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Abstract: The treatment of many bacterial diseases remains a significant problem due to the increas-
ing antibiotic resistance of their infectious agents. Among others, this is related to Staphylococcus
aureus, especially methicillin-resistant S. aureus (MRSA) and Mycobacterium tuberculosis. In the present
article, we report on antibacterial compounds with activity against both S. aureus and MRSA. A
straightforward approach to 2-(1H-indol-3-yl)quinazolin-4(3H)-one and their analogues was devel-
oped. Their structural and functional relationships were also considered. The antimicrobial activity of
the synthesized compounds against Mycobacterium tuberculosis H37Rv, S. aureus ATCC 25923, MRSA
ATCC 43300, Candida albicans ATCC 10231, and their role in the inhibition of the biofilm formation of
S. aureus were reported. 2-(5-Iodo-1H-indol-3-yl)quinazolin-4(3H)-one (3k) showed a low minimum
inhibitory concentration (MIC) of 0.98 µg/mL against MRSA. The synthesized compounds were
assessed via molecular docking for their ability to bind long RSH (RelA/SpoT homolog) proteins
using mycobacterial and streptococcal (p)ppGpp synthetase structures as models. The cytotoxic
activity of some synthesized compounds was studied. Compounds 3c, f, g, k, r, and 3z displayed
significant antiproliferative activities against all the cancer cell lines tested. Indolylquinazolinones 3b,
3e, and 3g showed a preferential suppression of the growth of rapidly dividing A549 cells compared
to slower growing fibroblasts of non-tumor etiology.

Keywords: azaheterocycle; indole; quinazolinone; antibacterial activity; resistance; Mycobacterium
smegmatis; molecular docking

1. Introduction

One of the most serious threats to human health is bacterial antibiotic resistance [1].
This problem is projected to cause 10 million deaths worldwide each year by 2050 with-
out the development of new strategies for defeating antibiotic resistance [2]. The most
commonly isolated nosocomial pathogens are Escherichia coli and Staphylococcus aureus. Of
particular concern currently is methicillin-resistant S. aureus (MRSA), which is considered
to be one of the most dangerous antibiotic-resistant microorganisms [3]. Another cause of
a serious bacterial infection is the bacillus Mycobacterium tuberculosis. Until the outbreak
of SARS-CoV-2, tuberculosis (TB) was the leading cause of death from a single infectious
agent, ranking above HIV/AIDS. It is estimated that, today, about a quarter of the world’s
population is infected with TB. Most people do not develop tuberculosis, and in some,
the infection clears. However, without treatment, the death rate from TB disease is high
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(about 50%) [4]. Despite the availability of drugs for the treatment of tuberculosis, there is a
need for improved therapeutic agents. Side effects, the duration of treatment, and drug
resistance are the main limitations to the effectiveness of the drugs used. One of the factors
affecting the resistance of some infections to common antibiotics is the role of bacterial
biofilm formation. Biofilms are highly organized surface-associated communities enclosed
in an extracellular polymer matrix. The bacteria in a biofilm are known to be 1000 times
more resistant to antibiotics. Therefore, one of the attractive approaches to combating
multidrug-resistant bacteria is the inhibition of biofilm formation.

In recent years, many biologically active compounds have been isolated from represen-
tatives of marine flora and fauna. Meridianins, a group of indole alkaloids isolated from the
tunicate Aplidium meridianum [5,6], have promising anti-tuberculosis [7], antimalarial [8,9],
and antitumor [10] activities. Notably, analogues of meridianin have shown powerful
inhibitory activity against biofilm formation by S. aureus (MRSA) [11] and Mycobacterium
smegmatis [12]. We posited that the closest structural analogues of meridianins would have
the ability to control the behavior of bacteria based on the shared structural features of
meridianins with quinazolinone derivatives. Quinazolinone scaffolds are among more than
150 natural alkaloids and pharmaceuticals. Quinazolinone derivatives exhibit a wide range
of biological activity, with anti-inflammatory, antitumor, antipsychotic, and antibacterial
activities (Figure 1) [13–18].
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The different physiological processes underlying bacterial stress adaptation are under
the control of indoles [19]. A family of widely distributed bacterial metabolites, termed the
“indolokines”, are able to enhance E. coli persister cell formation, thereby connecting some
processes, including biofilm formation, antibiotic tolerance, virulence, and others [20,21].
One of the main regulators of cell adaptive responses to stress is guanosine tetraphosphate
(ppGpp), which is a bacterial alarmone participating in the dormant state formation. In this
state, bacterial cells are transformed into persister cells that are tolerant to antibiotics and
stresses [22]. One of the regulatory effects of ppGpp is the induction of the activity of the
ribosome modulation factors that are responsible for the inhibition of protein synthesis. At
the same time, it has been shown that indole is also capable of inducing one of the ribosome
hibernation factors—RaiA—thereby taking part in persister cell formation [23]. We showed
that ppGpp can stimulate tryptophanase induction, which is responsible for indole synthe-
sis, thereby strengthening its own ability to form persisters [24]. Previously, we described
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the inhibition of alarmone synthetase enzymes, the product of which is ppGpp [25]. In
turn, the inhibition of these enzymes suppressed the ability of bacterial cells to form a
persister state responsible for antibiotic tolerance. Furthermore, it was shown that substi-
tuted indoles are able to bind RelSeq (p)ppGpp synthetase/hydrolase and can constitute a
promising scaffold for (p)ppGpp synthetase enzyme inhibitors’ development [26].

Based on data from the literature, we hypothesized that the combination of a quina-
zolinone fragment with an additional azaheterocycle in a single molecule could promise a
synergistic enhancement of the pharmaceutical value of these two biologically important
structural subunits. A wide library of synthesized indole derivatives will make it possi-
ble to find among them those that are able to bind alarmone synthetases as the probable
targets for interaction. To date, many methods have been developed for the synthesis
of quinazolinones and their analogues due to their high applied significance [27]. The
most common synthetic approach to quinazolin-4(3H)-ones involves the condensation of
anthranilamides with aromatic aldehydes [28–32], ketones [33,34], alkynes [35], carboxylic
acid [36], and their derivatives [37], benzyl alcohols [38], CO/aryl bromides [39], and
methylarenes [40], etc. While approaches to quinazolin-4(3H)-ones are well known and
capable of providing the formation of the desired framework, they suffer from certain
drawbacks. Unfortunately, these methods require expensive transition metal catalysts,
additives, harsh reaction conditions, and a moderate reaction scale. The most significant
disadvantage of most of the described methods is associated with the limited applicability
of the starting heteroaromatic substrates. Therefore, the search for a simple and efficient
protocol for accessing 2-(1H-indol-3-yl)quinazolin-4(3H)-one from readily available starting
substrates under simple reaction conditions is highly desirable.

Herein, we describe a straightforward approach to 2-(1H-indol-3-yl)quinazolin-4(3H)-
one and their analogues based on the condensation of anthranilamides with aldehydes
and an investigation of their cytotoxicity and antibacterial activity, including tests against
Mycobacterium tuberculosis H37Rv, as well as their influence on the formation of biofilms.
We describe the results of molecular docking studies on the ability of substituted indoles to
bind to long RSH proteins, using two proteins functioning as the alarmone synthetases:
RelMtb from Mycobacterium tuberculosis [41] and RelSeq from Streptococcus equisimilis as the
models [26].

2. Results and Discussion
2.1. Chemistry

The starting point of our research was the search for the optimal conditions of the
model reaction of commercially available 1H-indole-3-carboxaldehyde (1a) with anthranil-
amide (2a). Initially, we screened the reaction conditions using various Brønsted acids.
The best result was achieved when the reaction mixture was stirred at reflux for 4 h in
acetonitrile in the presence of p-TSA (p-toluenesulfonic acid). In this case, the yield of
desired quinazolinone 3a was 33% (Scheme 1a). A thorough analysis and separation of the
reaction mixture revealed the formation of indole (4a) and unsubstituted quinazolinone 5a.
In other acidic conditions (amberlyst-15, CH3CN or toluene; NH4Cl or AcOH, EtOH; citric
acid, toluene, etc.), various side processes were observed, which significantly decreased
the yield of the desired product. Next, we found that changing the reaction initiator to
Al2O3 led to the formation of 2-(1H-indol-3-yl)-2,3-dihydroquinazolin-4(1H)-one (6a) as
a major product (Scheme 1b). In addition to dihydroquinazolinone 6a, some indole (4a)
was isolated from the reaction mixture. The obtained results (Scheme 1a,b) indicate that
the key intermediate quinazolinone 6a is unstable under used reaction conditions and
can be oxidized to form the desired quinazolinone 3a or undergo degradation affording
3-unsubstituted indole (4a). Control experiments showed that the dihydroquinazolinone
6a in the EtOAc, CH2Cl2, and ethanol solutions was oxidized to key quinazolinone 3a upon
standing in air. Moreover, the deformylation reaction and its related cleavage processes
are well known and widely used as a key step for the preparation of natural and synthetic
compounds [42–45]. Finally, the desired product 3a was obtained in a quantitative yield
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when the reaction was performed in N,N-dimethylacetamide (DMAC) in the presence of
Na2S2O5 at 150 ◦C (Scheme 1c). Presumably, the true initiator of the cyclocondensation
was NaHSO3, which was in situ generated via the hydrolysis of the starting Na2S2O5 [46].
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Scheme 1. The key results of optimization of conditions for the model cyclocondensation reaction.

With the optimized conditions in hand, we examined the substrate scope of this
reaction. Initially, we performed the reaction at a 3 mmol scale and found that the yield
of the desired product 3a was 86% (Scheme 2). Next, we found that anthranilamide (2a)
reacted smoothly with various N-substituted 3-formylindoles 1 to form the corresponding
products 3b-g in good to excellent yields. When indole-3-carboxaldehydes 1 containing
easily removal groups at the nitrogen atom were used, we isolated the indolylquinazolinone
3a instead of the expected N-substituted indolylquinazolinones 3h–j. The products 3m, n,
containing an aromatic substituent at the C(2) position of the indole core, were detected only
in trace amounts, while quinazolinone 5a was isolated in 59 and 37% yields, respectively.
The formation of quinazolinone 5a in these cases could be associated with the better leaving
nature of the 2-arylindoles in the intermediate dihydroquinazolinones. The halogen atoms
in the starting indole 1 or anthranilamide 2 did not have a significant influence on the
yields of the desired products 3k, l, o, and 3p. A reduced yield of indolylquinazolinone 3q
was associated with the partial thioamidation of the 1H-indole-3-carboxaldehyde (1a) by
elemental sulfur upon the prolonged heating of the reaction mixture [47]; among the major
indolylquinazolinone 3q, we isolated N,N-dimethyl-1H-indole-3-carbothioamide (7a) in
a 21% yield (for details see Supplementary Materials). We also performed the reaction
of indole-2-carboxaldehyde (1o) with anthranilamide (2a) and isolated the corresponding
product 3r in a high yield.
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Scheme 2. The synthesis of substituted indolylquinazolinones 3. a All reactions were performed
at 1.3 mmol scale of aldehyde 1 and 1.3 mmol of amide 2. Isolated yields. b The reaction was
performed at 3 mmol of aldehyde 1 and 3 mmol of amide 2. Isolated yield. c The 2-(1H-indol-3-
yl)quinazolin-4(3H)-one (3a) was isolated in 80–96% yield (n.d.—not detected). d The formation
of indolylquinazolinones 3m, n were detected using thin-layer chromatography (TLC) and gas
chromatography–mass spectrometry (GC/MS). The quinazolinone 5a was isolated in 37% and 59%
yields. e The formation of indole (4a) was determined using TLC and GC/MS. f The corresponding
N,N-dimethyl-1H-indole-3-carbothioamide (7a) was also isolated in a 21–50% yield. g The reaction
conditions: aldehyde 1 (0.76 mmol), amide 2 (0.69 mmol), DMSO (1 mL), 100 ◦C, 3.5 h. Isolated yield.
h The reaction conditions: aldehyde 1 (0.25 mmol), amide 2 (0.25 mmol), TFA (0.25 mmol), toluene
(2 mL), reflux, 40 h.
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Next, we expanded the scope of the developed protocol and used various carbo- and
heteroaromatic aldehydes 1 as starting substrates. We found that, in all cases, the desired
indolylquinazolinones 3 were isolated in high yields. The exception was the electron-
deficient isonicotinaldehyde, for which the desired product 3y was obtained in a low yield.
It should be noted that the use of dimethyl sulfoxide without additional reagents in the
reaction of 5-methylfurfural with anthranilamide (2a) resulted in the formation of the
dihydroquinazolinone 6u in a 62% yield. Product 6u, in contrast to its indole analogue 6a,
was more stable and was not oxidized in the solution in air atmosphere.

