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Abstract: The interfacial mechanism has always been a concern for 3-aminopropyltriethoxysilane
(APTES)-grafted palygorskite (PAL). In this research, the mechanism of graft modification for grafting
of APTES to the surface of PAL (100) was studied using density functional theory (DFT) calculation.
The results illustrated that different grafting states of the APTES influence the inter- and intramolec-
ular interactions between APTES/PAL (100), which are reflected in the electronic structures. For
single-, double-, and three-toothed state APTES-PAL (100), the charge transfer rates from the PAL
(100) surface to APTES were 0.68, 1.02, and 0.77 e, respectively. The binding energy results show that
PAL (100) modification performance in the double-tooth state is the best compared to the other states,
with the lowest value of −181.91 kJ/mol. The double-toothed state has lower barrier energy (94.69,
63.11, and 153.67 kJ/mol) during the modification process. This study offers theoretical insights into
the chemical modification of the PAL (100) surface using APTES coupling agents, and can provide a
guide for practical applications.

Keywords: palygorskite (PAL); 3-aminopropyltriethoxysilane (APTES); density functional theory;
binding energy; mechanism

1. Introduction

Palygorskite (PAL) is a hydrous layered magnesium aluminum mineral of nanoscale fi-
brous architecture with the theoretical formula (MgAl)2Si4O10·4H2O. PAL can be described
as a framework composed of inverted SiO4 tetrahedra linked by a chain of Si-O-Si bonds.
The main structure of PAL is formed by these interwoven ribbons of 2:1 phyllosilicate struc-
ture. This structure is made up of two chains of Si-O tetrahedra and one Al-O octahedron.
This arrangement defines the structural framework of PAL, shedding light on its distinct
features and behaviour [1–4]. Due to its unique structure (see Figure 1), PAL has a large spe-
cific surface area, excellent stability, and good modification properties [5]. It has emerged
as a highly promising adsorbent material, such as for the removal of dyes [6], gases [7],
and hydrophobic pollutants [8] from the environment. The incorporation of iron (hydro)
oxides into the pores and interlayers of PAL allows for the creation of optimal metallic sites
which exhibit excellent arsenate retention capabilities [9]. Moreover, it has demonstrated
remarkable performance in sequestering heavy metal contaminants during the remediation
of polluted soils [10,11]. Its usage extends to the construction industry, where it serves as a
thermal and acoustic insulation material. It is employed in the petrochemical, metallur-
gical, and nuclear industries as a filler and catalyst. Additionally, it serves as a filler in
nanocomposites made of various polymers. However, their ability to disperse in polymeric
matrices is hindered by surface polarity issues. Furthermore, PAL functionalization entails
the addition of surface functional groups to this natural silicate, and these readily react with
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resin [12]. This functionalization enhances the interfacial connections between the resin and
the PAL, resulting in higher thermal resistance of silicone adhesives derived from the mate-
rial. These properties highlight the versatility and potential of PAL for various industrial
and technological applications. Thus, PAL should be surface-modified to improve these
interfacial interactions [13,14]. Grafting modifications can enhance material properties by
improving surface functionality, enhancing stability, increasing chemical reactivity, and
enabling better compatibility with other materials [15,16]. The coupling agent method
is the most widely used method for surface modification of PAL. The chemical formula
R-SiX3 can be used to describe the silane coupling agent. The first group, designated X, is
a functional group that can hydrolyze, such as the -OCH3 or -OCH2CH3 groups, which
can react with the -OH groups on PAL through dehydration and condensation. The second
group, designated R, is an organic reactive group that does not hydrolyze, such as the C=C,
-NH2, and -CH2Cl groups, among others, which can readily react with other organic groups
and graft functional materials onto the surface. The 3-aminopropyltriethoxysilane (APTES)
dilution solution and the silicon hydroxyl (Si-OH) groups can interact to form covalent
bonds, which can subsequently graft onto the PAL surface [17]. Previously, many studies
on the reaction mechanism and grafting effect of coupling agents have been reported in the
literature. Wang et al. first used a silane coupling agent (APTES) to modify PAL nanorods
and then used blending with epoxy epoxide to prepare nanocomposites. The authors
believed that only one -OCH2CH3 group on the coupling agent participated in the reaction,
as shown in Figure 2a [18]. Xue et al. reported the flip mechanism of the APTES molecule
when it interacts with the PAL surface during the silylation process and stated that there
are two -OCH2CH3 groups on the coupling agent that participate in the bonding reaction,
as shown in Figure 2b [19,20]. Zhang et al. prepared polyvinylidene fluoride (PVDF)/PAL
composite membranes that were grafted with the -NH2 group using the silane coupling
agent APTES to enhance uniform dispersion in an organic polymer matrix. Moreira et al.
synthesized APTES while modifying PAL for removal of the representative cationic and
anionic dyes methylene blue and metanil yellow from aqueous solutions. In their research,
they noted that the three -OCH2CH3 groups on the coupling agent were all involved in the
bonding reaction, resulting in the structure of the product shown in Figure 2c [21,22]. The
majority of past research on this subject, however, was only a small part of the synthesis.
Although surface modification is important for PAL to function, it is unclear how the
microscopic process influences macro-level performance given the level of research and
testing techniques [23]. As a result, the reaction mechanism of the coupled-link modified
PAL has to be examined with more precision.
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In the area of materials science, computer simulations have revolutionized research
by providing a powerful tool for understanding the intricate structure–performance re-
lationships involved. These simulations allow for in-depth exploration of materials at
the atomic and molecular levels, enabling valuable insights and efficient experimental
design. In Zhang et al.’s study, molecular models of the interaction between the (100)
crystal surface of a PAL coating and C12−C18 linear alkanes were built and subjected to
molecular dynamics simulations in order to characterize the interactions between the base
lubricant molecules and PAL coating [24]. Zhou et al. used molecular simulations to
investigate the interaction between polylactic acid and PAL and predict their mechanical
properties at different temperature [25]. In the present work, three types of APTES-PAL
(100) resulting in single-, double-, and three-toothed states were developed to effectively
determine the potential grafting reaction pathways via molecular simulations. This is a new
pathway for the in-depth and detailed investigation of the chemical surface modification of
PAL, providing a theoretical foundation for the chemical surface modification of PAL by
coupling agents.
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toothed state.

