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Abstract: A biomimetic mineralization method was used in the facile and rapid preparation of nanoflow-
ers for immobilizing alcohol dehydrogenase (ADH). The method mainly uses ADH as an organic
component and zinc phosphate as an inorganic component to prepare flower-like ADH/Zn3(PO4)2

organic-inorganic hybrid nanoflowers (HNFs) with the high specific surface area through a self-
assembly process. The synthesis conditions of the ADH HNFs were optimized and its morphology
was characterized. Under the optimum enzymatic reaction conditions, the Michaelis-Menten constant
(Km) of ADH HNFs (β-NAD+ as substrate) was measured to be 3.54 mM, and the half-maximal
inhibitory concentration (IC50) of the positive control ranitidine (0.2–0.8 mM) was determined to be
0.49 mM. Subsequently, the inhibitory activity of natural medicine Penthorum chinense Pursh and nine
small-molecule compounds on ADH was evaluated using ADH HNFs. The inhibition percentage
of the aqueous extract of P. chinense is 57.9%. The vanillic acid, protocatechuic acid, gallic acid, and
naringenin have obvious inhibitory effects on ADH, and their percentages of inhibition are 55.1%,
68.3%, 61.9%, and 75.5%, respectively. Moreover, molecular docking analysis was applied to explore
the binding modes and sites of the four most active small-molecule compounds to ADH. The results
of this study can broaden the application of immobilized enzymes through biomimetic mineralization,
and provide a reference for the discovery of ADH inhibitors from natural products.

Keywords: alcohol dehydrogenase; organic-inorganic hybrid nanoflowers; Penthorum chinense Pursh;
enzyme inhibitors

1. Introduction

Alcohol dehydrogenase (ADH), which is a key enzyme for the metabolism of short-
chain alcohols in organisms, is abundant in human and animal liver, and plant and micro-
bial cells [1–4]. As a substrate-specific zinc-containing metalloenzyme [5], each enzyme
subunit in the ADH structure binds to two Zn2+ that maintain the structure and the cat-
alytically active center of the enzyme. ADH plays an important role in many physiological
processes of human body. ADH catalyzes the oxidation of primary and secondary alcohols
to produce corresponding aldehydes and ketones [6], in which the cofactor nicotinamide
adenine dinucleotide (NAD+) is reduced to NADH [7]. Studies have reported that in
alcoholism or cirrhosis, ADH activity is significantly increased in serum [8,9]. The initial
activity of ADH is positively correlated with liver damage-related indicators [10]. ADH
inhibitors can reduce the production of aldehydes in alcohol metabolism by inhibiting
the activity of ADH, thereby acting as the alcoholism antidote and hepatoprotector [11].
Currently, the mainly used antidotes in clinical practice are synthetic ADH inhibitors,
such as 4-methylpyrazole, cimetidine, and formamides [7]. The 4-methylpyrazole can also
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prevent acetaminophen-induced acute kidney injury [12]. However, the 4-methylpyrazole
is not indicated for patients with metabolic acidemia [13], and may cause several adverse
reactions, including headache, nausea, and dizziness [14]. Several natural medicines pos-
sess specific anti-alcoholism and hepatoprotective effects, which have significant clinical
curative efficacy with few side effects [15,16]. Thus, screening of ADH inhibitors from
natural medicines becomes a new approach to developing alcoholism antidotes.

Penthorum chinense Pursh (P. chinense, Saxifragaceae) is a traditional Chinese medicine,
which is named ‘GanHuanCao’ in Chinese [17]. It has the effects of clearing heat and detox-
ification, reducing icteric and dampness, activating blood circulation, and dissolving stasis
and swelling, being used in the treatment of jaundice, edema, trauma, cholecystitis, and
liver disease [18]. Furthermore, several previous studies reported that the aqueous extract
of P. chinense can protect against both acute and chronic alcohol-induced liver injury [19],
and displays antioxidative and free radical scavenging activities [20]. Therefore, the screen-
ing of ADH inhibitors from P. chinense is significant for exploring its pharmacological
activity such as the protective effect on alcohol-induced liver injury.