We tested a series of structural analogues of anthranilamide with 1H-indole-3-carboxaldehyde
(1a). We found that the reaction of aldehyde 1a with anthranilic acid hydrazide led to
the corresponding product 3ab in a good yield. The reaction of salicylic amide with
1H-indole-3-carboxaldehyde (1a) unfortunately did not provide the desired product 3ac
due to the predominant occurrence of the deformylation reaction. A similar result was
also obtained in the case of Gewald’s thiophene. It is noteworthy that, when using
thiophene-2-carbaldehyde, the product 3ad was isolated in a moderate yield. In the case of
2-aminobenzenesulfonamide and 2-amino-2-phenylacetamide, the thioamidation reaction
predominated, while we did not observe the formation of the desired products 3af and 3ag.
It should be noted that all the synthesized compounds were stable and fully characterized
by NMR and HRMS.

Finally, we studied some reactivity of the model 2-(1H-indol-3-yl)quinazolin-4(3H)-one
(3a) (Scheme 3). Initially, we checked the possibility of the functionalization of the nitrogen
atom and synthesized various N-substituted indolylquinazolinones 3. The problem of
the hydrolysis of the protecting group at the nitrogen atom can be solved by changing
the order of the reaction steps. The treatment of indolylquinazolinone 3a with benzoyl
chloride afforded 2-(1-benzoyl-1H-indol-3-yl)quinazolin-4(3H)-one (3i) in a good yield. The
sequential treatment of quinazolinone 3a with NaH and methyl iodide afforded a mixture
of three products in equal amounts. Along with the expected mono- 3b and disubstituted
indolylquinazolinones 3ah, we observed the formation of 4-methoxy-2-(1-methyl-1H-indol-
3-yl)quinazoline (3ai). (Scheme 3).
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According to the literature data, it is known that some thioquinazolinones are charac-
terized by increased antimycobacterial activity compared to that of quinazolinones [48].
To study the reactivity of the substrate 3a, we developed a method of thionation with
Lawesson’s reagent (LR) and a subsequent alkylation affording the target 2-(1H-indol-3-
yl)-4-(methylthio)quinazolinone (3ak) in a moderate yield over two steps (Scheme 4). An
attempt to prepare an isomer of bouchardatine 3al using the Vilsmeier–Haack formylation
of the 2-(1H-indol-3-yl)quinazolin-4(3H)-one (3a) was unsuccessful (Scheme 4). Instead
of the expected product, 4-chloro-2-(1H-indol-3-yl)quinazoline (3am) was isolated in a
moderate, nonoptimized yield. The obtained 4-chloroquinazoline 3am was treated with
morpholine and the desired 4-[2-(1H-indol-3-yl)quinazolin-4-yl]morpholine (3an) was ob-
tained in a high yield. Both observations demonstrated the possibility of accessing a wide
range of 4-amino- and 4-thiosubstituted quinazolines.
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Scheme 4. The functionalization of the amide moiety of model indolylquinazolinone 3a.

2.2. In Vitro Biological Evaluation
2.2.1. Antibacterial Activity

The 32 synthesized compounds were evaluated for their antimicrobial activity against
Staphylococcus aureus, Escherichia coli, Mycobacterium smegmatis, and Candida albicans. High
activity against staphylococci was demonstrated by indolylquinazolinone 3k (Table 1).
Compound 3k inhibited the growth of S. aureus ATCC 25923, a standard reference strain
for evaluating the activity of antimicrobial compounds, showing an MIC of 3.90 µg/mL.
At the same time, its MIC against the reference strain S. aureus ATCC 43300 (MRSA) was
even lower and did not exceed 1 µg/mL. This is a very promising result, as MRSA is
now widespread and a significant problem in human and veterinary medicine, because
it is resistant to many antibacterial compounds. Additionally, we studied the activity of
compound 3k against another staphylococcus species, S. epidermidis ATCC 12228. The MIC
and MBC (minimum bactericidal concentration) in this case were 7.80 and 12.50 µg/mL,
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respectively. All of the compounds were found to be inactive against the Gram-negative
bacterium E. coli. In addition to their antibacterial properties, the antimycotic activity
of the synthesized substances against Candida albicans was studied (minimum fungicidal
concentration—MFC). Compounds 3d, 3p, 3t, 3u, 5a, and 6u showed moderate activity
against this microorganism, while substances 3k and 3ai showed more pronounced activity
(MIC 7.80, 62.50 µg/mL, respectively) (Table 1). Other quinazolinone derivatives 3 were
found to be inactive (See Supplementary Materials).

Table 1. Selected antimicrobial data (MIC and MBC/MFC, µg/mL) for the quinazolinone derivatives
3, 5a, and 6u a.

Compounds
C. a. 10231 b M. s. 70084 c E. c. 25922 d E. c. 8739 e S. a. 25923 f MRSA g

MIC MFC MIC MBC MIC MBC MIC MBC MIC MBC MIC MBC

3d 125 125 - h - - - - - - - - -
3g - - - - - - - - - - - -
3k 7.80 7.80 - - - - - - 3.90 7.80 0.98 3.90
3p 250 >500 >500 >500 >500 >500 >500 >500 >500 >500 >500 >500
3t 125 125 - - - - - - - - - -
3u 125 500 - - - - - - - - - -
3z >250 >250 >250 >250 >250 >250 >250 >250 >250 >250 >250 >250

3ab 500 - - - - - - - - - - -
3ai 62.50 - - - - - - - - - - -
5a 250 500 - - - - - - - - - -
6u 125 - - - - - - - - - - -

Cefotaxime n.d. i n.d. n.d. n.d. 0.038 0.038 0.038 0.038 0.31 0.61 19.53 39.06
Cefazolin n.d. n.d. n.d. n.d. 2.44 2.44 2.44 2.44 0.15 0.61 9.77 39.06
Amikacin n.d. n.d. n.d. n.d. 19.53 19.53 19.53 19.53 4.88 9.77 9.77 9.77

Fluconazole 1.94 7.8 n.d. n.d. n.d. n.d. n.d. n.d. n.d. n.d. n.d. n.d.
Isoniazid n.d. n.d. 4.58 9.16 n.d. n.d. n.d. n.d. n.d. n.d. n.d. n.d.

Rifampicin n.d. n.d. 1.22 19.53 n.d. n.d. n.d. n.d. n.d. n.d. n.d. n.d.
a In the table, the Mode values from 3–5 independent experiments are presented; b Candida albicans ATCC 10231;
c Mycobacterium smegmatis ATCC 70084; d Escherichia coli ATCC 25922; e Escherichia coli ATCC 8739; f Staphylococcus
aureus ATCC 25923; g Staphylococcus aureus ATCC 43300 (MRSA); h (-) >1000 µg/mL; i n.d.—not determined.

Mycobacteria are a special group of bacteria with unique structural and physiological
features. This group includes both saprophytes and animal or human pathogens, in particular,
the causative agent of tuberculosis, Mycobacterium tuberculosis. Mycobacterium smegmatis is
widely used as a model microorganism for studying antimycobacterial activity. Most of the
compounds were found to be inactive against M. smegmatis. Although M. smegmatis is used
as a model organism for the study of M. tuberculosis, these bacteria are not identical and
have their own individual characteristics. Particularly, there are significant differences in
their growth rate and in the structure of their cell walls. Considering the high activity of
compound 3k against Gram-positive organisms (staphylococci), we studied its activity against
M. tuberculosis H37Rv using a BASTEC MGIT 960 growth system [49,50]. This compound
inhibited the growth of M. tuberculosis H37Rv within 41 days at a concentration of 10 µg/mL.
In the presence of 5 µg/mL of this substance, the growth of the mycobacteria was not
observed for 18 days, and in the presence of 1 µg/mL, for 5 days (Table 2). Therefore,
indolylquinazolinone 3k is the leading compound that is promising for further studies in
the field of anti-tubercular activity.
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Table 2. Activity of indolylquinazolinone 3k against Mycobacterium tuberculosis H37Rv.

Conc.,
µg/mL

Fluorescence Change (BACTEC MGIT 960 Growth System), Days

4 5 6 7 8 9 10 11 12 13 14 18 25 30 35 41

Control + + + + + + + + + + + + + + + +
100.0 - - - - - - - - - - - - - - - -
50.0 - - - - - - - - - - - - - - - -
25.0 - - - - - - - - - - - - - - - -
10.0 - - - - - - - - - - - - - - - -
5.0 - - - - - - - - - - - - + + + +
2.5 - - + + + + + + + + + + + + + +
1.0 - - + + + + + + + + + + + + + +

Control—M. tuberculosis H37Rv inoculum without chemical compounds; - lack of growth; + growth of mycobacteria.

It is worth noting that several compounds studied in this work have previously been
tested for their antibacterial activity. Compounds 3k, 3t, and 3z are active against several
species of Leishmania, which are intracellular parasites [8,51]. Indolylquinazolinone 3k
has an antibacterial effect against M. tuberculosis, which is confirmed by our studies [7].
Compounds 3t, 3u, and 3x–z have been tested against E. coli and S. aureus, but did not
show high activity [52], which is in agreement with our results. Quinazolinone 5a has
an antibacterial effect against E. coli, S. aureus, Bacillus subtilis, and other bacteria [53,54],
but this result is not confirmed by our studies. Perhaps this is due to the difference
in the methodological approaches to the antimicrobial activity determination. In our
experiments, only the antifungal activity of compound 5a was noted, which had not
previously been shown.

