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Abstract: A systematic study on the distortion of a naphthalene ring was performed using steric
repulsion between peri-substituents at the 1- and 8-positions. The introduction of bromo groups into
the methyl groups of the 1,8-dimethylnaphthalene enhanced the steric repulsion to distort the naph-
thalene ring. X-ray crystallography revealed that 1,8-bis(bromomethyl)naphthalene had a vertical
distortion with a 11.0◦ dihedral angle (α) between peri-substituents which disturbed the coplanarity
of the naphthalene ring. On the other hand, the dihedral angle of 1,8-bis(dibromomethyl)naphthalene
was smaller (α = 8.3◦) despite the bulkier substituents. In this case, horizontal distortion of the
naphthalene ring increased. These distortions should non-electronically activate the naphthalene
framework. In order to evaluate their reactivity, nitration and hydrogenation were carried out;
however, the 1,8-bis(dibromomethyl)naphthalene was intact under the employed conditions. A DFT
calculation suggested that the inertness of the 1,8-bis(dibromomethyl)naphthalene is presumably due
to the negative hyperconjugation of the (dibromo)methyl group.

Keywords: steric repulsion; peri-substituents; non-electronic activation; naphthalene; negative
hyperconjugation

1. Introduction

Aromatic compounds have played essential roles in the material and pharmaceutical
sciences. Accordingly, numerous methods for modifying aromatic rings have been devel-
oped. The most frequently used reactions are cross-coupling reactions, reactions using
benzynes, and electrophilic substitution. In the former two cases, the introduction of a
good leaving group such as a halide or sulfonate is important for initiating the reactions,
that is, reactive carbon–halogen or carbon–sulfonate bonds facilitate chemical modification.
In the latter case, the substituent effect is crucial for promoting the reaction. Although the
introduction of an electron-donating or electron-withdrawing group is the most general
activation method for an aromatic ring, the reaction site will be restricted because of their
directing properties. Thus, while an enormous number of reactions were reported, the
development of another type of activation protocol is a relatively unexplored field.

In our previous work, we studied the functionalization of the 1-methyl-2-quinolone
framework. During the study, we found that 1-methyl-3,6,8-trinitro-2-quinolone (1) exhibits
unusually high reactivities. When 1 was allowed to react with 2,4-pentanedione, cine-
substitution efficiently proceeded on the pyridone moiety at room temperature. Further-
more, 3,6-dinitroquinolone 3 exhibited similar reactivity to 1 even though the 8-substituent
was replaced by an electron-donating methyl group. In contrast, no reaction occurred for 8-
unsubstituted 3,6-dinitiroquinolone 2, even under heating conditions. Since the 8-position
is distant from the reaction site and this reaction was not influenced by the electronic
property of the 8-substituent, the steric effect of the substituent was concluded to be crucial.
Indeed, X-ray crystallography of 1 showed that the dihedral angle between the N1–Me
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and C8–NO2 bonds was 25◦. Based on these experimental results, we speculated that steric
repulsion between the 1-methyl group and 8-substituent distorts the quinolone framework
to decrease the aromaticity, and the pyridine moiety serves as the activated nitroalkene
(Scheme 1a) [1]. Namely, it is non-electrical activation of an aromatic ring. As an associated
study, the aromaticity and reactivity of distorted aromatic compounds were reported [2–4].
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Inspired by these results, a systematic study on the correlation between steric repulsion
and reactivity was performed using 1-methyl-8-alkylquinolinium salts 4a–f (Scheme 1b) [5].
As the 8-substituent becomes bulkier, the dihedral angles between the N1–Me and C8–R
bonds become larger, inducing distortion of the quinoline ring. Accordingly, the highly dis-
torted quinolinium salts 4e and 4f underwent reactions with sodium tri(acetoxy)borohydride
efficiently (Scheme 1b). More recently, we also reported the transformation of
1,8-diiodonaphthalene via non-electronical activation. The 1,8-diiodonaphthalene showed
various reactivities to undergo a homocoupling reaction, leading to binaphthyl and the
rearrangement of the iodo group (Scheme 1c) [6].