Ge et al. [21] first reported a method for preparing protein-inorganic hybrid nanoflow-
ers with certain morphology and structure using protein as an organic component and
copper phosphate (Cu3(PO4)2) as an inorganic component. It was found that the laccase and
carbonic anhydrase nanoflowers have higher catalytic activity than their corresponding free
enzymes. Different from the traditional enzyme immobilization method, this biomimetic
mineralization method can be realized by simply adding organic biological macromolecules
to the inorganic metal ion solution, forming organic-inorganic hybrid nanoflowers. There-
fore, the application of protein-inorganic hybrid nanoflowers for the immobilization of
enzymes has received dominant attention owing to its simple and efficient synthesis
method [22]. In recent years, organic-inorganic hybrid nanoflowers using lipase [23],
horseradish peroxidase [24], glucose oxidase [25], α-amylase [26], urease [27], trypsin [28],
chymotrypsin [29], papain [30], α-glucosidase [31], β-galactosidase [32], sucrose phospho-
rylase [33], and DNA [34] as organic components have been reported, and their catalytic
activity and stability are higher than those of their corresponding free enzymes.

In this study, ADH-zinc phosphate hybrid nanoflowers were prepared through biomimetic
mineralization and applied in the screening of ADH inhibitors from P. chinense (Figure 1).
The ADH hybrid nanoflowers (HNFs) were prepared using ADH as an organic component
and Zn3(PO4)2 as an inorganic component, in which the synthesis of nanoflower carriers
and the fixation of ADH were completed simultaneously, greatly simplifying the immo-
bilization process of enzymes. The enzyme immobilization conditions were optimized,
and the enzymatic reaction conditions and the kinetic performance of immobilized ADH
were studied. Subsequently, the ADH inhibitory activity of aqueous extract and nine small-
molecule compounds from P. chinense were evaluated using the prepared ADH HNFs.
Finally, molecular docking of ADH with small-molecule compounds of good inhibitory
activity was performed to predict the binding site of ligands to the enzyme.
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Figure 1. Schematic illustration of the fabrication process of ADH HNFs and the principle of catalysis.
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2. Results and Discussion
2.1. Monitoring the Enzyme Activity of ADH HNFs by UV Analysis

To investigate the feasibility of monitoring the enzyme activity by the design principle,
the UV absorbances of five solutions at 240–400 nm were measured. As shown in Figure 2,
both ethanol and HNFs + ethanol solutions (Figure 2A,C) have no UV absorption peaks at
240–400 nm. In the conversion of ethanol to acetaldehyde catalyzed by ADH, coenzyme I (β-
NAD+) is involved to generate β-NADH. Both the β-NAD+ and β-NADH have absorption
peaks at 260 nm (Figure 2B,D,E), but only the β-NADH shows a characteristic absorption
peak at 340 nm (Figure 2E). Therefore, the enzymatic activity of ADH HNFs can be assessed
by monitoring the absorbance of β-NADH at 340 nm.
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Figure 2. UV absorption spectra of five different solutions. (A) ethanol; (B) β-NAD+; (C) HNFs
+ ethanol; (D) HNFs + β-NAD+; (E) HNFs + β-NAD+ + ethanol. Conditions: the volumes of
ADH HNFs, tris-HCl (pH = 7.0), and ethanol are 25, 200, and 50 µL, respectively; β-NAD+ final
concentration, 3 mM; enzymatic reaction at 35 ◦C for 2 min and centrifuged for 1.5 min, 60 µL of
supernatant was taken for measurement.

2.2. Optimization of Preparation Conditions of ADH HNFs

For the growth of hybrid nanoflower, there are four main steps, including crystalliza-
tion and coordination, in situ precipitation, self-assembly, and size growth (Figure 3) [35].
The primary crystals of zinc phosphate are first formed. The complexes of enzyme
molecules with Zn2+ are formed predominantly through the coordination facility of amide
groups in the ethanol dehydrogenase backbone and nitrogen atoms in amino acid residues.
These complexes in turn provide nucleation sites for the primary crystals. Next, the growth
of Zn3(PO4)2 crystals at the Zn2+ binding site on the surface of the complex allows the
ethanol dehydrogenase molecule and the primary crystals to gradually grow into large
agglomerates, resulting in the formation of individual nanosheets. Then, the self-assembly
occurs between nanosheets to form a flower-like structure, and finally, anisotropic growth
results in the complete formation of ADH HNFs. In this proposed growth process, alcohol
dehydrogenase plays an important role in regulating the nucleation of Zn3(PO4)2 crystals
to form the scaffold for the petals and serves as a ‘glue’ to bind the nanosheets together [21].

