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Abstract: The COVID-19 pandemic has caused severe health threat globally, and novel SARS-Cov-2
inhibitors are urgently needed for antiviral treatment. The main protease (Mpro) of the virus is one of
the most effective and conserved targets for anti-SARS-CoV-2 drug development. In this study, we
utilized a molecular docking-based virtual screening approach against the conserved catalytic site
to identify small-molecule inhibitors of SARS-CoV-2 Mpro. Further biological evaluation helped us
identify two compounds, AF-399/40713777 and AI-942/42301830, with moderate inhibitory activity.
Besides that, the in silico data, including molecular dynamics (MD) simulation, binding free energy
calculations, and AMDET profiles, suggested that these two hits could serve as the starting point for
the future development of COVID-19 intervention treatments.

Keywords: SARS-CoV-2; main protease inhibitors; molecular docking-based virtual screening;
MD simulation

1. Introduction

The COVID-19 pandemic, caused by SARS-CoV-2, has been a worldwide health
emergency since 2019. SARS-CoV-2, which belongs to the Coronaviridae family, has a single-
stranded positive RNA genome. The infection of SARS-CoV-2 could cause pneumonia,
fatigue, diarrhea, and life-threatening cardiovascular complications or multiorgan failure.
Two antiviral drugs (Remdesivir [1] and Nirmatrelvir [2]) have been approved by the
FDA for emergency use. But further clinical data have shown that Remdesivir only has
weak potency against SARS-CoV-2 infection [3], and the application of Nirmatrelvir can
only prevent severe symptoms of the infection [4]. Novel anti-SARS-CoV-2 agents are still
urgently needed.

The replication of SARS-CoV-2 can be divided into several steps, including fusion and
entry, translation, polyprotein processing, RNA replication, viral assembly, and particle
release (Figure 1). All of these steps are catalyzed by various enzymes of the virus (protease,
RNA-dependent RNA polymerase, etc.) [5,6]. Theoretically, the inhibition of any enzyme
could stop the replication of the virus. The fusion and entry of SARS-CoV-2 rely on the
recognition of viral spike (S) protein and the host ACE2 (angiotensin-converting enzyme
2) [7]. The S protein is assembled as a homotrimer and is inserted in multiple copies into
the phospholipid membrane of the virion, which gives it a crown-like appearance. The
S protein consists of two non-covalently associated subunits: the S1 subunit binds ACE2
and the S2 subunit anchors the S protein to the viral membrane. The S2 subunit also
includes a fusion peptide and other machinery necessary to mediate membrane fusion
upon the infection of a new host cell. The receptor-binding domain (RBD) of the S1 subunit
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flips to an up conformation and binds to ACE2 [8]. Once the viral particle has fused
and entered the cell, the viral positive-sense, single-stranded RNA genome (+ssRNA) is
then exposed and translated into its polyprotein. The polyprotein is then cleaved into
16 non-structural proteins by two cysteine proteases, including the main protease (Mpro)
and papain-like protease (PLpro) [9,10]. Mpro cleaves the majority of non-structural proteins,
which is crucial for viral replication, making it an ideal target for anti-viral agents. The viral
genomic replication starts from the synthesis of full-length negative-sense RNA genome,
which is the template for further production of +ssRNA. The newly produced +ssRNA
is then used for the translation of polyprotein or for the packaging of new viral particles.
The RNA replication relies on the replication and transcription complex (RTC), which
contains RNA-dependent RNA polymerase (RdRp) and its cofactors, nsp7 and nsp8 [11,12].
Remdesivir, developed by Gilead, is approved by the FDA as novel nucleoside inhibitor
of RdRp [1,3,13]. However, Remdesivir shows poor potency in inhibiting viral replication.
Further investigation illustrated that RdRp possesses an in trans backtracking proofreading
mechanism, which makes the inhibition potency of Remdesivir decreases badly [14]. The
assembly and particle release of SARS-CoV-2 are also mediated by several enzymes from the
virus and the host cell. The structural proteins (S protein, envelope (E) protein, membrane
(M) protein, and nucleocapsid (N) protein) are translated, and the viral particle is assembled
at the endoplasmic reticulum-to-Golgi compartment (ERGIC), where the viral RNA genome
is encapsulated by the N protein and interacts with the M protein [15]. The M protein
forms a scaffold for the virion and recruits the E and S proteins to the budding site. The E
protein is a small membrane protein that regulates the membrane curvature and stability
of the virion [16]. The S protein is a large glycoprotein that mediates the attachment
and entry of the virus into the host cell by binding to the ACE2 receptor. The S protein
undergoes proteolytic cleavage and conformational changes to expose its fusion peptide
and facilitate membrane fusion. After assembly, the mature viral particles are transported
from the ERGIC to the plasma membrane via vesicles. These vesicles fuse with the host cell
membrane and release the virions via exocytosis [5,17].
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Figure 1. Life cycle of SARS-CoV-2.