As shown in Scheme 1, the steric repulsion between peri-substituents effectively acti-
vates fused aromatic compounds such as quinoline and naphthalene. On the other hand, to
the best of our knowledge, a systematic study on the relationship between the bulkiness of
peri-substituents and the distortion of the naphthalene ring has not been studied. Neverthe-
less, there are several studies on the interactions between peri-substituents from various
perspectives, such as intramolecular coordination [7–12], chelation assembly [13,14], and
mechanophores [15]. In the present work, 1,8-dimethylnaphthalene 7 was chosen as a
model compound, and the bulkiness of the peri-substituents was increased via the sequen-
tial bromination of the methyl groups. Moreover, we investigated the reactivity of the
distorted naphthalene ring using nitration and hydrogenation reactions.
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2. Results and Discussion
2.1. Synthesis of 1,8-Disubstituted Naphthalenes

According to the works [16,17], 1,8-disubstituted naphthalenes 7–10 were synthesized
from 1,8-naphthalic anhydride 12 (Supplementary Materials). Namely, According to the
works, 1,8-disubstituted naphthalenes 7–10 were synthesized from 1,8-naphthalic anhy-
dride 122 (Scheme 2). The reduction of 12 with lithium aluminum hydride in the presence
of zinc chloride afforded bis(hydroxymethyl) derivative 8. The hydroxy groups were effi-
ciently converted into bromomethyl groups upon heating with phosphorous tribromide,
which led to bis(bromomethyl) derivative 9. The subsequent reduction of 9 with sodium
borohydride qualitatively yielded 1,8-dimethylnaphthalene 7 [18]. Bromination at the ben-
zyl position of 9 by N-bromosuccinimide (NBS) furnished bis(dibromomethyl) derivative
10; however, an intermediately expected product wuch as tribrominated product 11 was
not detected, even when an equimolar amount of NBS was used. Although the direct
synthesis of 11 from 7 or 8 was also attempted using NBS, 11 remained undetectable [19].
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Scheme 2. Preparation of 1,8-disubstituted naphthalenes 7–10.

2.2. Crystal Structure Study

Since four kinds of 1,8-disubstituted naphthalenes, 7–10, were in hand, their single
crystals were subjected to X-ray crystallography. The order of atoms (Figure 1) and ORTEP
views from the top and side directions are shown in Figure 2, respectively. Selected crystal
parameters for naphthalene derivatives are also presented in Table 1.
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Figure 2. ORTEP drawing of naphthalene derivatives 7–10 with displacement ellipsoids at the 50%
probability level.

Table 1. Selected crystallographic information for crystal structures 7–10.

7 (R = CH3) 8 (R = CH2OH) 9 (R = CH2Br) 10 (R = CHBr2)

Empirical
formula C12H12 C12H12O2 C12H10Br2 C12H8Br4

Crystal system Monoclinic Monoclinic Monoclinic Monoclinic
Space group P21/n P21/n C2/c P21/n

α (Å) 9.5783(6) 8.4875(4) 23.3250(11) 10.1755(4)
b (Å) 6.8687(4) 4.8113(2) 7.5802(3) 6.7237(2)
c (Å) 13.2814(10) 22.4730(9) 12.3748(6) 19.3037(8)
β (◦) 92.066(7) 94.379(4) 95.479(4) 100.207(4)

Z 4 4 8 4
Goodness-of-fit 1.051 1.098 1.097 1.031

R1 [I > 2σ(I)]
wR2 (all data)

R1 = 0.054,
wR2 = 0.160

R1 = 0.041,
wR2 = 0.110

R1 = 0.036,
wR2 = 0.107

R1 = 0.048,
wR2 = 0.132

CCDC number 2266182 2266183 2266184 2266185

The distortion of the naphthalene ring was evaluated using three parameters, namely,
(a) vertical distortion, (b) horizontal distortion, and (c) bond length and interatom dis-
tance [11]. In this section, these parameters are compared and discussed for
naphthalenes 7–10.