To obtain ADH HNFs with suitable size and morphology, as well as good catalytic
activity and storage stability, the preparation method, enzyme amount, and immobilization
time were investigated. The magnetic stirring equipment used in this experiment cannot
be temperature controlled and the room temperature was about 25 ◦C during the synthesis,
the effect of different temperatures on the preparation of nanoflowers is not considered
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here. Furthermore, according to the previous reports [36–38], phosphate organic-inorganic
hybrid nanoflowers are usually fully formed within 6 h, therefore, 6 h was used firstly as
the time to immobilize ADH. The reproducibility of the immobilized enzyme can be used
to appraise whether the immobilization method is stable and reliable. Three batches of
ADH HNFs were prepared through different preparation methods (thermostatic oscillation
for 6 h at 30 ◦C or magnetic stirring for 6 h at room temperature of 30 ◦C) and evaluated
by measuring the absorbance of generated β-NADH at 340 nm. The relative standard
deviation (RSD) of batch-to-batch (n = 3) for magnetic stirring and thermostatic oscillation
is 4.1% and 9.4%, respectively, indicating that the ADH HNFs prepared by magnetic stirring
have better reproducibility.
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Figure 3. Schematic diagram of the proposed mechanism for the formation of ADH HNFs through
the biomineralization method.

As shown in Figure 4A–I, the hybrid nanoflowers prepared through different methods
have obviously different morphologies and sizes. Figure 4A–E shows that ADH HNFs
prepared through the magnetic stirring method have a tight structure, approximating the
structure of a ‘flower bud’. Figure 4F–I shows that ADH HNFs prepared through the
constant temperature oscillation method have sparse petals and loose structures. The
overall size is larger than that of ADH HNFs prepared through the magnetic stirring
method. Based on these SEM images, the poor reproducibility of the ADH HNFs prepared
by the thermostatic oscillation method may be due to the non-uniform flower structure of
the nanoflowers prepared in different batches.

The SEM images of ADH HNFs synthesized through magnetic stirring under the
optimum conditions (6 mg of enzyme amount and 12 h of immobilization time) are shown
in Figure 4A,C,E. The nanoflowers are uniformly dispersed with similar particle sizes
within the field of view, and no large number of agglomerates are found. Furthermore, it
can be seen in Figure 4A that in addition to the structures bound as nanoflowers, there
are also some incompletely assembled nanosheets, which confirms that the formation of
nanoflowers is a self-assembly and gradual growth process. From the SEM image shown in
Figure 4E and particle size distribution diagram (Figure 4A), the nanoflowers are spheres
in shape with a diameter size of 4–6 µm, and the petals are arranged in a wrapped shape.

Then, the effect of enzyme amount on the catalytic activity of ADH HNFs prepared
through magnetic stirring was investigated. The relative catalytic activity of ADH HNFs
increased significantly in the range of 2–6 mg of the enzyme amount and decreased slightly
to 8 mg (Figure 5A). In consideration of the cost-saving and good catalytic activity, the
enzyme amount of 6 mg was chosen for the following studies. Furthermore, the relative
catalytic activity of ADH HNFs is gradually decreased with the increase of immobilization
time (Figure 5B), but the storage stability of the nanoflowers immobilized for 12 h is better
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than 6 h (Figure 5C). Therefore, 12 h was chosen as the optimum immobilization time.
In addition, the relationship between immobilization time and relative enzyme activity
confirms that it is reasonable to choose 6 h as the synthesis time when comparing different
immobilization methods.
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Figure 4. The SEM images of ADH HNFs that were prepared through magnetic stirring for 6 h at
room temperature (A–E) and thermostatically oscillation for 6 h at 30 ◦C (F–I). The enzyme amounts
of (A,B,C,D,E,F,G,H,I) are 6, 4, 6, 8, 6, 2, 4, 6, and 8 mg, respectively. The insert in Figure (A) shows
the particle size distribution of the nanoflower prepared with 6 mg of enzyme amount.

2.3. Optimization of Enzymatic Reaction Conditions

To obtain the optimum reaction conditions for ADH HNFs, several experimental
parameters were investigated, including reaction temperature (25, 35, and 45 ◦C), buffer
pH (6.5, 7.0, and 7.5), and reaction time (2.0–10.0 min).

Results indicate that the relative catalytic activity of ADH HNFs reached its maximum
at pH 7.0, while free ADH was leveling off at pH 7.5 (Figure 6A). At the same time, as the
reaction temperature increased from 25 to 45 ◦C, the catalytic activity of both free ADH and
ADH HNFs peaked at 35 ◦C (Figure 6B), which was chosen as the optimum temperature.
Moreover, with the increase in reaction time (2, 4, 6, 8, 10, and 12 min), the catalytic activity
of ADH HNFs is increased and reaches its maximum at 8 min, and free ADH reaches its
maximum at 10 min (Figure 6C). Thus, 8 min and 10 min of reaction time for ADH HNFs
and free ADH were used in the following experiments, respectively.
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Figure 5. Effect of enzyme amount (A) and immobilization time (B) on the catalytic activity of ADH
HNFs prepared through magnetic stirring; effect of immobilization time (6 and 12 h) on the storage
stability of ADH HNFs (C). Conditions: the volume of ADH HNFs, tris-HCl (pH 7.0), and ethanol are
15, 160, and 50 µL, respectively; β-NAD+ concentration, 3 mM; reaction temperature, 35 ◦C; reaction
time, 2 min; centrifuged for 1.5 min, 60 µL of supernatant was taken for measurement at 340 nm.

