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Abstract: Benzo[a]pyrene is a widespread environmental pollutant and a strong carcinogen. It is
important to understand its bio-toxicity and degradation mechanism. Herein, we studied the excited
state dynamics of benzo[a]pyrene by using time-resolved fluorescence and transient absorption
spectroscopic techniques. For the first time, it is identified that benzo[a]pyrene in its singlet ex-
cited state could react with oxygen, resulting in fluorescence quenching. Additionally, effective
intersystem crossing can occur from its singlet state to the triplet state. Furthermore, the interac-
tion between the excited benzo[a]pyrene and ct-DNA can be observed directly and charge transfer
between benzo[a]pyrene and ct-DNA may be the reason. These results lay a foundation for fur-
ther understanding of the carcinogenic mechanism of benzo[a]pyrene and provide insight into the
photo-degradation mechanism of this molecule.

Keywords: benzo[a]pyrene; oxygen; excited state dynamics; transient absorption spectroscopy;
time-resolved fluorescence

1. Introduction

As a typical polycyclic aromatic organic pollutant and a strong carcinogen, benzo[a]py-
rene (BaP) is photo-toxicity and photo-genotoxicity, which is a serious health hazard to
organisms after absorbing light energy in the ultraviolet region (320–400 nm) [1–3]. At the
same time, photo-degradation is one of the main decomposition ways for this molecule.
A study of its excited state dynamics is of great significance to further understand the
bio-toxicity and degradation mechanism of benzo[a]pyrene.

In recent years, studies on the photo-degradation mechanisms of benzo[a]pyrene
involving its excited state have been reported. Based on the generation of singlet oxygen
and superoxide anion in benzo[a]pyrene aqueous solution, a photo-chemical degradation
model related to sensitization of triplet excited states was proposed [4,5]. In addition,
Yang et al. proposed the self-sensitive photo-chlorination mechanism of benzo[a]pyrene in
acetonitrile and NaCl mixed aqueous solution by detecting photoreaction products under
different irradiation times. They believe that the triplet states of benzo[a]pyrene formed by
excited singlet states through intersystem crossing lead to the formation of [3BaP*-3O2] or
[BaP-1O2] oxygen-containing complex, which can further react with Cl− to form 6-ClBaP [6].
Meanwhile, benzo[a]pyrene can be inserted between two adjacent DNA base pairs as a
typical DNA intercalation molecule [7], leading to local changes in DNA structure such as
unwrapping and extension of DNA double strands. These structural modifications may
lead to delay or inhibition of DNA transcription and replication, affecting normal physiolog-
ical functions [8,9]. At the same time, UVA radiation and benzo[a]pyrene can synergically
induce oxidative damage of DNA and significantly increase the single strand break rate
of DNA [10–14]. A related photodamage mechanism suggests that benzo[a]pyrene in its
high energy excited state may react with DNA to produce 8-hydroxy-2′-deoxyguanosine
(8-oxodG) after intercalation into DNA.
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It should be noted that most of the reaction mechanisms related to the excited state of
BaP are derived from the inference of intermediate chemical products, but direct evidence
of excited state dynamics is still lacking. Relevant quantum chemical calculations show that
benzo[a]pyrene can go through intersystem crossing to triplet states after photoexcitation,
and then undergo direct energy or electron transfer with oxygen to produce singlet oxygen
or superoxide radical [15]. Blough et al. observed its triplet excited state absorption
signals using a laser flash photolysis technique under 355 nm excitation, providing intuitive
evidence for the existence of triplet states in benzo[a]pyrene [16]. Moreover, Banerje et al.
studied the photophysical properties of benzo[a]pyrene molecules as well as the energy
resonance transfer between benzo[a]pyrene and a variety of acceptor materials by steady-
state and picosecond resolved fluorescence spectroscopy [17]. Yet, a complete excited state
relaxation model for benzo[a]pyrene has not been established. Herein, we studied the
excited state dynamics of benzo[a]pyrene and illustrate how oxygen and DNA could affect
its excited state relaxation process by using time-resolved fluorescence spectroscopy and
femtosecond to nanosecond time-resolved transient absorption spectroscopy.