2.2.1. Vertical Distortion

The vertical distortion of the naphthalene framework was estimated via a comparison
of the three dihedral angles α–γ (Table 2). Referring to our previous work [4,5], we initially
assessed the vertical distortion using a dihedral angle α between the C1–C11 and C8–C12
bonds. In the case of dimethylnaphthalene 7, the dihedral angle α is 0.7◦, indicating that
coplanarity remains. Introducing a hydroxy group to the methyl groups distorted the
naphthalene ring to some extent. More importantly, the larger bromo groups distorted the
naphthalene ring to a greater degree, as can be seen with the dihedral angle α reaching
11.0◦. Interestingly, bis(dibromomethyl)naphthalene 10 is less distorted than 9, even though
two bromine atoms were introduced to the methyl group.
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Table 2. Comparison of dihedral angles α (between C1–C11 and C8–C12 bonds), β (between C1–C9
and C4–C10 bonds), and γ (between C1–C9 and C5–C10 bonds) in naphthalenes 7–10.
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CH2OH 8 4.6 2.1 1.5
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CHBr2 10 8.3 3.5 3.1

As other parameters to evaluate the vertical distortion, the dihedral angles β (between
the C1–C9 and C4–C10 bonds) and γ (between the C1–C9 and C5–C10 bonds) were com-
pared [20]. While the dihedral angles β and γ of dimethylnaphthalene 7 are quite small
(β = 0.5◦ and γ = 0.1◦), the values of other naphthalenes 8–10 increase depending on the
bulkiness of the substituents. Meanwhile, the dihedral angles of 10 were not larger than
those of 9, which is the same tendency as α. Since the substitution of the bulkier dibro-
momethyl groups should induce more prominent ring distortion, an alternative parameter
to evaluate the distortion was required.

2.2.2. Horizontal Distortion

Bond angles around the C9 position are shown in Table 3. Since the sum of the three
angles is 360◦, the three atoms connected to the C9 carbon are located in the same plane;
however, the angles are not equally divided. All compounds have wider angles δ (outside
of the naphthalene ring) than the standard sp2 bond angle (120◦), while the other two
angles ε and ζ (inside of the naphthalene ring) are narrower. This fact indicates that C1 and
C8 were pushed apart via steric repulsion between the peri-substituents. Accordingly, the
outside angle θ at the opposite side (C4–C10–C5 angle) became smaller.

Table 3. Bond angles around the C9 and C10 carbons in 7–10.
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CH2OH 8 126.3(2) 117.1(2) 116.7(2) 118.5(3) 

CH2Br 9 128.4(6) 115.1(5) 116.5(5) 117.6(2) 
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R δ/◦ ε/◦ ζ/◦ θ/◦

CH3 7 126.3(1) 116.6(9) 117.1(9) 118.2(1)
CH2OH 8 126.3(2) 117.1(2) 116.7(2) 118.5(3)
CH2Br 9 128.4(6) 115.1(5) 116.5(5) 117.6(2)
CHBr2 10 125.5(1) 117.2(1) 117.3(1) 118.8(2)

Notably, each compound exhibited similar bond angle tendencies regardless of the
bulkiness of the substituents. This result suggests that the first distortion occurs horizontally,
absorbing repulsive energy, when the peri-substituents become bulky.
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2.2.3. Bond Length and Interatom Distance