The storage stability and reusability of ADH HNFs were also evaluated and the results
are shown in Figure 6D,E, respectively. Within six days of storage, the catalytic activity
of the free enzyme decreased to 45.1%, but ADH HNFs remained at 65.3% (Figure 6D).
Furthermore, as shown in Figure 6E, ADH HNFs can retain a certain level of catalytic
activity after three times of usage. These results indicate that the immobilization of ADH
through the formation of nanoflowers can improve the operational stability of the enzyme.

2.4. Kinetics Study of ADH HNFs

The steady-state kinetic study of ADH HNFs was carried out. Based on the varied
β-NAD+ concentrations (0.38, 0.75, 1.51, 2.26, and 3.0 mM), the linear regression equa-
tions of the Lineweaver–Burk plot of ADH HNFs and free ADH are obtained through
Equation (1) as y = 13.231x + 3.8107 (R2 = 0.993) and y = 6.729x + 1.2614 (R2 = 0.9981),
respectively, where y and x are the reaction velocity and reciprocal of substrate (β-NAD+)
concentration, respectively (Figure 7A). The Vmax of ADH HNFs and free ADH are 15.72
and 47.58 µM·min−1, and Km values are 3.47 and 5.33 mM, respectively, in which the Km
value of ADH HNFs is comparable to that of free ADH. In addition, as can be seen in Table 1,
the Km values obtained from different studies are different, which can be attributed to the
source of ADH, the concentration of the substrate, and the conditions of the enzymatic
reaction. Moreover, the Kcat value of free ADH (0.9366 min−1) was found to be a little
higher than that of ADH HNFs (0.4546 min−1). Because Kcat demonstrates the maximum



Molecules 2023, 28, 5429 7 of 16

converted substrate molecule number by an enzyme per unit of time, a decrease in Kcat
value reflects the reduced activity of the enzyme [39].
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(D) on the relative catalytic activity of ADH HNFs and free ADH, and reusability (E) of ADH HNFs.
ADH HNFs conditions: the volume of ADH HNFs, tris-HCl, and ethanol are 15, 160, and 50 µL,
respectively; β-NAD+ concentration, 3 mM; buffer pH, 7.0; reaction temperature, 35 ◦C; reaction
time, 2 min for (A,B), 8 min for (D,E); centrifuged for 1.5 min, 60 µL of supernatant was taken for
measurement at 340 nm. Free ADH conditions: the volume of tris-HCl and ethanol are 160 µL and
15 µL, respectively; free ADH concentration, 0.015 mg/mL for (A–C), 0.01 mg/mL for (D); β-NAD+

concentration, 3 mM; buffer pH, 7.5; reaction temperature, 35 ◦C; reaction time, 2 min for (A,B), 8 min
for (D); 60 µL of supernatant was taken for measurement at 340 nm.
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Figure 7. Michaelis–Menten double reciprocal curve (A) and inhibition plot of ranitidine on ADH
(B). ADH HNFs conditions: the volume of ADH HNFs, tris-HCl, and ethanol are 15, 160, and 50 µL,
respectively; β-NAD+ concentration, 3 mM; buffer pH, 7.0; reaction temperature, 35 ◦C; reaction time,
8 min. β-NAD+ concentrations are from 0.375 to 3 mM for (A). Ranitidine concentrations are from
0.2 to 0.8 mM for (B); centrifuged for 1.5 min, 60 µL of supernatant was taken for measurement at
340 nm. Free ADH conditions: The volume of tris-HCl and ethanol are 160 and 50 µL, respectively;
free ADH concentration, 0.015 mg/mL; buffer pH, 7.5; reaction temperature, 35 ◦C; reaction time,
10 min, 60 µL of supernatant was taken for measurement at 340 nm.

Table 1. Comparison of present work with the previously reported methods for immobilization
of ADH.

Immobilization
Carrier Substrate

Km (mM) Vmax (µM·min−1) Kcat (min−1)
Ref.