2. Results and Discussion
2.1. Surface Models

When water interacts with a material, it can change its electrical characteristics and
structural constitution [26,27]. Interfacial water can mediate interactions between modifiers
and surfaces, which is crucial for the grafting of molecules onto the surface of the material.
Previous studies have reported the presence of different forms of water in PAL as well as
their limited mobility [24,28]. Additionally, the binding energies between alkanes and PAL
have been found to be higher than alkane-water interactions [29]. Our research aims to
provide a focused understanding of the grafting mechanism of APTES on the PAL surface
without extensively exploring the influence of water molecules and the silane coupling
agent. Considering our specific objectives, we simplified the model by not considering the
interaction of water molecules with the silane coupling agent, allowing us to provide a
more focused understanding of APTES grafting on the surface of PAL (100). To evaluate
the impact of size effects in our model, which could cause flaws due to the system’s tiny
size, we simplified the molecular model based on previous findings [7,30,31], specifically
targeting the grafting of APTES onto the surface of PAL (100), with a focus on the Si-OH
group in the SiO4 crystal structure. Our choice to simplify the PAL surface model by fixing
the lattice parameters aimed to reduce computational complexity while preserving the
essential surface features. Furthermore, we aligned our calculations with experimental
procedures by acid treatment of the PAL prior to grafting. This alignment enhances the
relevance and applicability of our findings, bridging the gap between theory and practice.
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In this research, the grafting of the APTES molecules on the surface of PAL (100) was
studied; the optimized local geometric configurations of the isolated PAL (100) surface
and APTES are shown in Figure 3. Figure 4 illustrates the active adsorption sites obtained
through the Monte Carlo (MC) method. These active adsorption sites, depicted as blue
spots, are predominantly located around the PAL surface. This indicates that the adsorption
behavior of PAL is primarily influenced by the polar surface silanols, which exhibit strong
interactions with APTES. To explain the surface modification mechanism of APTES on
the surface of PAL (100), three theoretical models of APTES grafting on the surface were
created, namely, the single-, double-, and three-toothed states. The calculation results for
these configurations are displayed in Figure 5, and the corresponding bond lengths are
summarized in Table 1. It is common knowledge that as the bond length decreases, the
strength of the adhesive force between covalent bonds are inversely associated [32]. After
DFT calculation, the APTES and PAL (100) surface were connected by chemical bonds
(Si-O-Si) ranging from 1.587 to 1.802 Å, indicating strong surface interaction. This strong
agreement with earlier experimental findings [17,33,34] demonstrates the validity of the
simulation results.
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Table 1. Energies and geometric parameters of the most stable grafted product configurations.