Steric repulsion between peri-substituents should affect not only bond angles but
also bond distances and interatom distances. Some selected bond lengths and inter-
atom distances are shown in Tables 4 and 5, respectively. While the bond lengths of 7–9
resemble each other, a partial stretch of the inner bond length (C1–C9) of
bis(dibromomethyl)naphthalene 10 was observed, which is about 0.035 Å longer than
that of the other naphthalenes, 7–9. On the other hand, the outer bond lengths (C1–C2,
C2–C3, and C4–C10) of 10 are shorter than those of the other derivatives. This is probably
due to the longer bond length, as the vertical dihedral angles α–γ in 10 are smaller than
those of 9. The interatom distances also indicate high degree of ring distortion in naphtha-
lene 10, that is, C1–C8 and C2–C9 were longer than others. On the other hand, the distance
between C4 and C5 on the opposite side is shorter than those of other substrates, which is a
result of a compression of the naphthalene ring. Since the C11–C12 distances are longer in
naphthalenes 8–10 than in 7, the peri-substituents part from each other to absorb repulsive
energy, which causes horizontal and vertical distortions.

Table 4. Bond lengths (Å) in the naphthalene rings in 7–10.
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C3–C4 1.358(2) 1.364(2) 1.358(4) 1.37(1)

C4–C10 1.419(2) 1.421(2) 1.423(4) 1.407(9)
C10–C9 1.442(2) 1.435(1) 1.430(4) 1.434(9)
C9–C1 1.445(2) 1.447(2) 1.446(4) 1.481(9)

C10–C5 1.418(2) 1.422(2) 1.422(4) 1.414(9)
C5–C6 1.358(2) 1.361(2) 1.360(5) 1.34(1)
C6–C7 1.409(2) 1.407(2) 1.400(5) 1.41(1)
C7–C8 1.377(2) 1.380(2) 1.382(4) 1.37(1)
C8–C9 1.444(2) 1.446(2) 1.446(4) 1.434(9)

Values smaller than others are colored with blue, and values larger than others are colored with red.

2.2.4. Mechanism of Distortion

To summarize our discussions above, the ring distortion occurs in the following order:
(1) horizontal distortion, (2) vertical distortion, and (3) the elongation of the bond and
interatom distances as their bulkiness increases (Figure 3). In detail, when two substituents
exist at the peri-positions, the outside ring angles around C9 δ become larger than the sp2

standard angle (120◦), while the inside ring angles ε and ζ become smaller (horizontal
distortion). During this distortion, coplanarity remained for compound 7. A larger steric
repulsion disturbs the coplanarity of the naphthalene ring (dihedral angles α–γ) upon
the introduction of hydroxy or bromo groups into the methyl groups (vertical distortion).
As the substituent becomes bulkier, interatom distances X and Y become longer, and the
bond length C also elongates due to the steric repulsion between the peri-substituents
(the elongation of bond and interatom distances). On the other hand, the bond lengths
represented by A and B, in addition to the interatomic distance denoted by Z on the
opposite side, experience reductions in length due to compression.
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Table 5. Selected interatom distances (Å) in 7–10.
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2.3. Evaluation of the Reactivity

In the last section, the distortion of naphthalene ring is discussed. According to the
distorted structures, their reactivity should increase because of the decrease in aromaticity.
Therefore, the reactivities of the 1,8-disubstituted naphthalenes 7–10 were evaluated to
strengthen this hypothesis. For this purpose, nitration [21] and catalytic hydrogenation
were employed as model reactions.

2.3.1. Nitration Reaction

When 1,8-dimethylnaphthalene 7 was reacted with nitric acid in acetic anhydride, the
nitration efficiently proceeded at room temperature to afford 2- and 4-nitrated products in
44% and 56% yields, respectively (Table 6, Entry 1, Supplementary Materials). However,
brominated naphthalene 9 was less reactive, which led to a nitrated product with only a
12% yield (Entry 2, Supplementary Materials). Moreover, tetrabrominated naphthalene 10
was recovered intact under the conditions employed (Entry 3). These results contradicted
our expectation, presumably due to the electronic effect of the bromomethyl groups in
which the electron-withdrawing inductive effect diminishes the electron density of the
naphthalene ring.