Immobilized Free Immobilized Free Immobilized Free

Fe3O4@SiO2-epoxy
NPs Ethanol NAD+ 31.32 11.54 44.27 56.72 – a – [40]

HKUST-1 Ethanol NAD+ 34.3 26.2 2300 10700 13.5 62.6 [41]
Metal-chelated

cryogels
Phenylglyoxylic

acid NAD+ 35 143 0.034 71.43 3165.7 3743.9 [39]

Ni-Co nanoferrites Ethanol NAD+ 237 154 190.83 315.55 – – [42]
Polyaniline coated

AgNPs Ethanol NAD+ 205.3 163.7 233.0 321.2 – – [43]
PPy-TiP Ethanol NAD+ 223.71 153.6 201.53 340.7 – – [44]

TiO2 NPs Formaldehyde NAD+ 23.3 11.5 65.8 100 1.45 2.2 [45]
HNFs Ethanol NAD+ 3.54 5.33 15.72 47.58 0.4546 0.9366 This

work

HKUST-1: a copper-containing metal framework organic material; NPs: nanoparticles; AgNPs: silver nanopar-
ticles; PPy-TiP: polypyrrole–titanium(iv) phosphate nanocomposite; HNFs: hybrid nanoflowers; a it was not
reported in the reference.

The change in the amounts of product produced with different ranitidine concentra-
tions was measured and the inhibition rate at each concentration was calculated through
Equation (2). Then, the inhibition plots of ranitidine against ADH HNFs were obtained
through the dose–response nonlinear regression equation using Origin 2018 64 c software
(Figure 7B). The IC50 value of positive control ranitidine against ADH HNFs and free ADH
are calculated to be 0.49 and 0.39 mM according to the fitted equation.

2.5. Screening of Inhibitors and Molecular Docking

The inhibitory activity of the aqueous extract of P. chinense (8 mg/mL) and nine
pure compounds (1.5 mM) on ADH HNFs were evaluated. Compared with the blank
group without inhibitor, the inhibitory activity of each sample was calculated through
Equation (2), and the results are summarized in Table 2. The inhibition percentage of the
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aqueous extract is 57.9%, indicating that P. chinense possesses a moderate inhibitory effect on
ADH. The process of ADH alcohol metabolism is associated with increased oxidative stress,
which may lead to liver inflammation and cellular damage [46]. The aqueous extract of P.
chinense can inhibit the activity of ADH and reduce the production of aldehydes in alcohol
metabolism, thereby playing the role of alcoholism antidote and hepatoprotector. Among
the nine small-molecule compounds from P. chinense, vanillic acid, protocatechuic acid,
gallic acid, and naringenin show obvious inhibitory effects on ADH with the % of inhibition
of 55.1%, 68.3%, 61.9%, and 75.5%, respectively. Therefore, these active compounds may be
responsible for the inhibitory activity of P. chinense on ADH, and the immobilized enzyme
(ADH HNFs) has the potential application prospect in inhibitor screening.

Table 2. The percentage of inhibition of nine compounds and P. chinense aqueous extracts on ADH
(n = 3).

Compounds Inhibition (%) Compounds Inhibition (%)

Aqueous extract of P. chinense 57.9 ± 1.2 L-Epicatechin – a

Apigenin 52.5 ± 5.5 Naringenin 75.5 ± 2.1
Cianidanol 34.9 ± 4.0 Protocatechuic acid 68.3 ± 2.9
Ellagic acid 58.2 ± 10.3 Quercetin –
Gallic acid 61.9 ± 2.8 Vanillic acid 55.1 ± 1.0

P. chinense: Penthorum chinense Pursh; a no inhibition or inhibition rate less than 0.6%.

The interactions between ADH and the active compounds (potential inhibitors) were
investigated through molecular docking, including ranitidine, vanillic acid, protocatechuic
acid, naringenin, and gallic acid. Figures 8 and 9 display the interaction diagrams of
the best-docked conformations. Table 3 summarizes the amino acid residues, hydrogen
bonds, and binding energy of the interactions between the small-molecule compounds and
ADH. The molecular docking results show that ranitidine, vanillic acid, protocatechuic
acid, naringenin, and gallic acid are all located in the active site cavity of ADH, and their
binding energy to the docking region of the enzyme is below −5 Kcal/mol, indicating that
these four small molecules may be potential ADH inhibitors [47]. Furthermore, hydrogen
bonds that exist between vanillic acid, gallic acid, and PHE321, THR48; protocatechuic
acid and VAL296, THR48; naringenin and HIS47, ALA298, LYS299; play important roles
in the binding of ligands to ADH. Compared with the positive control ranitidine, vanillic
acid, gallic acid, and protocatechuic acid have some similar binding amino acid residues.
Particularly, the benzene rings of these potential inhibitors make close contacts with CYS46,
CYS178, HIS67, ILE311, THR319, PHE93, PHE320, ZN380, and SER182, which are the
residues lining the inner and middle part of the substrate-binding pocket together with the
catalytic zinc and the zinc ligands [48]. However, naringenin exhibits a different binding
site from the other three small-molecule compounds and mainly interacts with HIS47,
ALA298, and LYS299, which can be used to explain its higher inhibitory activity than the
other three ones. Therefore, these compounds may be effective ADH inhibitors, and the
docking results correspond to that of inhibitor screening.
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Table 3. Docking results of ranitidine and four small-molecule compounds with ADH.