2.2.2. Antibiofilm Activity

Biofilms are communities of microorganisms that are attached to a surface and play a
significant role in bacterial persistence. This is a significant problem in the health industry
and much research has been performed to reduce microbial colonization and prevent
biofilm formation [55]. In this study, the ability of the most active synthesized compound
3k to prevent biofilm formation was tested. Most of the known antibiotics inhibit biofilm
formation by affecting cell viability (decrease in biofilm biomass correlates with a decrease
in the number of cells in a culture). We evaluated the number of living cells in a culture
during biofilm formation in the presence of various concentrations of 2-(5-iodo-1H-indol-3-
yl)quinazolin-4(3H)-one (3k) and the control antibiotic amikacin to ensure that the observed
inhibition of biofilm formation was not the result of a decrease in the number of planktonic
cells. Compound 3k was able to prevent the appearance of biofilms of staphylococci
without affecting the number of cells in a culture (Figure 2b). In contrast, amikacin reduced
the formation of a microbial biofilm due to its lethal effect on planktonic cells (Figure 2a).

2.2.3. Cytotoxicity Activity

Compounds 3c, f, g, k, r, and 3z showed the highest cytotoxicity, for which IC50 or
IC50abs were observed in the early micromolar range (less than 10 µM) against the tested cell
lines. The dependences of the number of cells on the concentration of the compounds are
shown in Figure 3. It should be noted that compounds 3b, 3e, and 3g showed a preferential
suppression of the growth of rapidly dividing A549 cells compared to slower growing
fibroblasts of non-tumor etiology. In addition, there was a significant proportion of living
cells compared to the untreated control over a wide range of high concentrations. The
greatest difference was observed for compound 3e. Although this dependence can be
explained, for example, by the solubility of the compounds, it is more likely to be explained
by a cytostatic rather than a cytotoxic effect. A similar pattern of cytotoxicity was observed,
for example, for antitubulin compounds in the nanomolar concentration range.
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For another group of compounds (3f and 3k, etc.), there was a different pattern of
cytotoxicity, when complete cell death was observed at high concentrations. Therefore,
two parameters of action on the cells were calculated for the compounds: IC50 (half of the
maximal inhibition) and IC50abs (half of the absolute quantity of cells) (see Table 3). The
rest of the compounds had a low cytotoxicity or did not show noticeable toxic effects in the
studied concentration range.

Table 3. The IC50 or IC50abs (µM) for the cytotoxicity of the compounds 3b–3g, 3i, 3k, 3o, 3q–3ab,
and 6u to cells MCF7′, A549, HEK293T, and VA13 via MTT assay a.

Compounds
MCF7′ VA13 A549 HEK293T

IC50 IC50abs IC50 IC50abs IC50 IC50abs IC50 IC50abs

3b 2.1 ± 0.4 27.1 ± 4.7 11.4 ± 1.2 29.4 ± 4.3 2.1 ± 0.3 3.6 ± 0.4 6.2 ± 0.7 8.3 ± 0.7
3c 4.1 ± 0.6 10.9 ± 1.1 3.7 ± 0.4 4.0 ± 0.2 3.7 ± 0.4 1.7 ± 0.2 1.8 ± 0.7 3.4 ± 0.6
3d le b x > 100 47.0 ± 11.8 69.3 ± 3.1 43.0 ± 5.1 40.5 ± 2.7 5.5 ± 0.9 56.8 ± 7.9
3e x > 100 x > 100 x > 100 x > 100 ~1 8.0 ± 2.3 ~1 x > 100
3f 4.9 ± 0.7 7.1 ± 0.8 3.4 ± 0.4 3.8 ± 0.3 0,96 ± 0,18 1.3 ± 0.09 0.95 ± 0.28 1.9 ± 0.16
3g 0.57 ± 0.05 27.6 ± 7.4 0.84 ± 0.38 13.5 ± 3.6 0.75 ± 0.07 3.3 ± 0,6 0.73 ± 0.15 9.8 ± 2.5
3i 11.8 ± 0.7 10.9 ± 0.6 6.6 ± 0.5 7.1 ± 0.4 11.7± 1.2 9.0 ± 0.7 3.4 ± 0.2 4.1 ± 0.3
3k 5.9 ± 0.3 6.1 ± 0.3 7.9 ± 0.4 8.5 ± 0.3 6.5 ± 0.2 6.5± 0.2 3.4 ± 0.1 3.5 ± 0.1
3o n.a. c 57.1 ± 6.2 ~20 67.8 ± 21.1 9.1 ± 1.2 38.1 ± 6.4 n.a. 19.8 ± 3.4
3q ~20 19.7 ± 2.5 16.5 ± 2.5 23.2 ± 2.9 6.1 ± 1.1 6.9 ± 0.6 8.2 ± 1.1 9.0 ± 0.7
3r 5.4 ± 2.2 x > 100 2.5 ± 0.7 60.1 ± 23.0 3.5 ± 03 27.6 ± 4.9 1.8 ± 0.4 48.9 ± 13.6
3s 13.6 ± 1.2 10.1 ± 1.0 13.5 ± 1.8 12.9 ± 0.8 9.4 ± 03 9.3 ± 0.3 12.4 ± 0.5 12,7 ± 0.4
3t x > 33.3 x > 33.3 x > 33.3 x > 33.3 x > 333 x > 33.3 x > 33.3 x > 33.3
3u 0.30 ± 0.14 (le) x > 100 x > 100 x > 100 n.a. 107.4 ± 27.7 n.a. 66.8 ± 3.6
3v n.a. 93.0 ± 3.1 n.a. 80.6 ± 3.9 n.a. 57.0 ± 3.9 n.a. 62.9 ± 2.8
3w 0.53 ± 0.44 (le) x > 100 x > 100 115.8 ± 0.2 n.a. 105.1 ± 15.8 n.a. 104.8 ± 2.1
3x le x > 100 le x > 100 le x > 100 57.3 ± 34.5 152.3 ± 30.3
3y x > 100 x > 100 x > 100 x > 100 61.4 ± 58.1 x > 100 x > 100 x > 100
3z 8.4 ± 0.70 16.1 ± 0.9 3.0 ± 0.4 4.2 ± 0.4 2.6 ± 0.3 3.2 ± 0.3 3.9 ± 0.1 4.0 ± 0.1
3aa x > 100 x > 100 x > 100 163.4 ± 19.7 x > 100 65.5 ± 5.8 x > 100 195.8 ± 51.0
3ab x > 100 x > 100 44.9 ± 11.7 90.8 ± 8.7 n.a. 169.1 ± 47.2 30.5 ± 1.1 32.2 ± 1.6
6u x > 100 x > 100 x > 100 129.3 ± 23.4 x > 100 215.7 ± 35.8 x > 100 x > 100

doxorubicin 0.195 ± 0.01 0.195 ± 0.01 0.087 ± 0.04 0.087 ± 0.04 0.038 ± 0.01 0.038 ± 0.01 0.018 ± 0.001 0.018 ± 0.001

a Data over 100 µM—extrapolation result; b le—the effect does not reach 50%, but there is some cytotoxicity;
c n.a.—not active.
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2.3. In Silico Characterization of Substituted Indoles Binding to Long RSH Proteins
Molecular Docking of Substituted Indoles

Searching for new chemical compounds that are targeted to non-essential bacterial
adaptation pathways, such as stringent response, is an attractive approach for developing
antimicrobials preventing bacterial persistence, biofilm formation, quorum sensing, and
virulence [56]. Previously, researchers have identified indole derivatives as a chemotype
capable of binding the RelSeq (p)ppGpp synthetase/hydrolase synthetic domain via virtual
screening and thermal shift assays [26]. Based on these data, we selected a set of substituted
indoles from our library of compounds to assess the possibility of their binding to RelMtb or
RelSeq proteins in synthetic domain (SYN) active sites by using molecular docking methods.
The RelMtb crystal structure unbound to the substrate [57] was used to analyze the ligand
binding to an inactive state synthetase, while the RelSeq structure complexed with a GDP
(guanosine diphosphate) substrate [58] was used to investigate the binding to (p)ppGpp
synthetase in a catalytically competent state. The reference ligand indole-5-carboxylic acid
demonstrated a RelSeq active site binding energy of −6.42 kcal/mol (Table 4), consistent
with the result of −6.41 kcal/mol calculated in the previous research (in which ligand
mentioned as I2) [26].

Table 4. Docking results for the compounds 3a–3g, 3k, 3l, 3o–3r, 3ab, 3ah, 3am, 3ak, and 7a, 7b into
RelSeq and RelMtb models reported as docking scores.

RelSeq SYN Active Site RelMtb SYN Active Site

Ligand Docking Score
(kcal mol−1) Ligand Docking Score

(kcal mol−1)

Indole-5-carboxylic acid
(COO−) −6.42 3b −7.61

3o −4.76 3ab −7.43
3ab −4.72 3p −6.71
3a −4.64 3a −6.70
3b −4.53 3ah −6.67
3d −4.48 3r −6.66
3e −4.48 3am −6.62
3ak −4.45 3o −6.56

7a −4.39 Indole-5-carboxylicacid
(COO−) −6.55

3ah −4.34 7a −6.52
3r −4.33 3l −6.51
3p −4.32 DMNP a (COO−) −6.41
DMNP a (COO−) −4.28 3k −6.17
3q −4.28 3c −6.10
3g −4.15 3d −6.07
3c −4.11 3q −6.05
3l −4.05 3ai −5.82
3i −4.01 3f −5.77
3ai −3.97 3i −5.57
3f −3.84 3ak −5.50
3am −3.78 3g −5.33
3k −3.77 7b −4.96
7b −3.73 3e −4.25

a DMNP—4-(4,7-dimethyl-1,2,3,4-tetrahydronaphthalen-1-yl)pentanoic acid.

The docked ligands interacted with the Arg241 and His312 residues (Figure 4b,c),
which are involved in GDP substrate binding [58]. Indolylquinazolinones and their deriva-
tives demonstrated weaker binding in the RelSeq active site than the reference ligand, with
the most negative docking score of −4.76 kcal/mol (Table 4). This might have been due to
the planar structure of the analyzed compounds, lacking the flexibility to optimally fit the
tight binding pocket in the substrate-bound state (Figure 4b,c). However, eight analyzed
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compounds demonstrated stronger binding energies (from −7.61 to −6.56 kcal/mol) com-
pared to the reference ligand (−6.55 kcal/mol) in case of the substrate-unbound RelMtb
structure SYN active site (Table 4).
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Moreover, the indole derivatives interacted with the Tyr309 residue (Figure 5a–c),
which has been shown to be essential for RelMtb (p)ppGpp synthesis [59]. Indole derivatives
are therefore promising candidates for developing inhibitors of (p)ppGpp synthetases.
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3. Materials and Methods
3.1. Instrumentation

1H and 13C NMR spectra were recorded on a «Bruker Avance III HD 400» (400 MHz for
1H and 100 MHz for 13C NMR) at 40 ◦C. The chemical shifts (δ) were measured in ppm with
respect to the solvent ([D6] DMSO, 1H: δ = 2.50 ppm, 13C: δ = 39.52 ppm). The coupling
constants (J) are given in Hertz (Hz). The splitting patterns of an apparent multiplets
associated with the averaged coupling constants were designated as s (singlet), d (doublet),
t (triplet), q (quartet), m (multiplet), dd (doublet of doublets), ddd (doublet of doublet of
doublets), and br. (broadened). High-resolution mass measurements (HRMS) were carried
out using a BrukermicroTOF-QTM ESI-TOF mass spectrometer. A GC/MS analysis was
performed on an «Agilent 7890B» interfaced to an «Agilent 5977A» mass selective detector.
The melting points were determined with a «Stuart SMP 30». Data sets for X-Ray diffraction
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were collected with a «New Xcalibur, Ruby» diffractometer. Column chromatography was
performed on silica gel Macherey Nagel (40–63 µm). Flash column chromatography was
performed over silica gel (0.04–0.063 mm), using a mixture of EtOAc, petroleum ether. TLC
plates were visualized by exposure to ultraviolet light. All the reactions were carried out
using freshly distilled and dry solvents from solvent stills.