Mpro is one of the most important enzymes that processes viral polyprotein into
functional proteins. Mpro is a homodimer, where each monomer can be divided into
two domains, the functional catalytic domain and the crucial dimerization domain. The
catalytic site of Mpro consists of Cys145 and His41. The whole binding pocket can be
identified as several sub-pockets (S1, S1’, S2, and S4). Occupation of the catalytic site
could inhibit the normal function of Mpro and, thus, inhibit the replication of virus. The
endogenous binding of ligands and the vital roles of Mpro make it an ideal target for drug
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design and development [17]. A shown in Figure 2, the inhibitor reported by Ma et al. [18]
binds the catalytic site of Mpro and forms multiple hydrogen bonds with surrounding
residues (Glu166, His163, Ser144, and Gly143). It also forms π-π stacking with His 41. The
cocrystal structure of the Mpro–inhibitor complex can shed light on the development of
novel Mpro inhibitors.

Molecules 2023, 28, x FOR PEER REVIEW 3 of 15 
 

 

several sub-pockets (S1, S1’, S2, and S4). Occupation of the catalytic site could inhibit the 
normal function of Mpro and, thus, inhibit the replication of virus. The endogenous binding 
of ligands and the vital roles of Mpro make it an ideal target for drug design and develop-
ment [17]. A shown in Figure 2, the inhibitor reported by Ma et al. [18] binds the catalytic 
site of Mpro and forms multiple hydrogen bonds with surrounding residues (Glu166, 
His163, Ser144, and Gly143). It also forms π-π stacking with His 41. The cocrystal structure 
of the Mpro–inhibitor complex can shed light on the development of novel Mpro inhibitors. 

 
Figure 2. Crystal structure of Mpro homodimer and the catalytic site. Ligand: green stick/sphere; key 
residues: pink stick; hydrogen bond: yellow dashed line; π-π stacking: purple dashed line; PDB 
code: 7KX5 [18]. 

To date, several ligands targeting Mpro have been reported (Figure 3) [19–21]. Nirma-
trelvir, developed by Pfizer, acts as an orally active ligand in combination with the CYP3A 
inhibitor Ritonavir [4,22]. GC-376 [23], PF-00835231 [24,25], and 11a [26] are currently un-
der clinical trials. All of these peptidic inhibitors simulate the endogenous substrate of 
Mpro and possess warheads which could covalently bind with the vital catalytic residue 
Cys145. 

Na+∗ S
O

O O
-

NHO

N
H

OH
N

O

O

OH

GC-376
IC50=0.19 µM
EC50=0.90 µM

N
O

HN
O

NH

O

F3C
NH

O

N

Nirmatrelvir
IC50=0.023 µM
EC50=0.075 µM

N
H

O

H
N

O

O

N
H

NHO

O
OH

PF-00835231
IC50=0.004 µM
EC50=0.23 µM

N
H

O

H
N

O

N
H

H

NHO

O

11a
IC50=0.053 µM
EC50=0.42 µM  

Figure 3. Representative peptidic covalent Mpro inhibitors. 

Despite the high potency of peptidic covalent Mpro inhibitors, many of them show off-
target side effects on host proteins. GC-376 shows inhibitory activity toward several ca-
thepsins (IC50 = 990, 74, and 0.56 nM to cathepsin L, cathepsin I, and cathepsin K, respec-
tively). PF-00835231 also shows inhibitory activity toward several cathepsins (IC50 = 146 
nM and 1300 µM to cathepsin L and cathepsin B, respectively). 11a is potent inhibitor of 
cathepsin L (IC50 = 210 nM) [18]. 