Molecules 2023, 28, 5343 8 of 13

Table 6. Nitration of 1,8-disubstituted naphthalenes 7, 9, and 10.
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Entry Naphthalene Yield/% Recovery/%
R 2-nitro 4-nitro

1 CH3 7 44 56 0
2 CH2Br 9 0 12 62
3 CHBr2 10 0 0 61

1H NMR spectra showed that signals of ring protons shifted downfield as the bromo
groups increased, indicating low electron densities on the naphthalene rings of 9 and 10.
Since the electronic effects of bromomethyl groups are somewhat high, an electrophilic
aromatic substitution such as nitration reaction is considered to be unsuitable for evaluating
the non-electronic activation degrees of the naphthalenes.

2.3.2. Hydrogenation Reaction

As another approach, catalytic hydrogenation was chosen, which should be influenced
less by the electronic effects of the substituents. The naphthalene derivatives were stirred
under hydrogen with atmospheric pressure in the presence of a Pd/C catalyst in ethanol at
room temperature for 1 h (Scheme 3).
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While naphthalenes 7, 8, and 10 did not react under the conditions, bromomethyl-
substituted naphthalene 9 proceeded through the reaction to afford dimethylnaphthalene 7
in a 68% yield. Although the reaction occurred with substituents, the high level of reactivity
of 9 is interesting to compare with the inertness of 10.

2.3.3. Another Effect of a Bromo Group

Among the peri-substituted naphthalenes 7–10, only 9 exhibited a high degree of reac-
tivity for hydrogenation. From the perspective of distortion, tetrabrominated naphthalene
10 is considered to be more reactive; however, 10 is, in fact, less reactive than 9. One possible
reason why the catalytic surface was not approachable during the hydrogenation reaction
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could be due to the steric hindrance caused by the dibromomethyl group. Nevertheless,
another reason should be considered to explain the unusual reactivity of 9.

To obtain insight, density functional theory (DFT) calculations for 7, 9, and 10 were
performed. The calculated structural parameters were similar to the actual parameters
observed via crystallography (Table 7). Characteristically, the bond lengths between the
substituent and the ring carbons (C1–C11 and C8–C12) are shorter in the case of 9, indicating
these bonds possess double-bond properties. The carbon–bromine bonds (C11–Br1 and
C12–Br2) of the brominated naphthalenes 9 and 10 were orthogonal to the naphthalene
rings and elongated. On the other hand, the second carbon–bromine bonds (C11–Br3
and C12–Br4) in 10 are shorter than them. The HOMO levels were lowered as bromo
groups were introduced (Table 8). These results indicate that the carbon–bromine bonds
interacted with the π system of the naphthalene ring, and π electrons were delocalized
to the anti-bonding orbital of the carbon–bromine bond (σ*), which facilitated the bond
fission to demonstrate the high reactivity of 9. However, the introduction of the second
bromine increased the steric hindrance, which resulted in the inertness of 10.

Table 7. Comparison of actual and calculated C–C and C–Br bond lengths (Å) in 7, 9, and 10.
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R C11–Br1 C11–Br3 C12–Br2 C12–Br4 C1–C11 C8–C12

CH3 7 Crystal — — — — 1.507(2) 1.513(2)
calcd. — — — — 1.517 1.517

CH2Br 9 Crystal 1.981(3) — 1.996(3) — 1.499(4) 1.489(4)
calcd. 2.020 — 2.021 — 1.496 1.496

CHBr2 10 Crystal 1.986(8) 1.956(7) 1.977(7) 1.947(8) 1.51(1) 1.49(1)
calcd. 1.996 1.976 1.996 1.976 1.502 1.502

Table 8. Homo and LUMO levels (eV) of 7, 9, and 10.

R HOMO LUMO

CH3 7 −5.51 −0.80
CH2Br 9 −6.11 −1.83
CHBr2 10 −6.29 −2.19

2.3.4. NIC S Calculations

To estimate the aromaticity, NICS calculations were performed for naphthalenes 7, 9,
and 10 (Table 9). The NICS(1) value is considered different on the front and back side of the
ring plane because one of the carbon–bromine bonds is orthogonal to the naphthalene ring;
thus, both calculations NICS(-1) and NICS(1) were performed.