Configurations Ebind
(kJ/mol)

Total Charge
Transfer Qt (e) Bond Type Length (Å)

Single −123.48 0.68 Si1(APTES)-O3(APTES) 1.679
O3(APTES)-Si2(PAL) 1.670

Double −181.91 1.02 Si1(APTES)-O4(PAL) 1.632
Si1(APTES)-O2(APTES) 1.723

O4(PAL)-Si2(PAL) 1.715
O2(APTES)-Si3(PAL) 1.622

Three 60.76 0.77 Si1(APTES)-O3(PAL) 1.802
Si1(APTES)-O4(PAL) 1.662
Si1(APTES)-O5(PAL) 1.690
O3(APTES)-Si4(PAL) 1.587

O4(PAL)-Si2(PAL) 1.683
O5(PAL)-Si3(PAL) 1.675

2.2. The Performance of Surface Modification

The binding energies of all APTES-PAL (100) systems in the equilibrium state are listed
in Table 1. From Table 1, it can be observed that the binding energies of the single-toothed
and double-toothed states are negative, while the binding energy of the three-toothed
state is positive. In addition, it can be seen that the smallest binding energy among all
types of APTES-PAL (100) is that of the double-toothed state, which is −181.91 kJ/mol.
Another important property in the case of grafting on the surface is the charge transfer.
Charge transfer is a crucial phenomenon in grafting processes that involves the movement
of electrons between the surface and the grafting agent. This electron transfer plays a
significant role in determining the bonding strength and stability of the grafted molecules
on the surface. A strong charge transfer enhances the attachment’s durability and stability



Molecules 2023, 28, 5417 6 of 14

while additionally influencing the electronic properties, reactivity, and functionality of the
grafted surface. Considering charge transfer during grafting provides valuable insights
into intermolecular interactions and aids in understanding and optimizing the grafting
process [19,35]. Our calculation indicates that a partial electron transfer between APTES
and the surface occurs, especially in the case of the double-toothed state showing the
maximum electron transfer value of 1.02 e. This indicates that the double-toothed system
is more stable and that the surface modification performance of this state is better than
the others.

Electron density difference calculations were an integral part of our study, offering
valuable insights into the redistribution of electrons upon the addition of APTES to the
surface of PAL (100) [8]. By analyzing these electron density differences, we were able to
gain a deeper understanding of the electronic interactions and charge transfer processes
occurring within the system. This information is critical in elucidating the mechanism of
APTES grafting and its impact on the surface properties of PAL, thereby paving the way for
the design and development of novel functional materials with tailored electronic structures
and enhanced performance. Figure 6 presents the electron density of APTES on the PAL
(100) surface. The loss of electrons is shown by the red region, while the enrichment of
electrons is shown by the blue region. There is a clear indication that for the single-toothed
state the molecules on the surface of the PAL (100) experience charge loss. The areas where
chemical bonds are formed are indicated by the blue regions. For the APTES molecules,
charge redistribution occurs and the charge of the Si-O-Si bonds increases. These results
indicate that APTES has strong adhesion to the surface of PAL (100).
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2.3. Modification Mechanism