3.2. Materials

Starting 1H-indole-3-carboxaldehyde (purity 97%), furfural (99%), 5-methylfurfural
(99%), 2-thiophenecarboxaldehyde (98%), 4-pyridinecarboxaldehyde (97%), 2-naphthaldehyde
(98%), cyclohexanecarbaldehyde (97%), Lawesson’s reagent (97%), morpholine (99%), benzoyl
chloride (99%), iodomethane (99%), and 2-aminobenzenesulfonamide (98%) were purchased
from Sigma-Aldrich (St. Louis, MO, USA). The reagents for the analysis of the antimicrobial ac-
tivity: Cefazolin—MP Biomedicals (Illkirch, France), Cefotaxime—PROMED (Saransk, Russia),
Chloramphenicol—AppliChem (Darmstadt, Germany), Amikacin sulfate—Sigma-Aldrich
(St. Louis, MO, USA), Fluconazole—Sigma-Aldrich (St. Louis, MO, USA), Amphotericin
B—Sigma-Aldrich (St. Louis, MO, USA), Isoniazid—Sigma (St. Louis, MO, USA), LB-
broth—VWR (Radnor, PA, USA), and LB-agar—Sigma (St. Louis, MO, USA).

3.3. Synthesis
3.3.1. Synthesis of the Starting Substrates

Starting 1-methylindole-3-carboxaldehyde (1b), 1-n-butyl-1H-indole-3-carbaldehyde (1e) [60],
1-ethyl-1H-indole-3-carbaldehyde (1c), 1-isopropyl-1H-indole-3-carbaldehyde (1d) [61], 1-benzyl-
1H-indole-3-carbaldehyde (1f) [62], 1-phenyl-1H-indole-3-carbaldehyde (1g) [63], 1-acetyl-
1H-indole-3-carbaldehyde (1h) [64], 1-benzoyl-1H-indole-3-carbaldehyde (1i) [65], 1-tosyl-
1H-indole-3-carbaldehyde (1j) [66], 5-iodo-1H-indole-3-carbaldehyde (1k) [67], 5-bromo-
1H-indole-3-carbaldehyde (1l) [68], 2-phenyl-1H-indole-3-carbaldehyde (1m) [69], 2-(4-
nitrophenyl)-1H-indole-3-carbaldehyde (1n) [70], benzofuran-2-carbaldehyde (1p) [71],
5-ethylfuran-2-carbaldehyde (1s) [72], 1-methyl-1H-pyrrole-2-carbaldehyde (1t) [73], an-
thranilamide (2a) [74], 2-amino-4-chlorobenzamide (2b) [75], 2-aminobenzohydrazide
(2e) [76], 2-hydroxybenzamide (2f) [77], 2-amino-5,6-dihydro-4H-cyclopentathiophene-
3-carboxamide (2g) [78], and 2-amino-2-phenylacetamide (2i) [79] were synthesized accord-
ing to known procedures.

3.3.2. Synthesis of 2-(1H-indol-3-yl)quinazolin-4(3H)-one (3a) [80]

To a solution of 1H-indole-3-carboxaldehyde (1a) (1.3 mmol, 0.189 g) and anthranil-
amide (2a) (1.3 mmol, 0.177 g) in dry acetonitrile (2.5 mL), p-TSA (0.5 mmol, 0.095 g)
was added. The reaction mixture was refluxed for 4 h (TLC control). Then, the reaction
mixture was poured into H2O (50 mL). The formed precipitate was filtered. The products
were purified using column chromatography on silica gel using the mixture of petroleum
ether/EtOAc (1:1) as an eluent and recrystallized from ethanol. There was a yield of 0.112 g
(33%) and it was a colorless oil. 1H NMR (400 MHz, DMSO-d6) δ = 12.08 (br.s, 1H), 11.81
(br.s, 1H), 8.72—8.70 (m, 1H), 8.55 (d, J = 2.8 Hz, 1H), 8.13–8.11 (m, 1H), 7.81–7.72 (m, 2H),
7.50–7.48 (m, 1H), 7.43–7.39 (m, 1H), and 7.27–7.20 (m, 2H) ppm; 13C{1H} NMR (100 MHz,
DMSO-d6) δ = 162.0, 150.2, 149.7, 136.8, 134.2, 129.0, 126.9, 125.7, 125.5, 125.0, 122.5, 122.3,
120.8, 120.4, 111.9, and 108.6 ppm.

Indole (4a) and quinazolin-4(3H)-one (5a) were isolated as by-products in the synthesis
of 2-(1H-indol-3-yl)quinazolin-4(3H)-one (3a). The spectral data of the indole (4a) were
identical to the commercially available ones. Quinazolin-4(3H)-one (5a) [81]. There was
a yield of 0.023 g (12%) and it was a white solid. Mp. = 215–216 ◦C (EtOH, lit. [81]
213–214 ◦C). 1H NMR (400 MHz, DMSO-d6) δ = 12.16 (br.s, 1H), 8.12 (br.d, J = 8.0 Hz, 1H),
8.08 (s, 1H), 7.82–7.78 (m, 1H), 7.66 (d, J = 8.0 Hz, 1H), and 7.53–7.49 (m, 1H) ppm; 13C{1H}
NMR (100 MHz, DMSO-d6) δ = 160.6, 148.7, 145.2, 134.2, 127.1, 126.6, 125.7, and 122.6 ppm.
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3.3.3. Synthesis of 2-(1H-indol-3-yl)-2,3-dihydroquinazolin-4(1H)-one (6a) [82]

To a suspension of 1H-indole-3-carboxaldehyde (1a) (1.3 mmol, 0.189 g) and Al2O3
(acidic) (2.3 mmol, 0.235 g) in dry acetonitrile (2.5 mL), anthranilamide (2a) (1.3 mmol,
0.177 g) was added. The reaction mixture was refluxed for 55 h (TLC control). Then, the
Al2O3 was filtered off and washed with hot EtOAc (3 × 5 mL). The combined organic
fractions were concentrated to dryness under reduced pressure. The product was purified
using column chromatography on silica gel using the mixture of petroleum ether/EtOAc
(1:1) as an eluent. There was a yield of 0.154 g (45%) and it was a colorless oil. 1H NMR
(400 MHz, DMSO-d6) δ = 11.09 (br.s, 1H), 8.08 (br.s, 1H), 7.80–7.78 (m, 1H), 7.70–7.68 (m,
1H), 7.43–7.41 (m, 2H), 7.27–7.23 (m, 1H), 7.15–7.11 (m, 1H), 7.04–7.01 (m, 1H), 6.92 (br.s,
1H), 6.79–6.77 (m, 1H), 6.73–6.69 (m, 1H), and 6.07 (s, 1H) ppm; 13C{1H} NMR (100 MHz,
DMSO-d6) δ = 164.2, 148.8, 136.6, 133.0, 127.5, 125.4, 124.6, 121.4, 120.0, 118.7, 117.0, 115.3,
114.43, 114.38, 111.6, and 61.7 ppm.

Indole (4a) was isolated as by-product in the synthesis of 2-(1H-indol-3-yl)-2,3-
dihydroquinazolin-4(1H)-one (6a). The spectral data of the indole (4a) were identical
to the commercially available ones.

3.3.4. General Procedure for the Synthesis of Quinazolin-4(3H)-Ones 3a–3g, 3k–3ab

To a suspension of aldehyde 1 (1.3 mmol) and Na2S2O5 (4.5 mmol, 0.855 g) in N,N-
dimethylacetamide (2.5 mL), amide 2 (1.3 mmol) and H2O (4.5 mmol, 81 µL) were added.
The reaction mixture was heated at 150 ◦C for 6.5–55 h (TLC control). Then, the reaction
mixture was poured into H2O (50 mL). The formed precipitate was filtered. The products
3a,d,f,g,k,l,o–r,t,w,x,ab were purified using column chromatography on silica gel using
the mixture of petroleum ether/EtOAc (1:1) as an eluent and recrystallized from a suitable
solvent. The products 3b,c,e,s,u,v,y,z,aa were recrystallized from a suitable solvent without
prior purification using column chromatography.

2-(1H-Indol-3-yl)quinazolin-4(3H)-one (3a) [80]. A yield of 0.326 g (96%), 14 h, white
solid. Mp. ≥ 320 ◦C, decomposition (EtOH, lit. [80] > 300 ◦C). All the spectral data of
2-(1H-indol-3-yl)quinazolin-4(3H)-one (3a) were consistent with those described above.

2-(1-Methyl-1H-indol-3-yl)quinazolin-4(3H)-one (3b) [83]. A yield of 0.211 g (59%),
43 h, white solid. Mp. ≥ 324 ◦C, decomposition (EtOH, lit. [83] 290–295 ◦C). 1H NMR
(400 MHz, DMSO-d6) δ = 12.07 (s, 1H), 8.72–8.70 (m, 1H), 8.51 (s, 1H), 8.12–8.10 (m, 1H),
7.80–7.71 (m, 2H), 7.55 (br.d, J = 7.6 Hz, 1H), 7.43–7.39 (m, 1H), 7.33–7.25 (m, 2H), and 3.88
(s, 3H) ppm; 13C{1H} NMR (100 MHz, DMSO-d6) δ = 162.0, 149.9, 149.6, 137.3, 134.2, 132.8,
126.8, 125.9, 125.7, 125.0, 122.6, 122.4, 121.1, 120.4, 110.3, 107.6, and 33.2 ppm.

2-(1-Ethyl-1H-indol-3-yl)quinazolin-4(3H)-one (3c). A yield of 0.327 g (87%), 47 h, pale
beige solid. Mp. = 283–284 ◦C (EtOH). 1H NMR (400 MHz, DMSO-d6) δ = 12.05 (br.s, 1H),
8.72 (d, J = 7.5 Hz, 1H), 8.62 (br.s, 1H), 8.12 (d, J = 7.6 Hz, 1H), 7.80–7.72 (m, 2H), 7.58 (d,
J = 7.6 Hz, 1H), 7.43–7.39 (m, 1H), 7.31–7.24 (m, 2H), 4.27 (q, J = 7.2 Hz, 2H), and 1.48 (t,
J = 7.2 Hz, 3H) ppm; 13C{1H} NMR (100 MHz, DMSO-d6) δ = 161.9, 149.9, 149.7, 136.5, 134.2,
131.1, 126.9, 126.0, 125.7, 125.0, 122.51, 122.50, 121.1, 120.4, 110.3, 107.7, 40.8, and 14.7 ppm.
HRMS (ESI) Calcd for C18H16N3O [M + H]+ 290.1288; Found 290.1278.