Figure 2. Crystal structure of Mpro homodimer and the catalytic site. Ligand: green stick/sphere; key
residues: pink stick; hydrogen bond: yellow dashed line; π-π stacking: purple dashed line; PDB code:
7KX5 [18].

To date, several ligands targeting Mpro have been reported (Figure 3) [19–21]. Nirma-
trelvir, developed by Pfizer, acts as an orally active ligand in combination with the CYP3A
inhibitor Ritonavir [4,22]. GC-376 [23], PF-00835231 [24,25], and 11a [26] are currently un-
der clinical trials. All of these peptidic inhibitors simulate the endogenous substrate of Mpro

and possess warheads which could covalently bind with the vital catalytic residue Cys145.

Molecules 2023, 28, x FOR PEER REVIEW 3 of 15 
 

 

several sub-pockets (S1, S1’, S2, and S4). Occupation of the catalytic site could inhibit the 
normal function of Mpro and, thus, inhibit the replication of virus. The endogenous binding 
of ligands and the vital roles of Mpro make it an ideal target for drug design and develop-
ment [17]. A shown in Figure 2, the inhibitor reported by Ma et al. [18] binds the catalytic 
site of Mpro and forms multiple hydrogen bonds with surrounding residues (Glu166, 
His163, Ser144, and Gly143). It also forms π-π stacking with His 41. The cocrystal structure 
of the Mpro–inhibitor complex can shed light on the development of novel Mpro inhibitors. 

 
Figure 2. Crystal structure of Mpro homodimer and the catalytic site. Ligand: green stick/sphere; key 
residues: pink stick; hydrogen bond: yellow dashed line; π-π stacking: purple dashed line; PDB 
code: 7KX5 [18]. 

To date, several ligands targeting Mpro have been reported (Figure 3) [19–21]. Nirma-
trelvir, developed by Pfizer, acts as an orally active ligand in combination with the CYP3A 
inhibitor Ritonavir [4,22]. GC-376 [23], PF-00835231 [24,25], and 11a [26] are currently un-
der clinical trials. All of these peptidic inhibitors simulate the endogenous substrate of 
Mpro and possess warheads which could covalently bind with the vital catalytic residue 
Cys145. 

Na+∗ S
O

O O
-

NHO

N
H

OH
N

O

O

OH

GC-376
IC50=0.19 µM
EC50=0.90 µM

N
O

HN
O

NH

O

F3C
NH

O

N

Nirmatrelvir
IC50=0.023 µM
EC50=0.075 µM

N
H

O

H
N

O

O

N
H

NHO

O
OH

PF-00835231
IC50=0.004 µM
EC50=0.23 µM

N
H

O

H
N

O

N
H

H

NHO

O

11a
IC50=0.053 µM
EC50=0.42 µM  

Figure 3. Representative peptidic covalent Mpro inhibitors. 

Despite the high potency of peptidic covalent Mpro inhibitors, many of them show off-
target side effects on host proteins. GC-376 shows inhibitory activity toward several ca-
thepsins (IC50 = 990, 74, and 0.56 nM to cathepsin L, cathepsin I, and cathepsin K, respec-
tively). PF-00835231 also shows inhibitory activity toward several cathepsins (IC50 = 146 
nM and 1300 µM to cathepsin L and cathepsin B, respectively). 11a is potent inhibitor of 
cathepsin L (IC50 = 210 nM) [18]. 

Figure 3. Representative peptidic covalent Mpro inhibitors.

Despite the high potency of peptidic covalent Mpro inhibitors, many of them show
off-target side effects on host proteins. GC-376 shows inhibitory activity toward sev-
eral cathepsins (IC50 = 990, 74, and 0.56 nM to cathepsin L, cathepsin I, and cathepsin
K, respectively). PF-00835231 also shows inhibitory activity toward several cathepsins
(IC50 = 146 nM and 1300 µM to cathepsin L and cathepsin B, respectively). 11a is potent
inhibitor of cathepsin L (IC50 = 210 nM) [18].