Compounds Binding Energy
(Kcal/mol) Hydrogen Bonds Distance (10−10 m) Other Amino Acid Residues

Ranitidine a −6.77 PHE321, THR48 2.00
2.65

CYS46, CYS178, GLY297, GLY322,
HIS67, ILE311, MET145, VAL296,

THR319, THR121, PRO120, PHE93,
PHE320, ZN380, VAL207, SER182

Gallic acid −7.94 PHE321, THR48 2.09
2.21

VAL207, CYS178, PHE93, SER182,
GLY322, PHE320, THR319, VAL296,

ILE311, HIS67, ZN380, CYS46

Naringenin −5.53 HIS47, ALA298, LYS299
2.18
2.66
2.60

GLY297, CYS272, CYS46, MET364,
VAL207, VAL45, ARG371, CYS205,

CYS206, ALA273

Protocatechuic
acid −7.86 VAL296, THR48 1.93

2.38

MET145, GLY297, ILE311, THR319,
PHE320, PHE321, SER182, CYS178,

PHE93, ARG371, CYS46, ZN380, HIS67

Vanillic acid −8.27 PHE321, THR48 1.79
2.48

MET145, PHE93, ILE311, THR319,
PHE320, GLY322, VAL296, SER182,

VAL207, CYS46, ZN480, HIS67, CYS178
a ranitidine was used as a positive control and the molecular docking results are shown in Figure 9.
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Figure 9. Three-dimensional (3D) and 2D docking images of ADH with ranitidine.

3. Materials and Methods
3.1. Chemicals and Materials

Alcohol dehydrogenase (ADH, 300 U/mg, from yeast) was obtained from Shang-
hai Yingxin Laboratory Equipment Co., Ltd. (Shanghai, China). Zinc acetate dihydrate
(C4H5O4Zn·2H2O) and sodium phosphate dibasic dodecahydrate (Na2HPO4·12H2O) were
purchased from Shanghai Titan Scientific Co., Ltd. (Shanghai, China). Oxidative coenzyme I
(β-NAD, ≥98%) and ranitidine hydrochloride (≥98%) were obtained from Shanghai Yuanye
Biotechnology Co., Ltd. (Shanghai, China). Potassium dihydrogen phosphate (KH2PO4),
potassium chloride (KCl), and sodium chloride (NaCl) were purchased from Chengdu
Chron Chemicals Co., Ltd. (Chengdu, China). Hydrochloric acid (HCl) was purchased from
Sichuan Xilong Science Co., Ltd. (Chengdu, China). Tris (hydroxymethyl) aminomethane
(C4H11NO3) was obtained from Guangdong Guanghua Sci-Tech Co., Ltd. (Shantou, China).
Vanillic acid (≥98%), (+)-catechin hydrate (>98%), protocatechuic acid (≥97%), ellagic acid
(≥96%), and brilliant blue G were obtained from Shanghai Aladdin Biochemical Technol-
ogy Co., Ltd. (Shanghai, China). Naringenin (>98%), gallic acid (≥98%), apigenin (>98%),
and epicatechin (>98%) were purchased from Chengdu PureChem-Standard Co., Ltd.
(Chengdu, China). Quercetin (≥98%) was obtained from Sinopharm Chemical Reagent Co.,
Ltd. (Shanghai, China). Penthorum chinense Pursh was obtained from Anguo Guangsheng
Trading Co., Ltd. (Anguo, China).