The NICS(0) values of bis(bromomethyl)naphthalene 9 and bis(dibromomethyl)
naphthalene 10 were estimated to −9.9 and −9.3, respectively, which are lower fields
than that of dimethylnaphthalene 7 (−9.0). In the case of NICS(1 or −1), a ghost atom (Bq)
on the side with the orthogonal bromo group showed a higher field shift than that on an-
other side. To avoid the electronic effect of the bromo group, NICS(1 or −1) values without
an orthogonal bromo group (NICS(−1) for ring A and NICS(1) for ring B) were compared.
As a result, 7 shows the greatest upfield shift among the naphthalenes. Although these
results should indicate a higher degree of magnetic anisotropy of 7 than 9 and 10, the
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electron-withdrawing effect of the bromo group, as mentioned in the last section, must be
taken into account. At least a comparison of 10 with 9 shows an upfield shift via increas-
ing ring distortion, which probably indicates the lesser degree of magnetic anisotropy of
10 than 9.

Table 9. NICS calculations for 7, 9, and 10.
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3. Materials and Methods

All reagents were purchased from commercial sources and used without further
purification. The progress of the reactions was monitored via TLC on silica gel 60 F254 on
aluminum plates. 1H and 13C NMR spectra were recorded using a JEOL JMN-ECZ400S
spectrometer (400 MHz and 100 MHz, respectively) in CDCl3, using TMS as an internal
standard. The assignments of the 13C NMR were measured via DEPT experiments. The
order of the aromatic protons of the naphthalenes was confirmed via 2D-NOESY. IR spectra
were recorded with a JASCO FT/IR-4200 spectrometer equipped with an ATR detector.
The melting points were recorded on an SRS-Optimelt automated melting point system.
Diffraction data were collected at 103 K under a cold N2 gas stream on a Rigaku XtaLAB
Synergy-S/Mo system (λ = 0.71073 Å (Mo-Kα)). The single crystals for each compound
were obtained via recrystallization from CHCl3. High-resolution mass spectra (HRMS)
values were obtained from a Bruker compact mass spectrometer set at an APCI-positive
mode. The geometrical optimization was carried out via DFT calculation at the B3LYP/6-
31g(d,p) level using the Gaussian 09 package.

Preparation of 1,8-dimethylnaphthalene (7) [18]

To a solution of 1,8-bis(bromomethyl)naphthalene (9) (1.6 g, 5 mmol) in dimethyl
sulfoxide (20 mL), sodium borohydride (970 mg, 25 mmol) was added, and the resulting
mixture was heated at 80 ◦C for 1 day. Water (20 mL) was added and stirred at room
temperature for 1 h. The white precipitates were collected via filtration and purified via
column chromatography on silica gel to afford 1,8-dimethylnaphthalene (7) (0.78 g, 5 mmol,
quant., eluted by hexane/EtOAc = 9/1) as colorless needles. 1H NMR (400 MHz, CDCl3)
δ 7.67 (d, J = 8.0 Hz, 2H), 7.31–7.23 (m, 4H), 2.94 (s, 6H).

Preparation of 1,8-bis(hydroxymethyl)naphthalene (8) [18]

To a suspension of lithium aluminum hydride (2.6 g, 68 mmol) in tetrahydrofuran
(200 mL), zinc chloride (2.2 g, 68 mmol) was added at −20 ◦C. Then, 1,8-naphthalic an-
hydride (1) (5 g, 25 mmol) was slowly added, and the resulting mixture was stirred at
room temperature for 1 d. After quenching the reaction with water (20 mL), the pH was
adjusted to 4–5 with 1 M of hydrochloric acid. After the removal of THF and extraction
with ethyl acetate (30 mL × 3), the organic layer was washed with brine (30 mL), dried
over magnesium sulfate, and concentrated under reduced pressure. The residue was
washed with diethyl ether (50 mL) to afford 1,8-bis(hydroxymethyl)naphthalene (8) (3.85 g,
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20.5 mmol, 82%) as colorless needles. 1H NMR (400 MHz, CDCl3) δ 7.87 (dd, J = 8.2, 1.6 Hz,
2H), 7.56 (dd, J = 7.0, 1.6 Hz, 2H), 7.45 (dd, J = 8.2, 7.0 Hz, 2H), 5.30 (s, 4H).