2. Results
2.1. Steady-State Absorption and Emission Spectra

Steady-state absorption and emission spectra of benzo[a]pyrene in acetonitrile are
presented in Figure 1a. Steady-state absorption and fluorescence spectra show mirror
symmetry [17]. The three well-characterized emission peaks at 403 nm, 427 nm and
454 nm along with a weak band near 485 nm match well with previous reports and they
are arisen from different vibrational states in the S1 state of benzo[a]pyrene [7,18]. The
radiative decay rate constant is 1.58 × 107 s−1 based on a Strickler–Berg analysis (detail
in Supplementary Materials). Temperature-dependent emission spectra of benzo[a]pyrene
were also recorded under air-saturated conditions (Figure 1b) and it shows a steady increase
of the emission intensity as temperature decreases.
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Figure 1. (a) Normalized steady-state absorption and fluorescence emission spectra of benzo[a]pyrene
in acetonitrile. (b) Temperature-dependent emission spectra of benzo[a]pyrene in 2-MeTHF under
air-saturated condition.

2.2. Femtosecond to Nanosecond TA Spectra of Benzo[a]pyrene

To reveal the excited state dynamics of benzo[a]pyrene, femtosecond to nanosecond
TA spectra were measured. Figure 2 depicts femtosecond TA spectra of benzo[a]pyrene
following excitation at 380 nm. Immediately after excitation, two negative bands are
observed at 345 nm and 363 nm and they are in excellent agreement with peaks in the
steady-state absorption spectra. Meanwhile, a broad excited state absorption (ESA) band
with three main peaks at 422 nm, 531 nm and 650 nm appears within the instrumental
response time (~120 fs). Then, all ESA and ground-state bleach (GSB) signals decay together
and are accompanied by the emergence of a new ESA band at 462 nm in the first 7 ns
time window.
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Nanosecond TA spectra of benzo[a]pyrene in acetonitrile were recorded and shown
in Figure 3. Upon 380 nm excitation, a broad ESA signal ranges from 400 nm to 700 nm
with three peaks at 422 nm, 531 nm, 650 nm as well as a shoulder at 462 nm, appears
within the instrumental response time. Then, the ESA band at 462 nm keeps increasing
until ∼24 ns while other peaks decay. After that, the whole TA spectra decay to baseline
with no further spectra evolution. Global analysis of the TA spectra yielded two-time
constants (11.4 ± 0.1 ns and 134 ± 1 ns). Decay-associated difference spectra (DADS)
were extracted from a global analysis of the broadband TA data. The first DADS (cyan)
exhibit a negative peak that is centered at 462 nm and 3 positive peaks located at 420 nm,
530 nm and 650 nm. It evolves into the second DADS with a lifetime of 11 ns. The second
DADS (yellow) displays a broad positive band with a maximum at 462 nm and it has
a lifetime of 134 ns. A sensitization experiment was carried out to verify whether these
two components arise from triplet states (Figure S2). Platinum octaethylporphyrin (PtOEP)
is a suitable sensitizer as its lowest triplet state has an energy of 1.92 eV (higher than the
energy of benzo[a]pyrene’s T1 state) [19] and it can be selectively excited. As presented in
Figure S1, the kinetics of PtOEP is significantly quenched in the presence of benzo[a]pyrene
and the decay of the ESA signal centered at 415 nm corresponds to the rise of a new ESA
band at ∼460 nm. The final spectral shape for the PtOEP and benzo[a]pyrene mixture is
almost identical to the spectral shape of DADS2 in benzo[a]pyrene. Representative kinetics
at 422 nm and 462 nm under air- and N2-saturated conditions are shown in Figure 3d,e.
It is clear that the kinetics at 427 nm decay faster in air-saturated conditions compared
with that in N2-saturated conditions. Meanwhile, the kinetics at 462 nm shows a build-up
process in the first 200 ns under nitrogen conditions while this process is absent under
air-saturated conditions.