Compared to peptidic covalent Mpro inhibitors, non-peptidic inhibitors have attracted
researchers’ attention due to their advantages, such as low off-target activity, higher oral
bioavailability, and low toxicity. The non-peptidic inhibitors, 21, 23R, S-216722, and Wu04,
display high antiviral activity and low toxicity (Figure 4) [27–30]. All of these findings
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suggest that non-peptidic Mpro inhibitors can be great potential candidate drugs for treating
SARS-CoV-2 infection.
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Computer-aided drug design (CADD) has been a general and practical technique
highly used in the development of novel drugs; it has become a fundamental tool in
the development of novel drugs for most pharmaceutical companies [31,32]. Several
blockbuster drugs (Glivec, etc.) were developed using CADD [33]. In this context, virtual
screening has been used to discover novel chemotypes of SARS-CoV-2 Mpro inhibitors.
Approaches based on docking virtual screening using co-crystal structures, pharmacophore
models, and quantitative structure–activity relationship (QSAR)-based screening are used
to identify novel hits and guide the structure optimization of Mpro inhibitors. Moreover,
molecular dynamics simulations have been exploited to investigate the binding mechanisms
of these inhibitors [34,35].

Here, we report 17 compounds identified from molecular docking-based virtual screen-
ing targeting Mpro. The initial biological evaluations identified two novel scaffolds that
possessed moderate potency toward Mpro. Molecular dynamics (MD) simulations of repre-
sentative ligands targeting Mpro were performed to investigate the binding conformations
of these ligands. The ADMET profiles of these ligands were also estimated to predict the
potential draggability of representative molecules.

2. Results and Discussion
2.1. Molecular Docking-Based Virtual Screening

The cocrystal structure of Mpro with 23R (PDB ID: 7KX5) was selected as the structure
complex since few cocrystal structures had been reported when this work started. The
binding pocket was identified using the binding pose of 23R. Two commercial compound
libraries (Enamine and Specs, total compound number > 3.5 M) were used for selection.
A 3-step molecular docking-based virtual screening and a binding free energy (Molecular
Mechanics/Generalized Born Surface Area, MM/GBSA) calculation were carried out.
Finally, 17 compounds were selected based on the docking scores, MM/GBSA estimation,
and manual selection (Figure 5, Table 1). The manual selection was based on the criteria
reported by Fischer et al. [36], including fundamental interaction with key residues, binding
conformation, and structural novelty.
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2.2. Initial Biological Evaluation

These selected candidates were then purchased, and their enzyme inhibitory activities
were evaluated using a fluorescence resonance energy transfer (FRET) assay (Table 2). No-
tably, AF-399/40713777 and AI-942/42301830 possess 47.11% and 37.67% of inhibitory activ-
ity toward Mpro at 100 µM, respectively. Moreover, AN-329/15538195, AN-655/14907067,
AG-690/13705944, AK-968/37129380, and Z929753284 show >10% inhibition rate toward
Mpro. These encouraging biological results indicate these diverse scaffolds can be used for
further SAR studies. These novel scaffolds provide more possibility for developing good
candidates for treating SARS-CoV-2 infection.
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Table 2. Enzyme inhibitory activities of selected candidates.

ID % Inhibition @ 100 µM % Inhibition @ 100 µM
Average of 3 Samples

AN-329/15538195 18.9% 11.80% ± 5.65
AF-399/40713777 23.7% 47.11% ± 0.84
AN-655/14907067 13.3% 2.71% ± 7.02
AK-968/12101028 4.3%
AG-690/13705944 12.4%
AK-968/37129380 12.5%
AG-205/36953218 −13.8%
AH-487/11927009 −0.1%
AI-942/42301830 17.8% 37.67% ± 2.61
AN-329/14726055 −5.1% −0.43% ± 3.97