By examining the potential energy profiles, it was possible to predict the thermody-
namic properties of the pathways of the grafting reactions for the single-, double-, and
three-toothed states of APTES-PAL (100) and thoroughly investigate the reaction config-
urations of the most advantageous pathway. Figure 7 and Table 1 show the obtained
information on the most stable grafted configurations of the species in the major reaction
path. The configurations of potential intermediates and products were explored using the
computed modification routes of the PAL (100) surface, which can be used as a reference for
modelling the reactants (R), intermediates (IM), and products (P) to precisely locate the tran-
sition state (TS). The direction of the grafting reactions is frequently dominated by trigger
bonds [36,37]. Si2(PAL)-O4(PAL), Si4(PAL)-O1(APTES), and Si4(PAL)-O6(PAL) bonds can
be regarded as trigger bonds for the single-, double-, and three-toothed states of the APTES-
PAL (100) molecule, respectively. Initially, for all three grafted states the APTES moves
toward the PAL (100) surface to reach IM1. Then, as shown in Figure 7a, Si2(PAL) attracts
O3(APTES) with a distance of 3.869 Å; the activation energy of TS1 is 119.18 kJ/mol. In IM3,
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the O3(APTES) and Si2(PAL) atoms form a bond and the O4(PAL)-Si2(PAL) starts to break.
Meanwhile, a new bond is formed between the O8(PAL) and Si2(PAL) atoms. The distances
of O3(APTES)-Si2(PAL) and O8(PAL)-Si2(PAL) are 1.769 and 1.486 Å, respectively. The
activation energy of this step is 132.62 kJ/mol. Then, the H4(PAL)-O4(PAL) bond breaks off
the H4(PAL)-O4(PAL)-Si2(PAL) bond and the H4(PAL)-O4(PAL) moves toward H3(APTES)
atom through TS3, where both the Si1(APTES) and Si2(PAL) atoms link with the O3(APTES)
atom with bond lengths of 1.679 and 1.670 Å, respectively. This process is exothermic by
−123.48 kJ/mol, with an activation barrier of 61.81 kJ/mol. Figure 7b indicates that the
O1(APTES)-Si1(APTES) and H2(APTES)-O4(PAL) bonds are broken to form H2O when
the APTES gets close enough to the PAL (100) surface to reach TS1. The other atoms of
the APTES transfer to the PAL (100) surface, forming O4(PAL)-Si1(APTES) (1.595 Å) and
O2(APTES)-Si3(PAL) (1.767 Å) bonds, whereas the remaining O5(PAL)-H5(PAL) continues
to be bound to the Si3(PAL) atom with a shorter bond length of 1.624 Å. As the reaction
proceeds, H2(APTES) breaks off from the O2(APTES)-H2(APTES) bond and joins O5(PAL)
to form an O5(PAL)-H2(APTES) bond, then, the O5(PAL)-Si3(PAL) bond starts to break and
the new H2O molecule moves away from the PAL (100) surface. The activation energy
for the products is found to be −131.63 kJ/mol, which indicates that this process can be
performed at room temperature. From Figure 7c, it can be seen that the activated H5(PAL)
atom shifts to the O1(APTES)-H1(APTES), forming an H2O molecule, while the O2(APTES)-
H2(APTES) moves to the PAL of the O4(PAL) atom, forming another H2O molecule. At
the same time, the O4(PAL) and O5(PAL) atoms combine with the Si1(APTES) atom to
produce O4(PAL)-Si1(APTES) and O5(PAL)-Si1(APTES) bonds; the O3(APTES) atom tends
to bind to Si4(PAL), resulting in a longer O3(APTES)-Si4(PAL) bond (1.803 Å). Sequentially,
O3(APTES) captures the Si6(PAL) connected to the O3(APTES)-Si6(PAL) bond. This step
proceeds via TS2, in which the O6(PAL)-Si4(PAL) bond is stretched to 1.709 Å. Finally, the
O6(PAL)-Si4(PAL) bond ruptured and releases H2O. This step has a very large activation
barrier of 72.33 kJ/mol and is largely endothermic by 60.76 kJ/mol. The double-toothed
state APTES-PAL (100) exhibits the most favorable energetics. This observation aligns
with the conditions used in the different grafting reactions of APTES-PAL in the single-,
double-, and three-toothed states in experimental studies [18,19,22]. Wang et al. prepared
single-toothed APTES-PAL using magnetic stirring and refluxing at 80 ◦C [18]. Xue et al.
achieved double-toothed APTES-PAL by introducing terminal amino groups onto the PAL
surface at 75 ◦C [19]. Similarly, Moreira et al. performed PAL functionalization with APTES
at 80 ◦C in both dry and aqueous solvents to obtain three-toothed APTES-PAL [22]. These
studies collectively demonstrate the relative simplicity of constructing APTES-PAL in the
double-toothed state. Our simulations support these findings, as we show that double-
toothed APTES-PAL (100) exhibits the most favorable energetics. This consistency between
our results and the experimental conditions for grafting reactions validates the reliability of
our simulations. Consequently, our simulations provide confirmation of the reliability of
the present findings. The consistency between our results and the experimental conditions
for grafting reactions further strengthens the validity of our simulations. Furthermore, we
conducted investigations into how the single- and double-toothed states of APTES-PAL
(100) give rise to the double- and three-toothed states, respectively. In our work, only the
initial transition state is discussed, and is set as TS1′ in Figure 8a,b. The activation energies
reaching TS1′ were obtained as 1861.51 and 68.48 kJ/mol, respectively, which are both
higher than the isolated APTES and PAL (100) surface grafting. This indicates that it is
more difficult to perform this process.
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Figure 8. (a) Potential energy profiles for the path when using single-toothed APTES-PAL (100) to
form double-toothed APTES-PAL (100) and (b) potential energy profiles for the path when using
double-toothed APTES-PAL (100) to form three-toothed APTES-PAL (100). The different configura-
tions of TS1 are plotted in Figure 7b,c, respectively. All bond distances are in Å.