2.3. Femtosecond Transient Absorption Spectra of the Mixture of Benzo[a]pyrene and ct-DNA

Femtosecond TA measurements were also carried out for both ct-DNA and the mix-
ture of benzo[a]pyrene and ct-DNA. As shown in Figure 4a, for ct-DNA, a broad ESA
signal appears immediately in the whole probe range with two positive peaks centered at
345 nm and 550 nm upon 267 nm excitation. In the first 600 fs, the ESA signal at 550 nm
increases slightly in amplitude while the TA signal around 350 nm decays. Then, the whole
spectra decay to baseline within 330 ps. Global analysis of TA spectra for ct-DNA yields
three lifetimes and the DADS are also shown in Figure 4a. The first DADS (black) has a
positive peak centered at 355 nm as well as a negative band with a maximum of 530 nm.
The second DADS (red), which shows a broad ESA band in the whole probe range has a
lifetime of 4.3 ps. The lifetime of the third DADS (blue) is determined to be 45.8 ps and its
spectral shape is similar to that of the second DADS. When benzo[a]pyrene was added to
ct-DNA, its spectral evolution was almost the same as that of ct-DNA, and three lifetimes
were determined to be 48.3 ± 6.0 fs, 3.7 ± 0.1 ps and 41.6 ± 0.8 ps, respectively (Figure 4b).
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data. (b) Femtosecond transient absorption spectra of the mixture of ct-DNA and benzo[a]pyrene in
buffer upon 267 nm excitation and decay associated difference spectra (DADS) extracted from global
fitting of transient absorption data.

2.4. Time-Resolved Fluorescence Spectra

Figure 5a,b exhibits emission spectra and kinetics at 427 nm of benzo[a]pyrene under
air- and N2-saturated conditions. It is clear that both the emission intensity and lifetime
of benzo[a]pyrene are significantly quenched in the presence of oxygen. Furthermore, a
comparison of the steady-state fluorescence emission spectra and the fluorescence kinetics
of benzo[a]pyrene in the presence and absence of ct-DNA are displayed in Figure 5c,d,
respectively. It is clear that the addition of ct-DNA results in a 7 nm red-shift of the
fluorescence emission peak compared to benzo[a]pyrene monomer. In addition, the fluo-
rescence decay of benzo[a]pyrene itself can be well-fitted by a mono-exponential function,
yielding a lifetime of 11 ± 0.1 ns. However, after adding ct-DNA, it is now required a
three-exponential function to fit the kinetics perfectly and the lifetimes are 0.38 ± 0.2 ns,
2.1 ± 0.1 ns and 8.2 ± 0.1 ns, respectively.
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Figure 5. (a) Fluorescence emission spectra of benzo[a]pyrene under air- and N2-saturated condi-
tions. (b) Time-resolved fluorescence lifetime decay profiles of benzo[a]pyrene at specified emis-
sion wavelength after excitation at 400 nm under air- and N2-saturated conditions. (c) Fluores-
cence emission spectra of benzo[a]pyrene in the absence and presence of ct-DNA. (d) Picosecond-
resolved fluorescence decay spectra of benzo[a]pyrene in the absence and presence of ct-DNA under
400 nm excitation.
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3. Discussion
3.1. The Fluorescence Lifetime of Benzo[a]pyrene Is Affected by Oxygen