3.2. Instruments

A DF-101S collector constant temperature magnetic stirrer (Zheng Great Wall Science
Industry and Trade Co., Ltd., Zhengzhou, China) and a DHG-9146A electric heating
constant temperature blast drying shaker (Shanghai Longyue Instrument Equipment Co.,
Ltd., Shanghai, China) were used for the synthesis of the materials. The SEM images for the
characterization of material were obtained through a field-emission SEM (JSM-7600F, JEOL
Ltd., Tokyo, Japan). The pH of solutions was measured through a FE 28 pH meter (Mettler-
Toledo Instruments, Shanghai, China). A UV-5500 PC spectrophotometer (Shanghai Metash
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Instruments Co., Ltd., Shanghai, China) was used for the UV-Vis analysis. The tabletop
low-speed centrifuge L420 and the ultrasonic cleaner used in this study were obtained
from Hunan Xiang Yi Laboratory Instrument Development Co., Ltd. (Changsha, China)
and Kunshan Jielimei Ultrasonic Instrument Co., Ltd. (Kunshan, China), respectively. The
ultrapure water prepared through a water purification system (ATSelem 1820A, Antesheng
Environmental Protection Equipment, Chongqing, China) was used for all experiments.

3.3. Synthesis of ADH HNFs

Phosphate (PBS, pH = 7.13) buffer for ADH HNFs was prepared by dissolving 0.56 g
Na2HPO4·12H2O, 0.14 g KH2PO4, 0.098 g NaCl, and 0.017 g KCl in ultrapure water,
respectively, and fixing the volume to 100 mL [49]. To prepare ADH/Zn3(PO4)2 hybrid
nanoflowers, 6 mg of ADH was dissolved in 5 mL of PBS buffer. Afterward, 0.4 mL of
zinc acetate solution was slowly added to the buffer and stirred magnetically for 12 h
(Figure 1). The suspension was then centrifuged at 3000 rpm for 5 min and the supernatant
was removed and the precipitate was washed twice with PBS buffer to remove the unfixed
enzyme and the unreacted zinc acetate. Finally, the prepared ADH HNFs were suspended
in 4 mL of PBS buffer and stored in the refrigerator at 4 ◦C.

3.4. Optimization of Preparation Conditions of ADH HNFs

Different enzyme amounts of 2, 4, 6, and 8 mg were introduced and reacted under
constant temperature shaking (30 ◦C, 160 rpm) or magnetic stirring (room temperature of
30 ◦C) for 6 h, respectively. The unit of alcohol dehydrogenase activity is defined as the
amount of 1 µmol NADH·min−1 consumed by alcohol dehydrogenase under specified con-
ditions [50]. Subsequently, field emission scanning electron microscopy (SEM) was used to
observe the morphology and size of the ADH HNFs synthesized by using different enzyme
amounts and preparation methods. Finally, the enzyme concentration was determined
using the Bradford method [51].

3.5. Determination of ADH HNFs Enzymatic Activity

The conversion of coenzyme I (β-NAD+) to β-NADH during the catalysis of ethanol
to acetaldehyde by ADH displays a characteristic absorption peak at 340 nm. In a 0.5 mL
centrifuge tube, 15 µL of ADH HNFs (dispersed in PBS, pH = 7.13), 160 µL of tris-HCl
(prepared in 10 mM tris solution and the required pH was adjusted by 1 M HCl), 50 µL
of anhydrous ethanol, and 25 µL of 3 mM of β-NAD+ (dispersed in tris-HCl, pH = 7.0)
were mixed well, and the mixture was incubated at 35 ◦C for 8 min. After being cen-
trifuged for 1.5 min by a portable mini centrifuge, the absorbance changes at 340 nm
(ε = 6200 M−1 cm−1 [41]) of 60 µL of supernatant was measured. Each experiment was
repeated three times.

3.6. Determination of Free ADH Enzymatic Activity

In a 0.5 mL centrifuge tube, 15 µL of free ADH (0.25 mM, dispersed in PBS, pH = 7.13),
160 µL of tris-HCl (prepared in 10 mM tris solution and the required pH was adjusted
by 1 M HCl), 50 µL of anhydrous ethanol, and 25 µL of 3 mM of β-NAD+ (dispersed in
tris-HCl, pH = 7.5) were mixed well, and the mixture was incubated at 35 ◦C for 10 min.
The absorbance (340 nm) of 60 µL of supernatant was measured. Each experiment was
repeated three times.

3.7. Enzyme Kinetics Assay

For an enzyme kinetic reaction, the Km (Michaelis–Menten constant) is an important
parameter that can reflect the affinity between the substrate and enzyme, which is calculated
through the Lineweaver–Burk Equation (1) [52].