2.4. Electronic Structures

The computations for the total densities of states (TDOS) and partial densities of states
(PDOS) were carried out for the APTES-grafted PAL (100) surface, as detailed in Figure 9. A
high TDOS value intensity near the Fermi level, which denotes a high overall system energy
and has been extensively studied in previous work, leads to an unstable state [38–40]. The
TDOS peak of the double-toothed APTES-PAL (100) near the Fermi level is lower than
that of the other states in Figure 9a–d. This indicates that the most stable structure is the
double-toothed state and that the stability sequence is double-toothed state > single-toothed
state > three-toothed state, which is in good agreement with the binding energy and charge
transfer results shown in Table 1. The orbital hybridization is undoubtedly advantageous
to the creation of a stable grafted structure, according to the PDOS of a number of key
atoms. As shown in Figure 9b, in PDOS we found that O3(APTES)-Si2(PAL) interaction is
realised by the hybridization of the 2p orbital of O3(APTES) with the 3s and 3p orbitals of
Si2(PAL), with the hybridization region being closer to the Fermi energy level. From −20 to
−17 eV and −7 to −2 eV, the large overlapping area between H3(APTES) 1s, H4(PAL) 1s,
and O4(PAL) 2s, 2p indicates that their orbits are highly hybridized during the modification
process. In Figure 9c, the increase of PDOS from −10 to −1 eV is mainly contributed by
the 2s and 2p orbitals of O1(APTES) and O5(PAL) and the 1s orbital of the H1(APTES),
H2(APTES), H4(PAL), and H5(PAL) atoms. There are obvious overlaps with the 1s orbitals
of the H1(APTES), H4(PAL), and H2(APTES), H5(PAL) atoms near−7 to−5 eV, respectively.
As they overlap, there is electrical interaction between them, and chemical connections bind
them together. The hybridization between the 3s and 3p orbitals of Si1(APTES), Si2(PAL),
Si3(PAL), and the 2p orbital of O2(APTES) and O4(PAL) can be found from −10 to −1 eV,
indicating the bonding states. A similar situation can be observed for the three-toothed
state APTES-PAL (100), as plotted in Figure 9d. In the range of −10 ~ −5 eV, the O4(PAL)
atom has a strong electron orbital interaction with the Si1(APTES) and Si2(PAL) atoms,
and they are joined by a chemical bond. The Si1(APTES)-O5(PAL)-Si3(PAL) hybrid and
Si1(APTES)-O3(APTES)-Si4(PAL) hybrid are similar to Si1(APTES)-O4(PAL)-Si2(PAL). In
addition, the hybridization between H2(APTES), H4(PAL) 1s states and O2(APTES) 2p
states occurs around the energy level of −8 to −3 eV. The splitting and broadening of peaks
indicate a strong interaction and bond formation. While H1(APTES)-O1(APTES)-H5(PAL)
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and H3(APTES)-O6(PAL)-H6(PAL) hybrid energy level can be found ranging from −19 to
−17 eV and −7 to −4 eV, bonding states exist as well.
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3. Computational Details

The primary reactivity of PAL with silane coupling agents occurs through the for-
mation of Si-O-Si bonds, as demonstrated by Yang et al. [41,42]. Furthermore, Zhu et al.
reported that acid treatment of PAL results in the removal of metal cations, exposing
abundant active sites for improved grafting interactions with APTES [43,44]. Experimental
observations, including the broadening and weakening of the Si-O-Si stretching band at
1195 cm−1 and the disappearance of bands at 3614, 3550, and 984 cm−1 in the infrared
spectra, support these findings. These bands were initially assigned to the asymmetric