Global fitting of the TA spectra of benzo[a]pyrene yielded two lifetimes and DADS are
shown in Figure 3c. The 134 ns lifetime is clearly demonstrated to arise from the lowest
triplet excited state (T1) of benzo[a]pyrene from the sensitization experiments. The triplet
quantum yield of benzo[a]pyrene was measured to be 0.23 ± 0.02 (detail in Supplementary
Materials). On the other hand, the 11.4 ns component seen in the TA spectra matches
well with a previous study on benzo[a]pyrene [17]. In addition, the DADS1 (green) in
Figure 3c clearly exhibits a negative dip around 460 nm, which should be due to the
stimulated emission and suggests that there is a transition between this component and the
134 ns component. The 11.4 ns component was also detected in the TCSPC measurement,
indicating that this is a luminous state. However, in nitrogen-saturated conditions, the
emission of benzo[a]pyrene is enhanced (Figure 4a) and the lifetime of this component
increases to 25 ns (Figure 4b). The fluorescence quantum yield of benzo[a]pyrene in
air is 0.15 ± 0.01 by absolute method while its fluorescence quantum yield increased
to 0.38 ± 0.02 after deoxygenation. Indeed, oxygen-sensitive fluorescence emission has
been reported in benzo[e]pyrene [20], an analogue of benzo[a]pyrene. Yet, no specific
explanation has been given in previous studies. We envisage that either thermally activated
delayed fluorescence (TADF) or direct fluorescence quenching by oxygen could lead to this
phenomenon and a detailed discussion is below.

In order to verify if there is TADF in benzo[a]pyrene, temperature-dependent emis-
sion spectra were measured from 137 K to 237 K (Figure 1b). It is clear that the lumi-
nescence intensity decreases continuously with the increase in temperature while the
emission wavelength over temperature remains unchanged. Therefore, TADF is excluded
in benzo[a]pyrene.

Meanwhile, it can be estimated that the collision time between oxygen and benzo[a]py-
rene through diffusion is approximately 13.6 ns based on the solubility of oxygen in
acetonitrile and the diffusion rate constant [21]. As the lifetime of the emissive singlet
state of benzo[a]pyrene is 25 ns in nitrogen-saturated conditions, it is highly possible that
the singlet excited state of benzo[a]pyrene can be quenched by oxygen. Actually, similar
phenomena have also been reported in molecules such as fluorescein, pyrrolidine B and
pyrrodine Y [21–23]. Moreover, fluorescence lifetimes and intensity of molecules similar to
benzo[a]pyrene (naphthalene, phenanthrene, chrysene and pyrene) in cyclohexane solution
were reported to be dependent on the oxygen concentration [24]. In addition, as shown in
Figure S2, the absorption spectra before and after deoxygenation barely change and they
also match well with the fluorescence excitation spectra. These results also exclude the
possibility of the ground state of BaP forming a complex with oxygen resulting in the static
quenching of fluorescence. Thus, we believe that the reaction between benzo[a]pyrene
and oxygen takes place in the excited state rather than in the ground state, leading to the
observed fluorescence quenching effect.

Based on the above analysis, we propose the excited state relaxation mechanism of
benzo[a]pyrene in acetonitrile (Scheme 1). After excitation, benzo[a]pyrene should initially
populate the 1ππ* state in the Franck–Condon (FC) region with excess vibrational energy.
After conformational and solvent dynamics, the excited state population is trapped in the
1ππ* minimum and then either return to the ground state or intersystem cross to the triplet
state. The population in the 1ππ* state could be quenched by the oxygen in the solution
and it is a diffusion control process.
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3.2. The Fluorescence Lifetime of Benzo[a]pyrene Is Affected by ct-DNA

