in the photos indicate the following: A—as pre-
pared; B—running for two weeks; C—running for four weeks. (a,e) Ag NPs, (b,f) AgCu NPs, (c,g) 
Ag ions; and (d,h) PVA/PVP-Ag ion-coated samples. The black circles indicate the edges of the in-
hibition zones. 

 
Figure 3. A comparison of antibacterial efficacies of Ag-coated nonwoven fibers by the Zone of In-
hibition against (a) S. aureus and (b) E. coli. Compared to the control sample, **** denotes a statistical 
significance of p < 0.0001; ** denotes a statistical significance of p < 0.01; and * denotes a statistical 
significance of p < 0.05, while ‘ns’ represents p > 0.05. n = 3. Error bars show standard errors of the 
mean. The red ✕ indicates that there is no inhibition zone for this sample. 

Figure 4 shows a survey and high-resolution C1s, O1s, Ag3d, and Cu2p XPS spectra 
for the AgCu NP-coated fabric. They show the presence of -COOH/C=O (290/289 eV) and 
-COH (286.7 eV) peaks in both C1s and O1s, besides the C1s C-C/C-H peak used for en-
ergy calibration, consistent with the fabric composition of PE/PP. The Ag3d5/2 peak is 
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Inhibition against (a) S. aureus and (b) E. coli. Compared to the control sample, **** denotes a
statistical significance of p < 0.0001; ** denotes a statistical significance of p < 0.01; and * denotes a
statistical significance of p < 0.05, while ‘ns’ represents p > 0.05. n = 3. Error bars show standard errors
of the mean. The red × indicates that there is no inhibition zone for this sample.
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Figure 4 shows a survey and high-resolution C1s, O1s, Ag3d, and Cu2p XPS spectra
for the AgCu NP-coated fabric. They show the presence of -COOH/C=O (~290/289 eV)
and -COH (286.7 eV) peaks in both C1s and O1s, besides the C1s C-C/C-H peak used for
energy calibration, consistent with the fabric composition of PE/PP. The Ag3d5/2 peak
is located at 367.5 eV for the as-prepared sample, while the Ag-O (or -OH) peak appears
at 369 eV after running for one month. Cu2+ is seen to exist initially, as seen from the
presence of the shakeup satellite peak [70], with little change after running for a month. A
comparison of Ag3d for the Ag-coated fibers, as shown in Figure 5, indicates that there
was some oxidation, except for the pure Ag NP-coated samples, even after running for one
month. A higher concentration of the Ag ion-coated fabrics appeared at the initial stage
(as deposited, from Table 2) than that of Ag and AgCu NPs, although the same amount of
Ag was deposited; this can be caused by the higher surface–volume ratio of Ag ion-coated
samples than that of both Ag and AgCu NPs due to larger NPs. This means the smaller the
nanoparticles, the stronger the electron emission from NPs [71,72].

Table 2. Relative concentration changes in Ag-coated nonwoven fibers by XPS.

Sample
at. %

C1s O1s N1s Ag3d Cu2p

Background (fabric) 74.55 25.45 -- -- --
Ag (0) 75.18 21.77 2.87 0.18 --

Ag (30 days) 71.8 24.19 3.74 0.28 --
AgCu (0) 74.88 21.14 3.38 0.17 0.43

AgCu (30 days) 73.1 22.68 3.53 0.21 0.48
Ag+ (0) 75.26 24.38 -- 0.37 --

Ag+ (30 days) 72.88 26.88 -- 0.24 ↓ --
Ag+ + PVP/PVA (0) 73.47 25.97 -- 0.55 --

Ag+ + PVP/PVA (30 days) 75.39 24.22 -- 0.39 ↓ --
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Detailed XPS spectra are shown in Figures S2–S4. Chemical compositional changes,
estimated using XPS sensitivity factors, are found in Table 2. It is seen that the Ag concen-
tration is ~0.2–0.3% for Ag and AgCu NP-coated fibers and that there was minimal change
after running for one month, while that for Ag ion-coated fibers decreased.

These color changes and analytic data (XPS and antibacterial activity) clearly show
that the initial color of all coated nonwoven fabrics was changed, especially for the AgCu
NP-coated fabrics, which look like uncoated fabrics. Both Ag and AgCu NP-coated fabrics
showed no loss of Ag after running for one month, while Ag ion-coated samples, with or
without PVP/PVA, showed some loss of Ag.