1
V

=
Km

Vmax[S]
+

1
Vmax

(1)
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where [S] is the concentration of the substrate (β-NAD+), Vmax and V are the maximum
and reaction rate of the enzyme reaction, respectively. The reaction velocity of ADH HNFs
was monitored through the absorbance (340 nm) of the product (β-NADH). Experiments
were performed by altering the concentration of β-NAD+ under optimized conditions.

Ranitidine is a representative inhibitor of ADH [53], which was used as a model
compound for evaluating the inhibition kinetics of ADH. IC50 was measured by varying
the concentration of ranitidine (0.2–0.8 mM) with a fixed β-NAD+ concentration at 3 mM.
The % of inhibition (I%) can be calculated through Equation (2) [52]:

I(%) =

(
1 − Ai

A0

)
× 100% (2)

where Ai and A0 are the absorbances of the reaction product with and without the inhibitor,
respectively. I(%) is the inhibitory percentage. The dose–response nonlinear regression
equation was used for the construction of an inhibition plot using Origin 2018.

3.8. Evaluation of ADH Inhibitory Activity of P. chinense and Its Small-Molecule Compounds

The preparation of an aqueous extract of P. chinense was referred to as the previously
reported method [54]. In brief, 10.0 g of crushed P. chinense was soaked in 150 mL of
ultrapure water in a 250 mL round-bottomed flask for 2 h, and condensed and refluxed
at 100 ◦C for 1 h, then it was filtered. After that, 100 mL of ultrapure water was added to
the residue, which was condensed and refluxed at 100 ◦C for 40 min, and it was filtered.
After combining the two filtrates, a solution equivalent to 0.04 g/mL of the original drug
was prepared.

Vanillic acid, (+)-catechin hydrate, gallic, epicatechin, and protocatechuic acid so-
lutions were prepared by directly adding purified water to dissolve the corresponding
substance. The ellagic acid, apigenin, and quercetin solutions were prepared by dissolving
them in a small volume of lye (NaOH, 1 M) in ultrapure water. The naringenin solution
was prepared in ethanol. The final concentrations of all solutions are 1.5 M.

The prepared ADH HNFs were used in the evaluation of the inhibitory activity of the
aqueous extract and the monomers of P. chinense. In brief, 15 µL of ADH HNFs suspension
was added to a 0.5 mL centrifuge tube, followed by 50 µL of the aqueous extract of P.
chinense or 50 µL of the monomers, 110 µL of tris-HCl, and 50 µL of anhydrous ethanol,
which were mixed with 25 µL of 3 mM of β-NAD+ and reacted at 35 ◦C for 8 min. Then, the
reaction mixture was centrifuged for 1.5 min, and the absorbance of the product β-NADH
at 340 nm was recorded in 60 µL of supernatant. The inhibition percentage of each sample
was calculated according to Equation (2) based on the absorbance of enzymatic reaction
product β-NADH with and without the addition of an inhibitor. At least three parallel
experiments were carried out for each sample.

3.9. Molecular Docking

For the molecular docking analysis, the crystal structure of ADH (PDB ID: 1E3L)
was obtained from the Protein Data Bank. Before molecular docking, the NAD ligand
and H2O molecules in the ADH structure were removed in AutoDock 1.5.6, followed
by the addition of polar hydrogen, calculation of point charge, and selection of atom
type. Then, the processed ADH was output in PDBQT format. On the other hand, the
molecular structures of the small-molecule compound were drawn in ChemDraw 20.0 and
imported into Chem3D for energy minimization, and the results were saved in PDB format.
Subsequently, the docking site and range of the enzyme were selected, and the processed
ligands were docked with ADH using the Lamarckian genetic algorithm (LGA). Finally,
the optimum conformations of ligands and ADH interactions were observed by Discovery
Studio 2019.
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4. Conclusions

In this study, ADH/Zn3(PO4)2 hybrid nanoflowers were successfully prepared through
a simple biomimetic mineralization method. The SEM characterizations demonstrate the
successful synthesis of ADH HNFs, and the kinetics of the enzymatic reaction of the
nanoflowers shows that the immobilization method can effectively improve the affinity of
the enzyme to the substrate. Furthermore, the catalytic activity of the immobilized enzyme
shows better storage stability (6 days) and reusability (3 times) as compared to that of the
free enzyme. In addition, the good inhibitory activity on ADH of nine small-molecule com-
pounds from P. chinense has been discovered, and the molecular docking further confirmed
the interaction between the enzyme and the four most active compounds, namely vanillic
acid, protocatechuic acid, gallic acid, and naringenin. In short, the results of the present
study provide references for the immobilization of enzymes through simple methods and
the discovery of ADH inhibitors from natural products.
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