Preparation of 1,8-bis(bromomethyl)naphthalene (9) [18]

To a solution of naphthalene 3 (3.0 g, 16 mmol) in 1,4-dioxane (30 mL), phosphorous
tribromide (1 mL, 10.5 mmol) was slowly added, and the mixture was stirred at room
temperature for 1 d. After the addition of water (10 mL), the mixture was stirred for 1 h,
and colorless precipitates were collected via filtration and dried under vacuum to furnish
1,8-bis(bromomethyl)naphthalene (9) (4.0 g, 12.7 mmol, 82%). 1H NMR (400 MHz, CDCl3)
δ 7.89 (dd, J = 8.2, 1.6 Hz, 2H), 7.63 (dd, J = 7.1, 1.6 Hz, 2H), 7.46 (dd, J = 8.2, 7.1 Hz, 2H),
5.31 (s, 4H).

Preparation of 1,8-bis(dibromomethyl)naphthalene (10)

To a solution of bis(bromomethyl)naphthalene 9 (2.0 g, 6.4 mmol) in carbon tetrachlo-
ride (40 mL), were added N-bromosuccinimide (2.3 g, 13 mmol) and azobis(isobutyronitrile)
(260 mg, 1.58 mmol), and the mixture was heated under reflux for 1 d. After the addition of
water (25 mL), the mixture was extracted with ethyl acetate (30 mL × 3). The organic layer
was dried over magnesium sulfate and evaporated, and the residue was treated via column
chromatography on silica gel to afford 1,8-bis(dibromomethyl)naphthalene (10) (1.65 g,
3.5 mmol, 55%, eluted by hexane/EtOAc = 9/1) as pale-yellow crystals.

Mp. 106–109 ◦C. 1H NMR (400 MHz, CDCl3) δ 8.52 (dd, J = 7.5, 1.3 Hz, 2H), 7.85 (dd,
J = 8.1, 1.3 Hz, 2H), 7.66–7.56 (m, 2H), 7.66 (s, 2H); 13C NMR (100 MHz, CDCl3) δ 137.1
(C), 134.3 (CH), 133.5 (C), 132.0 (CH), 126.1 (CH), 123.5 (C), 40.2 (CH); IR (KBr/cm−1) 672;
HRMS (ACPI-MS) calcd. for (M + H+ − Br) C12H8Br3: 390.8156, found 390.8200.

Nitration reaction for peri-substituted naphthalenes

To a solution of peri-substituted naphthalene (0.3 mmol) in chloroform (3 mL), a
solution of nitric acid HNO3 (d = 1.42, 53 µL, 1.2 mmol) in acetic anhydride (1.5 mL) was
added. After stirring the resulting mixture at room temperature for 4 h, water (10 mL) was
added, and the mixture was extracted with chloroform (20 mL × 3). The organic layer was
washed with 2 M of a sodium hydrogen carbonate aqueous solution (10 mL), dried over
magnesium sulfate, and evaporated. The residue was treated via column chromatography
on silica gel to afford nitrated products (eluted by hexane/EtOAc = 9/1).

1,8-Dimethyl-2-nitronaphthalene [21]: 1H NMR (400 MHz, CDCl3) δ 7.74
(d, J = 8.4 Hz, 1H), 7.71 (br d, J = 7.6 Hz, 1H), 7.61 (d, J = 8.4 Hz, 1H), 7.45 (dd,
J = 7.6, 7.6 Hz, 1H), 7.41 (br d, J = 7.6 Hz, 1H), 2.94 (s, 3H), 2.88 (s, 3H).