2-(1-Isopropyl-1H-indol-3-yl)quinazolin-4(3H)-one (3d). A yield of 0.319 g (81%), 24 h,
beige solid. Mp. = 275–276 ◦C (EtOH). 1H NMR (400 MHz, DMSO-d6) δ = 12.03 (br.s, 1H),
8.78 (br.s, 1H), 8.73–8.71 (m, 1H), 8.10 (br.d, J = 7.6 Hz, 1H), 7.80–7.72 (m, 2H), 7.62 (br.d,
J = 7.6 Hz, 1H), 7.43–7.39 (m, 1H), 7.31–7.24 (m, 2H), 4.89–4.80 (m, 1H), 1.54 (s, 3H), and
1.52 (s, 3H) ppm; 13C{1H} NMR (100 MHz, DMSO-d6) δ = 161.9, 150.0, 149.7, 136.3, 134.2,
128.5, 126.9, 126.0, 125.7, 125.0, 122.5, 122.4, 121.1, 120.3, 110.4, 107.8, 47.1, and 22.3 (2C)
ppm. HRMS (ESI) Calcd for C19H18N3O [M + H]+ 304.1444; Found 304.1452.

2-(1-Butyl-1H-indol-3-yl)quinazolin-4(3H)-one (3e). A yield of 0.317 g (77%), 55 h,
white solid. Mp. = 264–265 ◦C (EtOH). 1H NMR (400 MHz, DMSO-d6) δ = 12.05 (br.s,
1H), 8.72 (br.d, J = 8.0 Hz, 1H), 8.59 (s, 1H), 8.12–8.10 (m, 1H), 7.80–7.71 (m, 2H), 7.60
(d, J = 8.0 Hz, 1H), 7.43–7.39 (m, 1H), 7.31–7.24 (m, 2H), 4.25 (t, J = 7.2 Hz, 2H), 1.88–1.81
(m, 2H), 1.36–1.31 (m, 2H), and 0.94 (t, J = 7.2 Hz, 3H) ppm; 13C{1H} NMR (100 MHz,
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DMSO-d6) δ = 161.9, 149.9, 149.6, 136.8, 134.2, 131.8, 126.8, 125.9, 125.6, 125.0, 122.51, 122.48,
121.0, 120.3, 110.4, 107.6, 45.6, 31.2, 19.3, and 13.4 ppm. HRMS (ESI) Calcd for C20H20N3O
[M + H]+ 318.1601; Found 318.1598.

2-(1-Benzyl-1H-indol-3-yl)quinazolin-4(3H)-one (3f). A yield of 0.411 g (90%), 19 h,
white solid. Mp. = 307–308 ◦C (EtOH). 1H NMR (400 MHz, DMSO-d6) δ = 12.12 (br.s, 1H),
8.73–8.71 (m, 1H), 8.66 (br.s, 1H), 8.11 (d, J = 7.6 Hz, 1H), 7.80–7.72 (m, 2H), 7.63–7.60 (m,
1H), 7.43–7.40 (m, 1H), 7.36–7.33 (m, 4H), 7.31–7.24 (m, 3H), and 5.50 (s, 2H) ppm; 13C{1H}
NMR (100 MHz, DMSO-d6) δ = 161.9, 149.8, 149.6, 137.0, 136.7, 134.2, 132.2, 128.6 (2C), 127.6,
127.4 (2C), 126.9, 126.1, 125.7, 125.1, 122.7, 122.5, 121.2, 120.4, 110.7, 108.3, and 49.7 ppm.
HRMS (ESI) Calcd for C23H18N3O [M + H]+ 352.1444; Found 352.1451.

2-(1-Phenyl-1H-indol-3-yl)quinazolin-4(3H)-one (3g). A yield of 0.377 g (86%), 14 h,
pale yellow solid. Mp. = 344–345 ◦C (EtOH). 1H NMR (400 MHz, DMSO-d6) δ = 12.14 (br.s,
1H), 8.86 (s, 1H), 8.84–8.82 (m, 1H), 8.14 (br.d, J = 8.0 Hz, 1H), 7.84–7.78 (m, 2H), 7.71–7.67
(m, 4H), 7.65–7.61 (m, 1H), 7.53–7.50 (m, 1H), 7.48–7.45 (m, 1H), and 7.37–7.35 (m, 2H)
ppm; 13C{1H} NMR (100 MHz, DMSO-d6) δ = 161.9, 138.9, 138.1, 136.1, 134.3, 131.7, 130.0
(2C), 127.4, 127.1, 126.6, 125.7, 125.5, 124.0 (2C), 123.7, 122.9, 122.0, 120.6, 110.8, 110.6, and
110.1 ppm. HRMS (ESI) Calcd for C22H16N3O [M + H]+ 338.1288; Found 338.1288.

2-(5-Iodo-1H-indol-3-yl)quinazolin-4(3H)-one (3k) [8]. A yield of 0.478 g (95%), 14.5 h,
beige solid. Mp. ≥ 308 ◦C, decomposition (EtOH, lit. [8] 309–311 ◦C). 1H NMR (400 MHz,
DMSO-d6) δ = 12.13 (br.s, 1H), 11.98 (br.s, 1H), 9.06 (d, J = 1.6 Hz, 1H), 8.53 (s, 1H), 8.12
(dd, J = 8.0, 0.8 Hz, 1H), 7.81–7.78 (m, 1H), 7.73–7.70 (m, 1H), 7.51 (dd, J = 8.4, 1.6 Hz, 1H),
7.45–7.41 (m, 1H), and 7.36 (d, J = 8.4 Hz, 1H) ppm; 13C{1H} NMR (100 MHz, DMSO-d6)
δ = 161.9, 149.8, 149.4, 135.9, 134.3, 130.63, 130.56, 129.8, 127.9, 126.9, 125.7, 125.2, 120.4,
114.4, 107.8, and 85.1 ppm.

2-(5-Bromo-1H-indol-3-yl)quinazolin-4(3H)-one (3l). A yield of 0.331 g (75%), 14 h,
beige solid. Mp. ≥ 340 ◦C, decomposition (EtOH). 1H NMR (400 MHz, DMSO-d6) δ = 12.14
(br.s, 1H), 12.01 (br.s, 1H), 8.85 (d, J = 1.6 Hz, 1H), 8.58 (s, 1H), 8.12 (dd, J = 8.0, 0.8 Hz, 1H),
7.81–7.72 (m, 2H), 7.47 (d, J = 8.4 Hz, 1H), 7.45–7.41 (m, 1H), and 7.37 (dd, J = 8.8, 2.0 Hz,
1H) ppm; 13C{1H} NMR (100 MHz, DMSO-d6) δ = 161.9, 149.8, 149.4, 135.5, 134.3, 130.2,
127.2, 126.9, 125.7, 125.2, 125.1, 124.4, 120.4, 114.0, 113.6, and 108.2 ppm. HRMS (ESI) Calcd
for C16H11BrN3O [M + H]+ 340.0080; Found 340.0080.

2-(2-Phenyl-1H-indol-3-yl)quinazolin-4(3H)-one (3m) was determined using GC/MS
in trace amounts. Quinazolin-4(3H)-one (5a) was isolated as by-product in the synthesis of
2-(2-phenyl-1H-indol-3-yl)quinazolin-4(3H)-one (3m) in a 37% yield. All the spectral data
of quinazolin-4(3H)-one (5a) were consistent with those described above.

2-[2-(4-Nitrophenyl)-1H-indol-3-yl]quinazolin-4(3H)-one (3n) was determined using
GC/MS in trace amounts. Quinazolin-4(3H)-one (5a) was isolated as by-product in the syn-
thesis of 2-[2-(4-nitrophenyl)-1H-indol-3-yl]quinazolin-4(3H)-one (3n) in a 59% yield. All
the spectral data of quinazolin-4(3H)-one (5a) were consistent with those described above.

6-Chloro-2-(1H-indol-3-yl)quinazolin-4(3H)-one (3o). A yield of 0.350 g (91%), 20 h,
pale beige solid. Mp. ≥ 390 ◦C, decomposition (EtOH). 1H NMR (400 MHz, DMSO-d6)
δ = 12.24 (br.s, 1H), 11.85 (br.s, 1H), 8.68 (br.d, J = 6.8 Hz, 1H), 8.55 (d, J = 2.0 Hz, 1H), 8.04
(s, 1H), 7.79–7.73 (m, 2H), 7.49 (br.d, J = 6.8 Hz, 1H), and 7.26–7.20 (m, 2H) ppm; 13C{1H}
NMR (100 MHz, DMSO-d6) δ = 161.1, 150.7, 148.4, 136.8, 134.3, 129.4, 129.1, 129.0, 125.4,
124.7, 122.6, 122.3, 121.5, 120.9, 111.9, and 108.3 ppm. HRMS (ESI) Calcd for C16H11ClN3O
[M + H]+ 296.0585; Found 296.0582.

7-Chloro-2-(1H-indol-3-yl)quinazolin-4(3H)-one (3p). A yield of 0.357 g (93%), 23 h,
pale beige solid. Mp. = 323–324 ◦C (EtOH). 1H NMR (400 MHz, DMSO-d6) δ = 12.19 (br.s,
1H), 11.87 (br.s, 1H), 8.70 (d, J = 7.2 Hz, 1H), 8.57 (d, J = 2.4 Hz, 1H), 8.09 (d, J = 8.4 Hz,
1H), 7.78 (s, 1H), 7.50–7.48 (m, 1H), 7.42–7.40 (m, 1H), and 7.26–7.20 (m, 2H) ppm; 13C{1H}
NMR (100 MHz, DMSO-d6) δ = 161.4, 151.6, 150.9, 138.9, 136.8, 129.6, 127.7, 125.9, 125.5,
125.1, 122.6, 122.4, 121.0, 119.1, 111.9, and 108.3 ppm. HRMS (ESI) Calcd for C16H11ClN3O
[M + H]+ 296.0585; Found 296.0582.
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2-(1H-Indol-3-yl)-6-iodoquinazolin-4(3H)-one (3q). A yield of 0.226 g (45%), 32 h,
pale brown solid. Mp. ≥ 308 ◦C, decomposition (1,4-dioxane/EtOH). 1H NMR (400 MHz,
DMSO-d6) δ = 12.21 (br.s, 1H), 11.85 (br.s, 1H), 8.68–8.66 (m, 1H), 8.54 (br.s, 1H), 8.37 (br.s,
1H), 8.05–8.03 (m, 1H), 7.54–7.48 (m, 2H), and 7.25–7.20 (m, 2H) ppm; 13C{1H} NMR (100
MHz, DMSO-d6) δ = 160.7, 150.8, 149.0, 142.5, 136.8, 134.0, 129.4, 129.1, 125.4, 122.6, 122.3,
122.2, 120.9, 111.9, 108.4, and 89.1 ppm. HRMS (ESI) Calcd for C16H11IN3O [M + H]+

387.9941; Found 387.9947.
N,N-dimethyl-1H-indole-3-carbothioamide (7a) was isolated as a by-product in the synthe-

sis of 2-(1H-indol-3-yl)-6-iodoquinazolin-4(3H)-one (3q), 3-(1H-indol-3-yl)-2H-benzo[e][1,2,4]
thiadiazine-1,1-dioxide (3af), and 2-(1H-indol-3-yl)-5-phenyl-3,5-dihydro-4H-imidazol-4-one
(3ag) in 21%, 47%, and 50% yields, respectively. Yields of 0.056 g (21%) for 3q, 0.125 g
(47%) for 3af, and 0.133 g (50%) for 3ag were obtained and they were pale beige solids.
Mp. ≥ 180 ◦C, decomposition (petroleum ether/EtOAc). 1H NMR (400 MHz, DMSO-d6)
δ = 11.51 (br.s, 1H), 7.68–7.62 (m, 2H), 7.43 (s, 1H), 7.12 (br.s, 2H), and 3.42 (br.s, 6H) ppm;
13C{1H} NMR (100 MHz, DMSO-d6) δ = 193.2, 135.5, 127.0, 124.8, 121.6, 120.3, 119.9, 118.3,
111.8, and 43.3 (br.s, 2C) ppm. HRMS (ESI) Calcd for C11H13N2S [M + H]+ 205.0794; Found
205.0792. (CCDC 2269768 contains the supplementary crystallographic data for this paper.
These data can be obtained free of charge from the Cambridge Crystallographic Data Centre
via. Available online: www.ccdc.cam.ac.uk/structures; accessed on 14 June 2023; for details,
see Supplementary Materials).