Some typical polycyclic aromatic hydrocarbon (PAHs) such as acenaphthylene, ace-
naphthene, and middle cyclic PAHs (fluoranthrene, pyrene, benzo[a]anthracene and ace-
naphthene) all exhibited fluorescence quenching after binding to DNA. The quenching rate
constants of these PAHs binding to DNA are 3~5 orders of magnitude higher than the max-
imum Kq (bimolecular quenching rate constant) value of diffusion-controlled quenching
process. Therefore, in addition to dynamic quenching, static fluorescence quenching also ex-
ists during the fluorescence quenching process between PAHs and DNA [25]. Fluorescence
quenching also occurs in two pyrene derivatives, 1-aminopyrene and 1-pyrenebutylamine,
after their intercalation with DNA. Both steady-state and time-resolved fluorescence spectra
indicate that they are static quenching [26]. In our study, steady-state fluorescence emission
spectra and time-resolved fluorescence spectra were used to study the interaction between
benzo[a]pyrene and DNA. Steady-state fluorescence emission spectra and fluorescence
decay spectra of benzo[a]pyrene in the present and absent of ct-DNA indicate that ct-DNA
can also quench the fluorescence of benzo[a]pyrene. Three time constants (0.38 ± 0.2 ns,
2.1 ± 0.1 ns and 8.2 ± 0.1 ns) were determined in benzo[a]pyrene and ct-DNA complex
and this lifetime matches well with a previous report by Banerjee and co-workers [27],
in which they conclude that fluorescence quenching is due to charge transfer between
benzo[a]pyrene and ct-DNA. In this study, we tried to capture the charge transfer process
between benzo[a]pyrene and ct-DNA by using femtosecond TA spectroscopy. Unfortu-
nately, there is no significant difference in the TA spectra of ct-DNA in the presence or
absence of benzo[a]pyrene upon 267 nm excitation as shown in Figure 4. This could due to
either the very low solubility of benzo[a]pyrene or the TA signal arise from charge transfer
is too small to be detected.

Nevertheless, oxidative DNA damage is a well-known mechanism in DNA. 8-oxodG
is the most common oxidation-generating lesion, which is closely related to mutation and
carcinogenesis. Guanine is the most easily oxidized nucleic acid base, so it is attacked by
most oxidants and can cause specific DNA double-strand breaks that cause DNA damage.
It has been reported that benzo[a]pyrene can be electro-oxidized to benzo[a]pyrene-2OH
compounds at 1.2 V vs. Ag/AgCl [28]. Meanwhile, the redox potential of dGMP is about
0.85 V, which suggests that benzo[a]pyrene could draw an electron from the guanine base
in DNA [26]. In addition, the triplet state of benzo[a]pyrene also can react with oxygen to
form singlet oxygen. Guanine is known to react with 1O2 to form endoperoxide, which
further forms 8-oxoGua. Indeed, this oxidative damage of benzo[a]pyrene to DNA was
confirmed by previous studies in which 8-oxoGua products were identified and double-
strand break of DNA was demonstrated in both cell-free system (in vitro) and cultured
Chinese hamster ovary (CHOK1) cells [11,29]. Yet, direct observation of electron transfer
between benzo[a]pyrene and DNA has not been reported. From our experimental results,
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it suggests that we have to improve the signal-to-noise ratio of the TA setup due to the low
solubility of benzo[a]pyrene even after it binds with ct-DNA.

4. Materials and Methods
4.1. Chemicals

Benzo[a]pyrene was purchased from Innochem (Shanghai, China). Spectral-grade
acetonitrile was purchased from Aladdin (Shanghai, China). 2-Methyltetra hydrofuran
(2-MeTHF) was purchased from J&K Chemical Ltd. (Shanghai, China) and Platinum oc-
taethylporphyrin (PtOEP) was purchased from Frontier Scientific (Beijing, China). The
DNA used in the experiment was a highly polymerized calf thymus-DNA (ct-DNA) pur-
chased from Sigma-Aldrich (Shanghai, China).

The aqueous solution was prepared in Tris-HCl buffer (100 mM Tris, 100 mM HCl,
pH = 7.4). The benzo[a]pyrene–DNA complexes were made at room temperature by mixing
fine crystals of benzo[a]pyrene with ct-DNA in Tris-HCl buffer. After 48 h agitation, the
mixture solution was centrifuged for 20 min in order to remove excess supernatant. All
samples were freshly prepared for each measurement.