Z54217235 −14.8%
Z91218686 −6.1%
Z20007584 4.5%
Z92376193 −5.0%

Z929753284 18.4%
Z245966642 3.8%
Z1603682175 7.2%

2.3. Molecular Dynamics (MD) Simulation

MD simulation is a powerful computational technique that can provide insights into
the structure, dynamics, and interactions of biomolecules at the atomic level. The initial
biological results suggest that AF-399/40713777 and AI-942/42301830 possess moderate
inhibitory activity toward SARS-CoV-2 Mpro. The binding conformations of these two
ligands with the pocket were then investigated. The MD simulation results show that both
AF-399/40713777 and AI-942/42301830 bind to the catalytic site of Mpro. The RMSD plots
of the ligands heavy atoms and protein backbones were generated (Figure 6). The RMSF
values of the ligands were also estimated (Figure 6). The computer data indicate that both
of AF-399/40713777 and AI-942/42301830 have stable binding conformation with Mpro, as
shown through the 500 ns MD simulation.

The protein–ligand interaction diagram was further analyzed (Figure 7). AF-399/
40713777 forms multiple interactions with surrounding residues. The carbonyl motifs
interact with Gln189, Gln192, and Thr190 via hydrogen bond. The methoxy group forms
hydrogen bond with Arg188. Besides these interactions, the phenyl ring forms π-π stacking
with His41. These multiple interactions stabilize the binding conformation between the
ligand and the pocket.

AI-942/42301830 mainly binds to Mpro through abundant hydrophobic interactions.
His41 forms multiple π-π stacking with the two phenyl rings of the ligand. It also interacts
with Met49, Leu167, and Pro168 via hydrophobic interactions. Moreover, the carbonyl
motif of ester forms hydrogen bond with Glu166.
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Figure 7. The protein–ligand binding conformations generated from the molecular dynamics simula-
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2.4. Binding Free Energy (MM/GBSA) Calculations

The binding free energy (MM/GBSA) [37] of AF-399/40713777 (−66.07 kcal/mol) and
AI-942/42301830 (−78.32 kcal/mol) with SARS-CoV-2 Mpro were estimated. The calculated
binding affinities did translate well into experimentally determined inhibitory potencies
(Table 3). As illustrated in Figure 7, AF-399/40713777 forms multiple hydrogen bonds with
surrounding residues. And the ∆G_Hbond value of AF-399/40713777 is relatively higher
compared to that of AI-942/42301830. On the other hand, AI-942/42301830 forms abundant
hydrophobic interactions with the binding pocket. The ∆G_Lipo of AI-942/42301830
contributes more compared to that of AF-399/40713777.
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Table 3. MM/GBSA (kcal/mol) of AF-399/40713777 and AI-942/42301830 with SARS-CoV-2 Mpro 1.

Ligands ∆GBind ∆GCoulomb ∆GHbond ∆GLipo ∆GvdW

AF-399/40713777 −66.07 −15.60 −0.66 −16.14 −51.01
AI-942/42301830 −78.32 −11.98 −0.51 −25.66 −62.19

1 The whole simulations trajectory was sampled, and the estimation was calculated every 5 ns. The averages
of all calculations are presented as the results. Complete data and standard deviations can be found in the
Supplementary Materials.

2.5. Absorption, Distribution, Metabolism, Excretion, and Toxicity (ADMET) Prediction

ADMET is an important aspect of drug discovery and development as it determines
the efficacy, safety, and optimal dosage of a drug. A poor ADMET profile is one of the main
reasons for drug failure in clinical trials, resulting in wasted time, resources, and money.
In order to eliminate compounds with undesirable pharmacokinetics and toxicity and
reduce the risk of new drug discovery, we also evaluated the AMDET profiles of these two
promising hits, AF-399/40713777 and AI-942/42301830, using ADMETlab 2.0 (Figure 8)
and the ProTox-II server (Figure 9) [38,39]. ADMETlab 2.0 [38] is a web-based platform
that provides comprehensive and accurate predictions of ADMET properties of molecules.
ADMETlab 2.0 enables users to evaluate 17 physicochemical properties, 13 medicinal chem-
istry measures, 23 ADME endpoints, 27 toxicity endpoints, and 8 toxicophore rules of input
molecules, using a multi-task graph attention framework. It also supports batch evaluation
of molecular datasets and provides detailed explanation and optimal range of each property.
ProTox-II [39] is a web server that provides predictions of oral toxicity for small molecules.
It incorporates new features and functionalities, such as a more comprehensive database of
toxic compounds, a more accurate prediction model, a more user-friendly interface, and a
more informative output. ProTox-II aims to assist researchers and practitioners in the fields
of drug discovery, chemical safety assessment, and environmental toxicology by providing
reliable and interpretable toxicity predictions.
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The prediction results showed that AF-399/40713777 has a desirable ADME profile,
with proper logP and LogD, and acceptable LogS. AI-942/42301830 shows a relatively
worse ADME profile, mainly because of the five phenyl rings in its structure. But both
of them show desirable toxicity data. The predicted LD50 of AF-399/40713777 and AI-
942/42301830 is 1000 mg/kg and 2000 mg/kg, respectively.
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3. Materials and Methods
3.1. Target Protein Structure and Ligand Preparation