stretching of Mg-OH, antisymmetric stretching of Al-Fe-OH (Al-Mg-OH band), and asym-
metric stretching of perpendicular Si-nonbridging oxygen-Mg (Si-O-Mg), respectively,
indicating the partial removal of Mg2+ and Al3+ ions [45]. Consequently, it can be inferred
that the primary reactivity of PAL with APTES occurs in the Si-OH groups. Our analysis of
the active sites for APTES on the acid-treated PAL surface is consistent with experimental re-
sults, confirming the preferential distribution of APTES around Si-OH groups (see Figure 4).
To ensure computational efficiency and model reliability, we drew inspiration from the DFT
calculations conducted by Peng et al. on the composite of tetramethylguanidine/PAL and
Liu et al. on the interaction between polyethylene glycol and PAL [46,47]. Additionally,
we followed the methodology introduced by Karamanis et al. which employed a primi-
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tive rhombohedral cell (one quarter of the conventional cell) to reduce the computational
complexity associated with studying the siliceous structure of faujasite [48]. In contrast to
their work, we simplified the model by focusing on the PAL (100) surface, specifically the
Si-OH groups, the SiO4 units connected to them, and the Si-O-Si framework linked to AlO8.
These simplifications allowed us to strike a balance between computational feasibility and
maintaining the accuracy and reliability of the model while ensuring logical consistency
throughout the study [49–52]. Initially, the crystal structure of PAL was optimized to ensure
stability. Subsequently, the PAL (100) surface was built by (100) cleaving of the crystal
model, which has previously been used to successfully simulate PAL [24,25,47]. Then, the
cell was expanded to a 2 × 2 × 2 configuration and relaxed to achieve a stable structure.
Following this, the lattice parameters of the surface model were were fixed and the SiOH
groups within the SiO4 and AlO8 frameworks, which serve as the active sites, were iso-
lated and subjected to optimization for further examination of the mechanism involving
APTES. In order to understand the interactions between atoms and molecules, molecular
simulation studies were adopted using the DMol3 programme in the modeling software
Materials Studio 8.0 [53]. All computations used the generalized gradient approximation
with the Perdew-Burke-Ernzerhof (PBE) exchange correlation functional [54]. A 1 ×1 × 1
Monkhorst–Pack k-point sampling with a Methfessel–Paxton smearing of 0.005 Ha was
employed [55]. The double numerical plus polarization (DNP) basis set was employed to
expand the electronic eigenstates, and all core and valence electrons were taken into explicit
consideration. Calculations included determining the APTES-PAL (100) system’s electronic
structure as well as its equilibrium geometries, vibrational frequencies, and energetics.
Frequency calculations were performed after the optimisations to ensure that the optimised
structures were all minimal structures (all >0 frequencies). Different grafted configurations
of the coupling agents over the hydrogenated palygorskite surfaces were investigated.
However, only the most stable configurations are reported here. The Adsorption Locator
module utilized the MC method. In this simulation, the optimized structures of APTES
were considered as adsorbates. A maximum adsorption distance of 6 Å was applied. To
calculate the binding energy (Ebind) and evaluate the strength of the interaction between
the surface and the silane coupling agents, the following Formula (1) was used [56,57]:

Ebind = Etotal − (EPAL(100) + EAPTES) (1)

where EPAL(100) and EAPTES are the single-point energies of the individual PAL and APTES
molecules, respectively and Ebind < 0 denotes an attractive rather than a repulsive interac-
tion force between the APTES molecules and the (100) plane of PAL, with a higher attracting
force indicated by a lower binding energy.

To learn more about the mechanism by which APTES interacts with the surface of PAL
(100), the charge transfer Qt was calculated via Hirshfeld analysis. The Qt in the grafting
process was obtained by Formula (2):

Qt = Qgrafted − Qiso (2)

where the charges of the grafted and isolated PAL (100) surface are Qgrafted and Qiso,
respectively. If the Hirshfeld charge (e) value is more than zero the atoms are negatively
charged, while if it is less than zero, they are positively charged.

,The transition states (TS) were searched using the comprehensive linear synchronous
transit (LST) or quadratic synchronous transit (QST) approach. After performing linear
synchronous transit (LST) maximization, energy was minimized in directions that were
conjugated to the reaction pathway [58]. The quadratic synchronous transit (QST) maximiz-
ing process was carried out using the TS approximation generated in this manner. Another
minimization of a conjugate gradient was then performed. The same method was repeated
until a stationary spot was located. The 0.25 eV/Å per-atom convergence threshold for the
TS search was determined to be the root-mean-square force [59].
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4. Conclusions

In summary, this study investigated the modification mechanism of APTES on the
surface of PAL (100) using first-principles simulations. The results reveal strong grafting
of APTES molecules at the -OH groups of the PAL (100) surface in the single-, double-,
and three-toothed states with binding energies of −123.48, −181.91, and 60.76 kJ/mol,
respectively. Significant charge transfers are observed during the grafting process, with
the double-toothed state exhibiting the highest charge transfer of 1.02 e from the surface to
APTES. The DOS projections show peak shifts, indicating strengthened interaction through
chemical bonds. The interaction between APTES and the PAL (100) surface involves
overlapping of the outer orbitals between O and Si or H atoms. Furthermore, the energy
barrier for the double-toothed state is lower than that of the single-toothed and three-
toothed states, suggesting that grafting APTES on the PAL (100) surface through two
Si-O-Si bonds is energetically favored. Overall, the double-toothed state of APTES-PAL
(100) is the most energetically advantageous.
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