2-(1H-Indol-2-yl)quinazolin-4(3H)-one (3r) [84]. A yield of 0.271 g (80%), 15 h, grey
solid. Mp. ≥ 326 ◦C, decomposition (EtOH, lit. [84] 302–304 ◦C). 1H NMR (400 MHz,
DMSO-d6) δ = 12.54 (br.s, 1H), 11.73 (br.s, 1H), 8.16 (br.d, J = 7.6 Hz, 1H), 7.86–7.83 (m, 1H),
7.75–7.73 (m, 1H), 7.67–7.64 (m, 2H), 7.56–7.49 (m, 2H), 7.25–7.22 (m, 1H), and 7.09–7.05
(m, 1H) ppm; 13C{1H} NMR (100 MHz, DMSO-d6) δ = 161.6, 148.7, 146.5, 137.6, 134.5, 130.0,
127.4, 126.8, 126.1, 126.0, 123.9, 121.4, 121.1, 119.9, 112.3, and 104.9 ppm.

2-(Benzofuran-2-yl)quinazolin-4(3H)-one (3s) [85]. A yield of 0.235 g (69%), 6,5 h,
beige solid. Mp. = 253–254 ◦C (EtOH) (lit. [85] 254–257 ◦C). 1H NMR (400 MHz, DMSO-d6)
δ = 12.69 (br.s, 1H), 8.17 (br.d, J = 7.6 Hz, 1H), 8.06 (s, 1H), 7.85–7.73 (m, 4H), 7.57–7.47
(m, 2H), and 7.37–7.34 (m, 1H) ppm; 13C{1H} NMR (100 MHz, DMSO-d6) δ = 161.4, 154.8,
148.3, 147.6, 144.2, 134.6, 127.4, 127.3, 126.93, 126.91, 125.9, 123.7, 122.5, 121.5, 111.7, and
110.1 ppm.

2-(Furan-2-yl)quinazolin-4(3H)-one (3t) [84]. A yield of 0.234 g (85%), 9 h, beige solid.
Mp. = 221–222 ◦C (EtOH) (lit. [84] 210–212 ◦C). 1H NMR (400 MHz, DMSO-d6) δ = 12.42
(br.s, 1H), 8.12 (br.d, J = 7.2 Hz, 1H), 7.98 (br.s, 1H), 7.82–7.78 (m, 1H), 7.69–7.67 (m, 1H),
7.62 (d, J = 3.2 Hz, 1H), 7.50–7.47 (m, 1H), and 6.74–6.73 (m, 1H) ppm; 13C{1H} NMR (100
MHz, DMSO-d6) δ = 161.4, 148.6, 146.4, 146.1, 143.9, 134.5, 127.1, 126.3, 125.8, 121.1, 114.3,
and 112.4 ppm.

2-(5-Methylfuran-2-yl)quinazolin-4(3H)-one (3u) [86]. A yield of 0.209 g (71%), 9 h,
brown solid. Mp. = 195–196 ◦C (EtOH) (lit. [86] 191–192 ◦C). 1H NMR (400 MHz, DMSO-d6)
δ = 12.28 (br.s, 1H), 8.11 (d, J = 7.6 Hz, 1H), 7.81–7.77 (m, 1H), 7.69–7.67 (m, 1H), 7.53 (d,
J = 3.0 Hz, 1H), 7.48–7.44 (m, 1H), 6.36 (d, J = 3.0 Hz, 1H), and 2.41 (s, 3H) ppm; 13C{1H}
NMR (100 MHz, DMSO-d6) δ = 161.4, 156.0, 148.8, 144.4, 143.9, 134.4, 127.0, 126.0, 125.8,
120.9, 115.7, 108.8, and 13.4 ppm.

2-(5-Ethylfuran-2-yl)quinazolin-4(3H)-one (3v). A yield of 0.265 g (85%), 9 h, pale
yellow solid. Mp. = 187–188 ◦C (EtOH). 1H NMR (400 MHz, DMSO-d6) δ = 12.30 (br.s,
1H), 8.11 (d, J = 8.0 Hz, 1H), 7.80–7.77 (m, 1H), 7.69–7.67 (m, 1H), 7.52 (d, J = 3.0 Hz, 1H),
7.48–7.44 (m, 1H), 6.37 (d, J = 3.0 Hz, 1H), 2.75 (q, J = 7.6 Hz, 2H), and 1.25 (t, J = 7.6 Hz, 3H)
ppm; 13C{1H} NMR (100 MHz, DMSO-d6) δ = 161.5, 161.3, 148.8, 144.3, 144.0, 134.4, 127.0,
126.0, 125.8, 120.9, 115.5, 107.4, 20.9, and 11.7 ppm. HRMS (ESI) Calcd for C14H13N2O2
[M + H]+ 241.0972; Found 241.0971.

2-(1-Methyl-1H-pyrrol-2-yl)quinazolin-4(3H)-one (3w). A yield of 0.219 g (75%), 10 h,
white solid. Mp. = 224 ◦C (EtOH). 1H NMR (400 MHz, DMSO-d6) δ = 11.98 (br.s, 1H),
8.09 (d, J = 7.6 Hz, 1H), 7.78–7.74 (m, 1H), 7.63–7.61 (m, 1H), 7.44–7.40 (m, 1H), 7.22 (d,
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J = 2.0 Hz, 1H), 7.08 (s, 1H), 6.15 (br.s, 1H), and 4.07 (s, 3H) ppm; 13C{1H} NMR (100 MHz,
DMSO-d6) δ = 161.8, 148.7, 146.7, 134.2, 129.9, 126.9, 125.6, 125.5, 123.9, 120.3, 114.7, 107.6,
and 37.4 ppm. HRMS (ESI) Calcd for C13H12N3O [M + H]+ 226.0975; Found 226.0979.

2-(Thiophen-2-yl)quinazolin-4(3H)-one (3x) [84]. A yield of 0.291 g (98%), 14.5 h, pale
yellow solid. Mp. = 287 ◦C (EtOH) (lit. [84] 246–248 ◦C). 1H NMR (400 MHz, DMSO-d6)
δ = 12.58 (br.s, 1H), 8.23 (d, J = 2.8 Hz, 1H), 8.13–8.12 (m, 1H), 7.85–7.78 (m, 2H), 7.66–7.64
(m, 1H), 7.50–7.46 (m, 1H), and 7.24–7.22 (m, 1H) ppm; 13C{1H} NMR (100 MHz, DMSO-d6)
δ = 161.7, 148.5, 147.8, 137.3, 134.5, 132.0, 129.3, 128.3, 126.8, 126.2, 125.9, and 120.8 ppm.

2-(Pyridin-4-yl)quinazolin-4(3H)-one (3y) [84]. A yield of 0.044 g (15%), 7.5 h, white
solid. Mp. = 276–277 ◦C (EtOH) (lit. [84] 270–272 ◦C). 1H NMR (400 MHz, DMSO-d6)
δ = 12.69 (br.s, 1H), 8.78 (d, J = 4.4 Hz, 2H), 8.18 (br.d, J = 7.6 Hz, 1H), 8.11 (d, J = 4.4 Hz, 2H),
7.88–7.84 (m, 1H), 7.79–7.77 (m, 1H), and 7.59–7.55 (m, 1H) ppm; 13C{1H} NMR (100 MHz,
DMSO-d6) δ = 161.9, 150.4, 150.1 (2C), 148.2, 139.8, 134.6, 127.6, 127.2, 125.8, 121.4 (2C), and
121.4 ppm.

2-(Naphthalen-2-yl)quinazolin-4(3H)-one (3z) [83]. A yield of 0.301 g (85%), 9 h, pale
yellow solid. Mp. = 285–286 ◦C (EtOH) (lit. [83] 285–287 ◦C). 1H NMR (400 MHz, DMSO-d6)
δ = 12.59 (br.s, 1H), 8.82 (br.s, 1H), 8.32–8.30 (m, 1H), 8.19 (d, J = 7.6 Hz, 1H), 8.08–8.06
(m, 2H), 8.02–8.00 (m, 1H), 7.88–7.84 (m, 1H), 7.81–7.79 (m, 1H), 7.66–7.61 (m, 2H), and
7.56–7.52 (m, 1H) ppm; 13C{1H} NMR (100 MHz, DMSO-d6) δ = 162.2, 152.2, 148.6, 134.5,
134.1, 132.2, 129.9, 128.8, 128.03, 127.97, 127.8, 127.5, 127.4, 126.8, 126.5, 125.8, 124.4, and
121.0 ppm.

2-Cyclohexylquinazolin-4(3H)-one (3aa) [87]. A yield of 0.261 g (88%), 8 h, white solid.
Mp. = 222 ◦C (EtOAc) (lit. [87] 230–231 ◦C). 1H NMR (400 MHz, DMSO-d6) δ = 11.99 (br.s,
1H), 8.07 (br.d, J = 7.6 Hz, 1H), 7.77–7.73 (m, 1H), 7.58 (br.d, J = 8.0 Hz, 1H), 7.45–7.42 (m,
1H), 2.61–2.55 (m, 1H), 1.92–1.89 (m, 2H), 1.80–1.77 (m, 2H), 1.69–1.55 (m, 3H), and 1.35–1.20
(m, 3H) ppm; 13C{1H} NMR (100 MHz, DMSO-d6) δ = 161.8, 160.6, 148.9, 134.0, 126.9, 125.7,
125.5, 120.9, 42.7, 30.1 (2C), 25.4 (2C), and 25.2 ppm.

3-Amino-2-(1H-indol-3-yl)quinazolin-4(3H)-one (3ab). A yield of 0.212 g (59%), 15 h,
pale brown solid. Mp. ≥ 235 ◦C, decomposition (EtOH). 1H NMR (400 MHz, DMSO-d6)
δ = 11.78 (br.s, 1H), 8.78–8.75 (m, 2H), 8.15–8.13 (m, 1H), 7.82–7.74 (m, 2H), 7.53–7.50 (m,
1H), 7.46–7.43 (m, 1H), 7.25–7.20 (m, 2H), and 5.97 (s, 2H) ppm; 13C{1H} NMR (100 MHz,
DMSO-d6) δ = 161.0, 151.0, 147.4, 135.8, 133.8, 133.0, 127.0, 126.7, 125.8, 125.0, 122.8, 122.1,
120.6, 118.4, 111.6, and 107.7 ppm. HRMS (ESI) Calcd for C16H13N4O [M + H]+ 277.1084;
Found 277.1082.