The cocrystal complex structure of Mpro with 23R (PDB ID: 7KX5) obtained from a
protein databank (rcsb.org) was used as the receptor structure. The protein preparation
wizard, Schrödinger Suite 2022-2, was used to prepare the structure. Co-crystalized metals
and ions and non-water solvents were deleted. The bond orders were reassigned using
the Chemical Component Dictionary. The protein’s hydrogens were deleted and re-added.
The terminal oxygen atoms were added, and water molecules beyond 8 Å of the binding
ligand were deleted. The missing side chains of the whole structure were added and the
hydrogen bonds were reassigned using PROPKA [40]. The whole structure was then energy
minimized using the OPLS4 force field. The other parameters were set as default.

More than 3 million commercially available compounds from two vendors (Specs and
Enamine) were used for screening. All ligands were prepared using the Ligprep module.
The ionization state of all ligands was optimized with pH = 7.0 using Epik, and alternative
stereoisomers were determined from the original 3D structures. The other parameters were
set as default.

3.2. Molecular Docking-Based Virtual Screening

The binding pocket was identified using the receptor grid generation module. The
cocrystal complex structure of Mpro with 23R (PDB ID: 7KX5) obtained from the protein
databank (rcsb.org) was used to identify the binding pocket. All other parameters were set
as default.

The virtual screening was carried out using the virtual screening workflow of
Schrödinger Suite 2022-2. All prepared compound libraries were used for the screening.
The binding site was previously generated using the receptor grid generation module of
Schrödinger Suite 2022-2, which was identified using the position of 23R. The other parame-
ters were set as default. With the binding grid box generated, Glide HTVS (high-throughput
virtual screening) docking precision, standard precision (SP), and extra precision (XP) dock-
ing were used for screening in sequence. And the top 10% of best-scoring ligands for
each procedure were selected for the next screening step. Eventually, the 10% best-scoring
ligands (3208 ligands) after the extra precision (XP) docking were identified. The binding
free energy (Molecular Mechanics/Generalized Born Surface Area, MM/GBSA) of the top
1000 ranking ligands with the receptor was estimated using the prime MMGBSA mod-
ule [37]. The residues within 5 Å of the ligands were set as flexible, and all other parameters
were set as default. The binding poses of these ligands were further checked manually.
And the final candidates were selected based on the docking scores, binding free energy
estimation, and manual selection (Table 1).

3.3. Initial Biological Evaluation of Selected Analogues

The enzyme inhibitory activity of selected candidates was evaluated using a previously
reported well-developed fluorescence resonance energy transfer (FRET) assay [41].