3. Discussion

The color changes in both uncoated and Ag-coated fabrics, induced by air currents in
the air conditioner, as shown in Table 1, can be summarized as follows: the color change
in the uncoated nonwoven fabric changes from original white to a quite slight gray. This
variation is probably due to the deposition of particulate matter during air flow. While
the color of Ag NP-coated fabrics, which changes from beige to light brown after running
for one month, is principally caused by Ag NP aggregation, which is assisted by air flow.
Ag ion-coated fibers, without and with PVP-PVA stabilizers, change from white (or light
yellow) to light brown after running for one month, caused by Ag NP aggregation, which
we have found previously [73]. This means that no aggregation occurred for the AgCu NP-
coated fabrics by air flow, suggesting that the adhesion of AgCu NPs to the fabric is stronger
than that of Ag NPs and Ag ions. The initial (as deposited) yellow color of the Ag ion coated
with the PVP-PVA sample is due to the reduction in PVP to form nanoparticles [29,30].
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Surface chemical analysis by XPS, as shown in Figure 4 and Table 2, indicates that
both AgCu- and Ag NP-coated fabrics suffer little loss of NPs, but there is some loss of Ag
for the Ag ion-coated fabrics after running for one month. This is further confirmed by
the antibacterial data in Figures 2 and 3. The loss of color of AgCu NPs is caused by the
formation of an oxidation shell, as confirmed by Ag 3d XPS in Figures 4 and 5, while the
antibacterial activity enhances, consistent with Table 1, due to oxidation shell formation [74].
This is because oxidized Ag in AgCu NPs is favorable for Ag ion release in contact with
bacteria [75]. However, it is well known that the aggregation of Ag NPs can also result, in
some circumstances, in a decrease in antibacterial efficacy [76,77], which may be the main
reason for the degradation of Ag NP-coated fabrics.

The XPS results presented in Figure 5 and Table 2 suggest that the adhesion of the Ag
ion-coated fabric samples is very weak, leading to the loss of Ag and also NP aggregation
on wind blowing. It is well known that fibers, when immersed in solutions of AgNO3,
in the absence of added reducing agents, undergo a reduction reaction from Ag ions to
metallic Ag (Ag+ to Ag0) [78] due to the presence of functional groups (C=O and C-O)
on the fiber surface, as shown by our XPS analysis (Figure 4). The loss of Ag from the
Ag ion-coated fabric samples is due to zerovalent Ag having a weak interaction with
fibers [79,80], which is a major reason for the loss of Ag from the air current exposure. The
antibacterial test data presented in Figures 2 and 3 also confirm Ag loss by air currents for
the Ag ion-coated samples.

However, the loss of Ag concentration is minimal for Ag and AgCu NPs, implying
that they have a stronger interaction with the fabrics when the wind blows. This enhanced
interaction is attributed to the presence of PVP-PVA that can form hydrogen bonds with
the fibers [81]. Therefore, the fading of the yellow color of AgCu NP-coated fibers does not
affect their application as antibacterial filters, but this partial oxidization process makes a
difference in improving the antimicrobial effect, which appears to result from preventing
the aggregation of the AgCu NPs.

For the antibacterial efficacy change shown in Figures 2 and 3, it is clearly indicated
that both Ag- and AgCu NP-coated fabrics exhibited better antibacterial efficacy for S.
aureus than for E. coli. This is different than the case of Ag and AgCu NPs and Ag ions
in aqueous solutions. Secondly, the antibacterial efficacy of Ag NPs is increased in the
first 15-day running period, which then decreases after running for one month. The
increased antibacterial efficacy of Ag NP-coated fabrics for the first 15 days of airflow
may be caused by NP surface oxidation layer formation during that time. The decreased
antibacterial efficacy of Ag NP-coated fabrics can be attributed to the Ag NPs aggregation;
this is consistent with the Ag NP color change. As one can see in Figures 2 and 3, the
antibacterial efficacy of AgCu NP-coated fabric increases for one month, which can be
attributed to both surface oxidation and a lack of aggregation. The major reason for the
decrease in antibacterial efficacy for the Ag ion-coated fabrics, both with and without
PVP-PVA stabilizers during airflow, appears to be a loss of Ag due to a weak interaction of
Ag with fibers.