3.3.5. Synthesis of 2-(5-methylfuran-2-yl)-2,3-dihydroquinazolin-4(1H)-one (6u) [88]

To a solution of 5-methylfuran-2-carbaldehyde (1s) (0.76 mmol, 76 µL) in DMSO
(1.0 mL), anthranilamide (2a) (0.69 mmol, 94 mg) was added. The reaction mixture was
heated at 100 ◦C for 3.5 h (TLC control). Then, the reaction mixture was poured into H2O
(50 mL). The formed precipitate was filtered. The product was purified using column
chromatography on silica gel using the mixture of petroleum ether/EtOAc (1:1) as an
eluent and recrystallized from ethanol. A yield of 0.098 g (62%) was obtained and it was
a pale yellow solid. Mp. = 168–169 ◦C (EtOH) (lit. [88] 177–178 ◦C). 1H NMR (400 MHz,
DMSO-d6) δ = 8.24 (br.s, 1H), 7.61 (br.d, J = 7.6 Hz, 1H), 7.25–7.21 (m, 1H), 7.10 (s, 1H), 6.75
(br.d, J = 8.4 Hz, 1H), 6.69–6.65 (m, 1H), 6.13 (d, J = 3.2 Hz, 1H), 5.98 (br.s, 1H), 5.68 (br.s,
1H), and 2.22 (s, 3H) ppm; 13C{1H} NMR (101 MHz, DMSO-d6) δ = 163.1, 152.5, 151.3, 147.1,
133.1, 127.1, 117.1, 114.9, 114.4, 108.0, 106.2, 60.3, and 13.2 ppm.

3.3.6. Synthesis of 2-(thiophen-2-yl)-2,3-dihydro-4H-benzo[e][1,3]oxazin-4-one (3ad) [89]

To a solution of thiophene-2-carbaldehyde (1u) (0.25 mmol, 24 µL) in toluene (2 mL),
2-hydroxybenzamide (1f) (0.25 mmol, 0.034 g) and TFA (0.25 mmol, 19 µL) were added.
The reaction mixture was refluxed for 40 h (TLC control) and cooled to room temperature.
The reaction mixture was poured into H2O (10 mL) and extracted with EtOAc (3 × 5 mL).
The combined organic layers were washed with brine (3 × 10 mL), dried with anhydrous
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Na2SO4, and concentrated to dryness. The product was purified using column chromatog-
raphy on silica gel using the mixture of petroleum ether/EtOAc (5:1) as an eluent. A yield of
0.030 g (52%) was obtained and it was a yellow oil. 1H NMR (400 MHz, DMSO-d6) δ = 9.14
(br.s, 1H), 7.79 (br.d, J = 7.6 Hz, 1H), 7.62–7.61 (m, 1H), 7.53–7.49 (m, 1H), 7.28–7.27 (m, 1H),
7.14–7.11 (m, 1H), 7.05–7.03 (m, 2H), and 6.69 (br.s, 1H) ppm; 13C{1H} NMR (101 MHz,
DMSO-d6) δ = 162.0, 156.1, 140.7, 134.5, 127.8, 127.7, 127.3, 126.7, 122.4, 118.3, 116.9, and
80.5 ppm.

3.3.7. Synthesis of 2-(1-benzoyl-1H-indol-3-yl)quinazolin-4(3H)-one (3i)

To a solution of 2-(1H-indol-3-yl)quinazolin-4(3H)-one (3a) (1.0 mmol, 0.261 g) and
triethylamine (2.0 mmol, 279 µL) in dimethylacetamide (2.0 mL) benzoyl chloride (2.0 mmol,
232 µL) was added. The reaction mixture was heated at 150 ◦C for 4 h (TLC control).
Then, the reaction mixture was poured into H2O (50 mL). Then, NaHCO3 (4.2 mmol,
353 mg) was added portion wise. The reaction mixture was stirred at room temperature
for 2 h. The formed precipitate was filtered. The product 3i was purified using column
chromatography on silica gel using the mixture of petroleum ether/EtOAc (2:1) as an eluent
and recrystallized from an acetone. A yield of 0.288 g (79%) was obtained and it was a white
solid. Mp. = 317–318 ◦C, decomposition (acetone). 1H NMR (400 MHz, DMSO-d6) δ = 12.45
(br.s, 1H), 8.89–8.87 (m, 1H), 8.76 (s, 1H), 8.38–8.36 (m, 1H), 8.14–8.12 (m, 1H), 7.88–7.82
(m, 4H), 7.79–7.75 (m, 1H), 7.70–7.66 (m, 2H), and 7.52–7.48 (m, 3H) ppm; 13C{1H} NMR
(100 MHz, DMSO-d6) δ = 168.4, 161.8, 148.8, 148.5, 136.1, 134.4, 133.1, 132.4, 130.9, 129.5
(2C), 128.7 (2C), 127.8, 127.3, 126.3, 125.7, 125.5, 124.6, 123.1, 121.0, 115.6, and 113.9 ppm.
HRMS (ESI) Calcd for C23H16N3O2 [M + H]+ 366.1237; Found 366.1246.

3.3.8. Synthesis of Quinazolin-4(3H)-Ones 3b, 3ah, 3ai

To a stirred solution of 2-(1H-indole-3-yl)quinazolin-4(3H)-one (3a) (0.9 mmol, 0.235 g)
in dry DMF (1 mL), sodium hydride (2.7 mmol, 60% dispersion in mineral oil, 0.108 g)
was added portion wise. The reaction mixture was stirred at room temperature for 5 min,
followed by the addition of a methyl iodide (1.8 mmol, 112 µL). The reaction mixture was
stirred for 48 h at ambient temperature (TLC control). The reaction mixture was poured
into H2O (30 mL). The formed precipitate was filtered. The products were purified using
column chromatography on silica gel using the mixture of petroleum ether/EtOAc (3:1) as
an eluent and recrystallized from a suitable solvent.

2-(1-Methyl-1H-indol-3-yl)quinazolin-4(3H)-one (3b) [83]. A yield of 0.067 g (27%),
white solid. Mp. ≥ 324 ◦C, decomposition (EtOH, lit. [83] 290–295 ◦C). All the spectral
data of 2-(1-methyl-1H-indol-3-yl)quinazolin-4(3H)-one (3b) were consistent with those
described above.

3-Methyl-2-(1-methyl-1H-indol-2-yl)quinazolin-4(3H)-one (3ah) [90]. A yield of 0.057 g
(22%), white solid. Mp. = 192–193 ◦C (EtOH, lit. [90] 194–196 ◦C). 1H NMR (400 MHz,
DMSO-d6) δ = 8.16 (dd, J = 8.0, 1.2 Hz, 1H), 8.06–8.04 (m, 2H), 7.82–7.78 (m, 1H), 7.66 (d,
J = 8.0 Hz, 1H), 7.57 (d, J = 8.0 Hz, 1H), 7.50–7.46 (m, 1H), 7.32–7.28 (m, 1H), 7.23–7.20 (m,
1H), 3.92 (s, 3H), and 3.69 (s, 3H) ppm; 13C{1H} NMR (100 MHz, DMSO-d6) δ = 162.1, 151.8,
147.6, 136.3, 134.0, 132.7, 126.7, 126.6, 126.0, 125.7, 122.2, 121.2, 120.6, 119.2, 110.2, 108.7, 33.6,
and 32.8 ppm.

4-Methoxy-2-(1-methyl-1H-indol-3-yl)quinazoline (3ai). A yield of 0.052 g (20%),
yellow solid. Mp. = 160 ◦C, decomposition (EtOAc). 1H NMR (400 MHz, DMSO-d6)
δ = 8.76–8.74 (m, 1H), 8.36 (s, 1H), 8.09–8.06 (m, 1H), 7.89–7.84 (m, 2H), 7.55–7.48 (m, 2H),
7.30–7.24 (m, 2H), 4.27 (s, 3H), and 3.92 (s, 3H) ppm; 13C{1H} NMR (100 MHz, DMSO-d6)
δ = 165.7, 158.7, 151.4, 137.7, 134.0, 133.7, 126.7, 126.1, 125.2, 123.0, 122.2, 121.9, 120.7, 113.9,
113.7, 110.2, 53.9, and 32.8 ppm. HRMS (ESI) Calcd for C18H16N3O [M + H]+ 290.1288;
Found 290.1279.
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3.3.9. Synthesis of 2-(1H-indol-3-yl)-4-(methylthio)quinazoline (3ak)

To a solution of 2-(1H-indol-3-yl)quinazolin-4(3H)-one (3a) (0.5 mmol, 131 mg) in
toluene (5 mL), Lawesson’s reagent (1.5 mmol, 606 mg) was added. The reaction mixture
was refluxed for 4 h (TLC control) and cooled to room temperature. The mixture was treated
with 1N sodium hydroxide (5 mL) and extracted with EtOAc (3 × 10 mL). The combined
organic layers were washed with brine (3 × 10 mL), dried with anhydrous Na2SO4, and
concentrated to dryness. To a solution of 2-(1H-indol-3-yl)quinazoline-4(3H)-thione (3aj) in
acetone (2 mL), K2CO3 (0.6 mmol, 0.083 g) and MeI (0.6 mmol, 37 µL) were added. The
reaction mixture was stirred for 2 h at room temperature (TLC control). The reaction was
poured into H2O (100 mL) and extracted with EtOAc (3 × 20 mL). To the reaction, H2O
(2 mL) was added and extracted with EtOAc (3 × 20 mL). The combined organic layers
were washed with brine (3 × 10 mL), dried with anhydrous Na2SO4, and concentrated to
dryness. The product was purified using column chromatography on silica gel using the
mixture of petroleum ether/EtOAc (19:1) as an eluent and recrystallized from a mixture
of petroleum ether/EtOAc. A yield of 0.076 g (52%), yellow solid. Mp. = 182–184 ◦C
(petroleum ether/EtOAc). 1H NMR (400 MHz, DMSO-d6) δ = 11.67 (br.s, 1H), 8.76–8.73
(m, 1H), 8.40 (d, J = 2.8 Hz, 1H), 8.02 (d, J = 8.4 Hz, 1H), 7.93–7.86 (m, 2H), 7.55–7.50 (m,
2H), 7.23–7.21 (m, 2H), and 2.84 (s, 3H) ppm; 13C{1H} NMR (100 MHz, DMSO-d6) δ = 169.6,
158.3, 148.4, 137.2, 133.9, 130.3, 127.8, 125.7, 125.6, 123.4, 122.0, 121.9, 120.9, 120.4, 114.9,
111.9, and 12.0 ppm. HRMS (ESI) Calcd for C17H14N3S [M + H]+ 292.0903; Found 292.0894.