4.2. Steady-State Absorption and Emission Spectroscopy Measurements

A double-beam UV–vis spectrophotometer (TU1901, Beijing Spectrograph General
Instrument Co., Ltd., Beijing, China) and commercial fluorescence spectrometer (FluoroMax-
4, HORIBA) were used to record steady-state absorption and emission spectra at room
temperature, respectively. Samples were held in a quartz cuvette with a 2 mm optical
length. The temperature-dependent fluorescence emission spectra from 277 K to 137 K
were measured in 2-MeTHF by using Edinburgh Instruments Fluorescence Spectrometer
FLS1000 fluorimeter (Edinburgh Instruments, Livingston, MT, USA). The temperature
of the sample was controlled by an Oxford OptistatDN Cryostat (Oxford Instruments
nanoscience, Oxford, UK).

4.3. Time-Resolved Transient Absorption (TA) Spectroscopy Measurements

Femtosecond TA spectra were obtained using a femtosecond TA spectrometer (Helios,
Ultrafast systems, Sarasota, FL, USA) [30–32]. The fundamental beam with a central
wavelength of 800 nm, 90 fs pulse, and a repetition rate of 1 kHz, was generated by a
Ti:sapphire laser system (Astrella, Coherent). Then, a fraction of the fundamental beam
was used to produce a specific wavelength pump beam via an optical parametric amplifier
(OPerA Solo, Coherent Inc., Santa Clara, CA, USA). Another part of the fundamental beam
passed through a delay line and then focused on CaF2 or sapphire crystal to generate a
white light continuum (WLC) probe beam. Nanosecond TA data were measured using a
TA spectrometer (Helios-EOS fire, Ultrafast System, Sarasota, FL, USA). The pump beam
was derived from the same Ti:sapphire amplifier as the femtosecond experiment. The
WLC probe beam was generated from a photonic crystal fiber broadband probe source. TA
spectra were analyzed by Igor Pro program version 6.21, OriginPro 2017C and Glotaran
program version 1.5.1 [33].

4.4. Time-Correlated Single Photon Counting (TCSPC) System

Fluorescence lifetimes were measured on a TCSPC system. A picosecond super-
continuum fiber laser (SC400-pp-4, Fianium, Eugene, OR, USA) generates the excitation
pulse with a repetition rate of 10 MHz. Fluorescence was recorded on a TCSPC module
(PicoHarp 300, PicoQuant, Berlin, Germany) and a microchannel plate PMT (R3809U-50,
Hamamatsu Photonics, Shizuoka, Japan). A monochromator (7ISW151, Sofn Instruments,
Beijing, China) was used to select the emission wavelength. The instrument response
function (IRF) of this system was determined to be ∼200 ps by measuring the scattering of
silica solutions.
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5. Conclusions

In this work, we elucidate the excited state dynamics of benzo[a]pyrene in solution by
using time-resolved fluorescence spectroscopy and femtosecond to nanosecond transient
absorption spectroscopy. For the first time, we demonstrate that oxygen sensitivity of its
fluorescence is due to the interaction between benzo[a]pyrene in its singlet excited state and
oxygen rather than the formation of ground state oxygen complex or triplet state quenching.
Compared with oxygen, ct-DNA could also quench the fluorescence of benzo[a]pyrene
and a possible electron transfer pathway is proposed. Our findings provide new insights
into the understanding of the photodegradation mechanisms of PAHs and their interaction
mechanism with DNA.
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of absorption spectra and excitation spectra of benzo[a]pyrene in acetonitrile under air- and N2-
saturated conditions; Figure S4: steady-state absorption spectra of the mixture of benzo[a]pyrene
and ct-DNA in Tris-HCL buffer; Figure S5: comparison of representative kinetic trace of mixture
consisting of ct-DNA and benzo[a]pyrene at specific probe wavelengths; krad calculation and triplet
quantum yield calculation. References [34–36] are cited in the supplementary materials.
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