1,8-Dimethyl-4-nitronaphthalene [22]: 1H NMR (400 MHz, CDCl3) δ 8.22 (dd, J = 8.8,
1.3 Hz, 1H), 7.88 (d, J = 7.1 Hz, 1H), 7.50 (dd, J = 8.8, 7.8 Hz, 1H), 7.40 (d, J = 7.1 Hz, 1H),
7.31 (dd, J = 7.8, 1.3 Hz, 1H), 2.99 (s, 3H), 2.96 (s, 3H).

1,8-Bis(bromomethyl)-4-nitronaphthalene: Yellow solid; Mp. 114–117 ◦C. 1H NMR
(400 MHz, CDCl3) δ 8.30 (dd, J = 8.8, 1.4 Hz, 1H), 7.94 (d, J = 8.0 Hz, 1H), 7.76 (dd, J = 7.2,
1.4 Hz, 1H), 7.69 (dd, J = 8.0 Hz, 1H), 7.65 (dd, J = 8.8, 7.2 Hz, 1H), 5.26 (s, 4H); 13C NMR
(100 MHz, CDCl3) δ 149.8 (C), 139.3 (C), 134.5 (CH), 131.1 (CH), 130.1 (C), 128.7 (CH), 127.4
(C), 125.6 (CH), 124.9 (C), 122.1 (CH), 36.1 (CH2), 35.1 (CH2); IR (KBr/cm−1) 1526, 767;
HRMS (ACPI-MS) calcd. for (M + H+) C12H9Br2NO2: 359.9053, found 359.9072.

Hydrogenation reaction for peri-substituted naphthalenes

To a solution of peri-substituted naphthalene (0.3 mmol) in ethanol (8 mL), 5 wt%
Pd/C (10 mg, 5 µmol, 2 mol%) was added. After bubbling hydrogen gas for 1 min, the test
tube was sealed and stirred at room temperature for 1 h. After filtration using celite, the
filtrate was concentrated, and the residue was subjected to an NMR analysis.

4. Conclusions

The correlation between the bulkiness of the peri-substituents and distortion of the
naphthalene ring was studied. The X-ray crystallography showed that 1,8-bis(bromomethyl)
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naphthalene 9 possesses a vertical strain with an 11.0◦ dihedral angle between the peri-
substituents, disturbing the coplanarity of the naphthalene ring. On the other hand, the
vertical distortion of 1,8-bis(dibromomethyl)naphthalene 10 was smaller (8.3◦), even though
the substituents became bulkier. In this case, horizontal distortion was also observed in
addition to vertical strain, that is, the inner bond distance of C1–C9 is longer, and the outer
bond distances (C1–C2, C2–C3, and C4–C10) are shorter than those of the other derivatives.
The atom distances (C1–C8 and C2-C9) of 10 are longer than those of 7–9, and the distance
between C4 and C5 is shorter than in other substrates.

The distorted naphthalene ring was expected to show a higher level of reactivity be-
cause of its decreased aromaticity. To confirm this, we studied two reactions, nitration and
hydrogenation, using 7–10. However, a systematic evaluation method for non-electronic
activation was not established because the inductive electron-withdrawing and steric ef-
fects were still influenced. Although it is necessary to further evaluate the reactivity, the
correlation between the bulkiness of the peri-substituents and the distortion of the naphtha-
lene ring will be useful information for researchers who study the physical properties of
aromatic compounds and their modifications.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/molecules28145343/s1. 1H and 1H-1H NOESY 2D NMR spectra
of 7–10. 13C NMR and ACPI-MS spectra of 10. 1H and 13C NMR spectra and ACPI-MS spectrum of
nitrated compounds. Chemical shifts of 1,8-disubstituted naphthalenes 7–10.
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