3.3.10. Synthesis of 4-Chloro-2-(1H-indol-3-yl)quinazoline (3am)

To a solution of 2-(1H-indol-3-yl)quinazolin-4(3H)-one (3a) (1.0 mmol, 0.261 g) in
dry DMF (4.5 mL), POCl3 (9.0 mmol) was added at 0 ◦C. The reaction was stirred at
ambient temperature for 12 h (TLC control). Then, the reaction mixture was poured
into H2O (100 mL). Then, NaHCO3 (10.0 mmol, 0.840 g) was added portion wise. The
reaction mixture was stirred at room temperature for 2 h. The formed precipitate was
filtered. The product was purified using column chromatography on silica gel using the
mixture of petroleum ether/EtOAc (2:1) as an eluent and recrystallized from a mixture
of petroleum ether/EtOAc. A yield of 0.128 g (46%), pale pink solid. Mp. = 217 ◦C
(petroleum ether/EtOAc). 1H NMR (400 MHz, DMSO-d6) δ = 9.54 (br.s, 1H), 8.77–8.74 (m,
2H), 8.29–8.21 (m, 2H), 8.13–8.06 (m, 2H), 7.80–7.77 (m, 1H), and 7.51–7.45 (m, 2H) ppm;
13C{1H} NMR (100 MHz, DMSO-d6) δ = 161.1, 156.6, 150.9, 135.7 (2C), 128.7 (2C), 128.1 (2C),
127.6, 125.5 (2C), 125.3, 124.8, 122.7, and 121.3 ppm. HRMS (ESI) Calcd for C16H11ClN3
[M + H]+ 280.0636; Found 280.0635.

3.3.11. Synthesis of 4-[2-(1H-indol-3-yl)quinazolin-4-yl]morpholine (3an)

To a solution of 4-chloro-2-(1H-indol-3-yl)quinazoline (3am) (1.0 mmol, 279 mg) and
Et3N (1.5 mmol, 202 µL) in MeCN (5 mL), morpholine (1.2 mmol, 103 µL) was added.
The reaction mixture was refluxed for 1.5 h (TLC control). Then, the reaction mixture was
poured into H2O (50 mL) and the product was extracted with dichloromethane (3 × 20 mL).
The combined organic layers were washed with brine (3 × 20 mL), dried with anhydrous
Na2SO4, and concentrated to dryness under reduced pressure. The product was purified
using column chromatography on silica gel using the mixture of petroleum ether/EtOAc
(10:1) as an eluent. A yield of 0.261 g (79%), beige oil. 1H NMR (400 MHz, DMSO-d6)
δ = 11.58 (br.s, 1H), 8.72–8.68 (m, 1H), 8.26 (d, J = 2.8 Hz, 1H), 7.97 (br.d, J = 7.6 Hz, 1H), 7.84
(dd, J = 8.4, 0.8 Hz, 1H), 7.78–7.74 (m, 1H), 7.50–7.46 (m, 1H), 7.44–7.39 (m, 1H), 7.21–7.16
(m, 2H), 3.89–3.87 (m, 4H), and 3.77–3.75 (m, 4H) ppm; 13C{1H} NMR (100 MHz, DMSO-d6)
δ = 164.0, 158.4, 152.2, 137.1, 132.5, 129.5, 127.6, 125.8, 125.0, 123.9, 122.1, 121.6, 120.2, 115.3,
114.1, 111.8, 66.0 (2C), and 50.0 (2C) ppm. HRMS (ESI) Calcd for C20H19N4O [M + H]+

331.1553; Found 331.1559.
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3.4. Antibacterial Activity

The synthesized compounds were tested for their in vitro growth inhibitory and bacte-
ricidal (fungicidal) activity against Staphylococcus aureus (ATCC 25923), Staphylococcus aureus
(MRSA, ATCC 43300), Staphylococcus epidermidis (ATCC 12228), Escherichia coli (ATCC 8739),
Escherichia coli (ATCC 25922), Mycobacterium smegmatis (mc(2)155/ ATCC 700084), and
Candida albicans (ATCC 10231). Cefazolin, cefotaxime, chloramphenicol, amikacin, ri-
fampicin, isoniazid, fluconazole, and Amphotericin B were used as control antimicrobial
(fungicidal) agents. The cells were grown overnight at 37 ◦C in a glass tube with 5 mL of
LB-broth containing 1% of glucose for C. albicans and 0.05% Tween 80 for M. smegmatis.
The grown cultures were then diluted 1:100 with fresh medium and cultivated for 5 h.
The M. smegmatis culture was grown for 20 h with agitation on a shaker GFL1092 (GFL,
Germany) (200 rpm, 37 ◦C). Then, the cultures were adjusted to OD 0.1 (A625) and diluted
to 1:10 for M. smegmatis and 1:100 for the other microorganisms. The resulting suspension
was used to determine the MIC using the serial dilutions method in 96-well plates with
modifications. The synthesized compounds were dissolved in DMSO at a concentration
of 20 mg/mL and a series of two-fold dilutions was prepared in the same solvent. Then,
10 µL of the solutions was added to the wells of the plate containing 190 µL of the cell
suspension. To the control wells, 10 µL of DMSO was added. The plates were incubated at
37 ◦C under static conditions for 24 h (72 h for M. smegmatis) for the minimum inhibitory
concentration determination. The minimum bactericidal concentration and MFC were
determined as the lowest concentration of an antimicrobial agent required to achieve a
99.9% reduction in the initial inoculum. In total, 10 µL from each well of a plate for the
MIC determination was inoculated on Petri dish with LB-agar (containing 1% of glucose
for C. albicans), and colonies were checked for after incubation (24 h, 37 ◦C) to determine
the MBC or MFC. The antitubercular activity of the synthesized compounds was studied
with the M. tuberculosis H37Rv strain using the standard BASTEC MGIT 960 growth system
(Becton Dickinson) [50]; 10 mg of the test substances was dissolved in 1 mL of DMSO, then
mixed with Middlebrook 7H9 medium in a ratio of 1:9 and added to MGIT tubes, obtaining
a series of two-fold dilutions with final concentrations from 1 to 100 µg/mL. The tubes
initially contained 7 mL of Middlebrook Broth 7H9, 0.8 mL of MGIT OADC supplement,
and oxygen-quenched fluorochrome, which changes the fluorescence as microorganisms
grow. A total of 0.5 mL of a suspension of M. tuberculosis H37Rv in physiological saline
containing 5 × 107 cells/mL was added to each tube. All the tubes were incubated at 37 ◦C
for 41 days and examined for fluorescence daily.

3.5. Biofilm Assay

Biofilm formation was measured using the classical crystal violet test in microtiter
plates [91]. The cells were grown overnight at 37 ◦C in a glass tube with 5 mL of LB-broth.
The grown culture was then adjusted to OD 0.1 (A625) and added to the wells of the plates
at 200 µL and cultivated for 24 h at 37 ◦C under static conditions. After that, the wells were
washed twice with distilled water, stained for 30 min with 0.1% crystal violet, and washed
three times. The dye was extracted with 95% ethanol over 30 min and the optical density
(A570) was measured with microplate reader Tecan Infinite M200Pro (Tecan, Austria).

3.6. Cytotoxicity Activity
3.6.1. Cell Lines and Culture Conditions

The human cell lines MCF7′, A549, VA13, and HEK293T were maintained in DMEM/F-
12 media containing 10% FBS, 50u/mL of penicillin, and 0.05 mg/mL of streptomycin (all
products were from Thermo Fisher Scientific, Waltham, MA, USA) at 37 ◦C in 5% CO2. The
cell cultures were genotyped using STR and tested for the absence of mycoplasma.
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3.6.2. Cytotoxicity Measurements (Mosmann Assay)

The measurements were carried out using the Mosmann assay (MTT) [92]; 2500 cells
per well for the A549, HEK293T, and MCF7′ cell lines or 4000 cells per well for the VA13
cell line were plated out in 135 µL of DMEM-F12 (Gibco) media in a 96-well plate. The
cells were incubated in a 5% CO2 incubator for the first 16 h without being treated. Then,
15 µL of media-DMSO solutions or suspensions of the tested substances were added to the
cells (final DMSO concentrations in the media were 1% or less) and treated cells at 72 h
(triplicate each). The MTT reagent then was added to the cells up to a final concentration of
0.5 g/L (10× stock solution in PBS was used) and incubated for 3 h at 37 ◦C in the incubator,
under an atmosphere of 5% CO2. The MTT solution was then discarded and 140 µL of
DMSO was added. The plates were swayed on a shaker (80 rpm) to solubilize the formazan.
The absorbance was measured using a microplate reader (VICTOR X5 Plate Reader) at a
wavelength of 555 nm to measure the formazan concentration and corresponding quantity
of cells. The results were used to construct a dose–response graph and estimate the CC50
value using the Prism software (GraphPad Software, Boston, MA, USA). Both the IC50 (half
of the maximal inhibition) and IC50abs (half of the absolute quantity of cells) were calculated.

3.7. Molecular Docking

Molecular docking was carried out using the Schrödinger Maestro software [93]. Our
analysis was based on the protein structures of RelMtb from M. tuberculosis (PDB 5XNX) and
RelSeq from Streptococcus dysgalactiae subsp. equisimilis (PDB 1VJ7), which were optimized
and minimized with Protein Preparation Wizard and OPLS3 force field. Hydrogen atoms
and disulfide bonds were added and water molecules were removed. LigPrep was used to
prepare the ligands: ionization states (in pH range of 7 ± 2) and tautomers of the molecules
were generated and the chirality of the molecules was determined based on their three-
dimensional structure. Only the strongest energy binding isomersation state or tautomer is
demonstrated in results for each compound. The RelMtb and RelSeq protein structures were
aligned and the 15 Å cubic binding region was centered relative to the crystallized GDP
substrate. Receptor grids were generated for both proteins. The standard precision (SP)
docking method was applied with default parameters.

4. Conclusions

In summary, a series of 2-(1H-indol-3-yl)quinazolin-4(3H)-one 3 and analogues was
synthesized. The analysis of their biological activity showed that some target compounds
have antibacterial properties, ranging from good to outstanding. Thus, compound 3k
showed an activity comparable to that of standard antimicrobial agents against C. albicans,
S. aureus, and S. epidermidis and a high activity against MRSA. This compound also showed
activity against M. tuberculosis. In addition, the ability of 3k to prevent the formation of
bacterial biofilms in sublethal concentrations was found. The evaluation of their cytotoxic
activity showed that some compounds, 3c, 3f, 3g, 3k, 3r, and 3z, exhibited significant
antiproliferative activity against all the cancer cell lines studied. As a result of the study of
in silico compounds, it was shown that the set of synthesized indole derivatives contained
compounds with high enough negative values of the binding energy (−∆G) in both protein
models used for the molecular docking, which demonstrates their potential ability for the
high affinity binding of alarmone synthetases nearest to their active centers. This opens up
the possibility of detecting representatives of substituted indoles that can demonstrate an
ability to suppress persister cell formation through the inhibition of alarmone synthetases
that are synthesized during the transition to the stationary phase.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/molecules28145348/s1, Table S1: Antimicrobial data (MIC and
MBC/MFC, µg/mL) for the quinazolinone derivatives 3, 5, 6, 7; Scheme S1: Synthesis of N,N-
dimethyl-1H-indole-3-carbothioamides 7a, b; copies of 1H, 13C NMR spectra of target compounds;
copies of HRMS of new compounds; X-ray crystallography data, Table S2: Experimental details for
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N,N-dimethyl-1H-indole-3-carbothioamide (7a, CCDC 2269768); Figure S1. Structure of the N,N-
dimethyl-1H-indole-3-carbothioamide (7a, CCDC 2269768) according to the X-ray diffraction data;
non-hydrogen atoms are shown as thermal vibration ellipsoids with a probability of 50%.
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