It Is well known that antibacterial efficacy is dependent on the Ag NPs’ size [82–85],
shape, and surface chemistry [86–89]. The smaller the size, the higher the antibacterial
efficacy [90,91] under aqueous environmental conditions. In this work, Ag NPs (12 nm) [29]
and AgCu NPs (15 nm; a TEM photomicrograph can be found in Figure S5 in the Supple-
mentary Material) were used. There is no available TEM data for Ag ion-coated fabrics;
however, based on the color of the Ag ion-coated fabrics, the average size of Ag may be
smaller than 5 nm (without PVA-PVP) and 6–10 nm (with PVA-PVP stabilizers). For the
coated fabrics, the antibacterial efficacies, determined from the ZOI diameter against two
bacteria, are mainly affected by two factors: Ag and Cu ion release [92,93] and the contact
killing mechanism [94,95]. Since the ZOI diameter depends on diffusion, this means that
both Ag- and AgCu-coated fabrics have more NPs and ions diffusing than the Ag-coated
fabrics, both initially and after running for a month (Figure 3). It appears that Ag ion release
plays a more important role in the antibacterial efficacy of the coated fabrics because there
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is stronger adhesion of the AgCu and Ag NPs to the fabrics, as confirmed by XPS and
ZOI testing.

Based on this analysis, a schematic diagram for the coated fiber color and property
changes is found in Figure 6. The most notable one is for the AgCu NP-coated samples
among these Ag-coated antibacterial fabrics, which not only kept their mechanical durabil-
ity but also improved their antibacterial efficiency with the moderate oxidation of Ag. It
is confirmed by the change to the Ag3d peak, the little change to the Cu2p peak, and the
stronger adhesion between antibacterial material and fabric, as determined by ZOI.
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Figure 6 highlights the change in the NPs coated on the fabrics. (1) AgCu remains on
the fiber, without movement, under air flow, although the surface forms an oxide layer,
revealing the stronger interaction between PVP-PVA-capped AgCu NPs and the fibers.
(2) The adhesion of Ag NPs on a fiber is likely weaker than that of AgCu since the NPs can
move, leading to aggregation. (3) The adhesion of the Ag ions, with and without PVA-PVP
stabilizer, is probably very weak, resulting in the loss and aggregation of the Ag NPs on
the fibers. The enhanced antibacterial efficacy of the AgCu NPs on the fibers can be due
not only to oxidation layer formation to speed up Ag ion release under running conditions
but also to Cu enhancing Ag release, which has been found recently [29].

This study provides us with a facile and cost-effective method to maintain stable AgCu
NP-based coated antibacterial nonwoven fabric, which can be considered an excellent sub-
stitute for colorless antibacterial filters applied in air conditioning to achieve air purification
for human health.

4. Materials and Methods
4.1. Materials

Commercially nonwoven K5310 fabric, composed of polypropylene/polyethylene
(PP/PE), was purchased from Jiangsu Beihu New Material Co., Ltd. (Jiangyin, China);
Ag and AgCu NP aqueous dispersions were provided by Solmont Technology Wuxi Co.,
Ltd. (Wuxi, China) at 1000 ppm Ag concentration and PVP-PVA as stabilizers. Ag nitrate
(AgNO3, 99.8%) was obtained from Tongboxin Hongyin Products Co., Ltd. (Henan, China).
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4.2. Sample Preparation

Antibacterial agents: aqueous dispersions of Ag and AgCu NPs were diluted to 200 ppm
Ag concentration, with the Cu concentration at 100 ppm, w/v, using deionized water. The
composite solution of PVP/PVA and Ag ions with 200 ppm Ag ions was prepared by
dissolving AgNO3 in deionized water with the same amount of PVP and PVA added as in
the Ag NP dispersions.

Nonwoven fabric: the fabrics were cut to the same size (30 × 33 cm2) and soaked in
the different antibacterial agents for 1 min before the excess liquid was rolled out and the
fabrics were dried by atmospheric exposure. The Ag-coated nonwoven fabrics were dried
for 24 h in air at room temperature.

Air blowing test: samples of fabric were glued to the air inlet of an air conditioner KFR-
35GW/K150+N3, Chigo Air Conditioning Co., Ltd., (Foshan, China) using double-sided
adhesive tape. The air conditioner was working continuously for 30 days, and samples
were evaluated on days 0, 15, and 30.