A fluorescence resonance energy transfer (FRET) method was applied to measure
Mpro inhibition of the tested compounds. Black 96-well plates, SARS-CoV-2 main protease
solution (1 mg/mL, 500 mM of Tris, 150 mM of NaCl, 1 mM of EDTA, and 50% glycerol),
and fluorescent substrate MCA-AVLQSGFR-Lys(Dnp)-Lys-NH2 (20 mM in DMSO) were
purchased from Beyotime Biotechnology (Shanghai, China). Mpro was diluted to 1.5 µM
using an assay buffer (50 mM of Tris-HCl, 150 mM of NaCl, 20% glycerol, and pH = 7.3) and
preserved at −20 ◦C. The fluorescent substrate was diluted to 500 µM in an assay buffer
(50 mM of Tris-HCl, 150 mM of NaCl, 1 mM of EDTA, and pH = 7.3). Stock solutions (5 mM)
of the test compounds were prepared in DMSO and diluted to the desired concentration
using the assay buffer. Each well of a black 96-well plate was added 50 µL of assay buffer,
20 µL of diluted enzyme solution, and 20 µL of inhibitor solution. The control wells (no
inhibitor) and blank wells (no enzyme) were measured in parallel experiments. Then, the
96-well plate was incubated at 37 ◦C in a shaking incubator for 10 min. After incubation,
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10 µL of substrate solution was added per well to initiate the reaction. At the excitation
wavelength of 320 nM and the emission wavelength of 405 nM, the fluorescence signal was
measured every 10 s for 10 min using a SpectraMax iD5 multimode plate reader (Molecular
Devices). Data from the first 60 s were linear fitted to calculate the slope values (V0 for
the control wells, and Vi for the test wells). %Inhibition (i%) in each well can, thus, be
calculated using the following equation:

i% = 1 − Vi/V0 × 100%

3.4. Molecular Dynamics Simulations for Interaction Analyses and Binding Free
Energy Estimations

The binding poses of AF-399/40713777 and AI-942/42301830 with Mpro were inves-
tigated using molecular dynamics simulation. The initial docking poses of these two
ligands were used to build the simulation system. The protein–ligand complex within
the explicit solvent system with the OPLS4 force field was studied using the Desmond
module of Schrödinger suite 2022-1. The atomic framework was solvated with a TIP3P
water model with orthorhombic intermittent limit conditions for a 10 Å buffer region. The
overlapping water molecules were eliminated, and Na+ or Cl− was added as counter ions
to neutralize the entire framework of atoms. An extra 0.15 M of NaCl was added into
the system. The simulation was performed using an ensemble (NPT) of Nosé–Hoover
thermostat and barostat to maintain a constant temperature of 300 K and a pressure of
1 bar in the system (Maestro, Schrödinger suits 2022-1). A hybrid energy minimization
algorithm with 1000 steps of steepest descent, followed by conjugate gradient algorithms,
was used. Then, 500 ns molecular dynamics simulations (Maestro, Schrödinger suits 2022-1)
were performed and the post-dynamics simulation was analyzed using the simulation
interaction diagram module. The binding free energy was calculated using the MM/GBSA
module of Maestro based on the molecular dynamics simulations. The whole simulation
time (500 ns) was sampled. The MM/GBSA calculations were estimated every 5 ns. The
average of all estimations is presented as the results. The detailed data can be found in the
Supplementary Materials.

3.5. ADMET Analysis

The ADMET profile of AF-399/40713777 and AI-942/42301830 were estimated using
ADMET lab 2.0 (https://admetmesh.scbdd.com/ (accessed on 15 January 2023)). The
molecular SIMLE strings were generated using Chemdraw and then submitted to the
online system. An analysis report was then generated. The toxicity profile was evaluated
using the ProTox-II server (https://tox-new.charite.de/ (accessed on 15 January 2023)).

4. Conclusions

In conclusion, we identified two novel non-peptidic inhibitors, AF-399/40713777
and AI-942/42301830, for SARS-CoV-2 Mpro using a molecular docking-based virtual
screening approach. The initial enzyme inhibition assay indicated moderate inhibitory
activities of both ligands toward Mpro. The molecular dynamics simulations investigated
the possible binding poses of these two ligands. In addition, the calculated binding affinities
(MM/GBSA) did translate well into experimentally determined inhibitory potencies. The
predicted ADMET results showed that AF-399/40713777 possessed a desirable profile.
The successfully identified hits suggest the feasibility of this hierarchical virtual screening
approach in drug discovery. Moreover, these two hits provide novel scaffolds for exploring
high-activity inhibitors targeting SARS-CoV-2 Mpro.

Supplementary Materials: The following supporting information can be downloaded at https:
//www.mdpi.com/article/10.3390/molecules28145320/s1.
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