4.3. Characterization

XPS was conducted on an ESCALab 230i, whose X-ray source was monochromatic
Al Kα (1486.7 eV). Survey spectra were conducted with 1.0 eV steps at 100 eV pass energy,
while high-resolution spectra were conducted with 0.05 eV steps and a 25-eV pass energy.
All spectra were calibrated by placing the C1s peak for C-C/C-H at 284.8 eV.

4.4. Antibacterial Evaluations

The antibacterial efficacy of the fabrics was evaluated against Gram-negative Es-
cherichia coli (ATCC 8099) and Gram-positive Staphylococcus aureus (ATCC 6538). The
sub-culture of the bacterial colony was made from 3–5 generations of the primary culture.
Bacteria were grown overnight on a nutrient-agar media plate. Inoculums of 0.5 McFarland
standards (1.5 × 108 CFU/mL) were maintained in nutrient broth by picking up a single
colony from the sub-culture plate [32], and fifty microliters of bacterial solution were added
to 5 mL of sterile saline solution to obtain a bacterial suspension at a concentration of
1.5 × 106 CFU/mL for testing. Fabric samples were cut with a 14 mm punch.

Agar dilution is considered to be the gold standard of susceptibility testing or the
most accurate way to measure the resistance of bacteria to antibiotics [96]. In this well-
known procedure [97], the agar plate surface was inoculated by spreading a volume of the
microbial inoculum over the entire agar surface. Then, samples were placed aseptically,
using sterile tweezers, onto the surfaces of ager plates. The Petri dishes were then incubated
under suitable conditions [98] (37 ◦C). The antimicrobial agent diffuses into the agar and
inhibits germination and growth of the test microorganism, following which the diameters
of the inhibition growth zones are measured by a vernier caliper at three or more locations.

4.5. Statistical Studies

Statistical data (average ± SD) analyses were conducted, applying One-Way ANOVA
(SPSS software Version 8.0 program). This study considered p < 0.05 for significantly
various groups.

5. Conclusions

The durability of directly deposited Ag and AgCu NPs and Ag ions, by dip-roll
processes onto nonwoven fabric for air conditioner applications, has been evaluated by
antibacterial efficacy, color change, and XPS analysis. We found that the disappearance
of the yellow color of AgCu NP-coated fabrics on air current exposure is attributed to
the surface oxidation of AgCu NPs without the degeneration of antibacterial activity,
while the decreased antibacterial activity and color change for the Ag NP- and Ag ion-
coated fabrics can be attributed to surface Ag NP aggregation and Ag loss. PVP-PVA
stabilized AgCu NPs, deposited onto the fabric by dip-rolling, appear to be applicable as air
conditioning antibacterial filters, leading to higher durability and enhanced antibacterial
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efficacy. Overall, this study proposes a facile and inexpensive method to maintain stable
NP-coated fabrics without using any surface modification processes or special binders but
with the improvement of antimicrobial efficacy in use, which may be an effective solution
to the implementation of colorless anti-bacterial filters applied in air conditioners to achieve
better air purification, particularly for respiratory health.

Supplementary Materials: The supporting information can be downloaded at https://www.mdpi.
com/article/10.3390/molecules28145446/s1, Figure S1: A comparison of Zone of Inhibition of
S. aureus on Ag-nonwoven fabrics with 17 different pretreatments: A, B, and C were wet with
50 microliters of deionized water, while 1, 2, and 3 were not, before 18 antibacterial evaluations,
in the order of as prepared (A, 1), two weeks (B, 2) and four weeks (C, 3). Figure S2: XPS of Ag
NP-coated nonwoven fabrics. (a) Survey, (b) C1s, (c) O1s, and (d) N1s. Figure S3: XPS of Ag ion-
coated nonwoven fabrics. (a) Survey, (b) C1s, and (c) O1s. Figure S4: XPS of PVP/PVA and Ag
ion-coated nonwoven fabrics. (a) Survey, (b) C1s, and (c) O1s. (d) N1s. Figure S5: TEM photographs
of Ag NPs at (a) low magnification and (b) high magnification; (c) measured particle size; and
(d) high-magnification photo of AgCu NPs.
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