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Abstract: Ammonia decomposition has attracted significant attention in recent years due to its ability
to produce hydrogen without emitting carbon dioxide and the ease of ammonia storage. This paper
reviews the recent developments in ammonia decomposition technologies for hydrogen production,
focusing on the latest advances in catalytic materials and catalyst design, as well as the research
progress in the catalytic reaction mechanism. Additionally, the paper discusses the advantages and
disadvantages of each method and the importance of finding non-precious metals to reduce costs and
improve efficiency. Overall, this paper provides a valuable reference for further research on ammonia
decomposition for hydrogen production.
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1. Introduction

Reducing carbon emissions is a pressing global challenge. The development of clean
and renewable sources of energy, such as wind or solar, is an effective way. At the same time,
efficient and reliable energy storage and carriers are indispensable due to the intermittency
and variability of such natural energy sources. Hydrogen is considered an excellent energy
carrier due to its carbon-free, renewable, and environmentally friendly features [1–4].
However, low volume energy density and serious safety issues concerning storage and
transportation hinder its large-scale applications. A feasible approach is reversibly storing
hydrogen in liquid or solid hydrides (hydrogen carriers) and then generating hydrogen
through catalytic processes as required. Among potential hydrogen storage intermediates,
ammonia (NH3) is the most promising candidate due to its competitive advantages in terms
of hydrogen storage capacity, zero carbon emissions, availability, cost, and safety [5–8].

Ammonias’s hydrogen content is as high as 17.6 wt%, and the hydrogen volume den-
sity is about 123 kg-H2/m3, much higher than other modern hydrogen storage systems [5].
Moreover, ammonia is readily liquefied at room temperature (25 ◦C) and a light pressure
of ca.10atm, resulting in a higher volumetric energy density than pressurized H2 [6,7]. In
addition, ammonia is widely used as an important chemical material in modern industries,
such as nitrogen fertilizers, refrigerants, and NOx-reducing agents. Due to the strong,
long-term demand, the infrastructure for its production, storage, and supply has been well
developed. As such, compared to other zero-carbon fuels, ammonia is a widely available,
practical, and affordable choice [8]. Furthermore, the extensive use of ammonia over the
years has contributed to developing safety codes and standards. Thus, ammonia safety has
been ensured.

Ammonia decomposition plays a crucial role in the renewable energy sources to
hydrogen user’s process, as outlined in Figure 1. The development of these technologies is
not synchronized. The production capacity of hydrogen and ammonia is not a significant
obstacle to meeting the high demand, while the current ammonia decomposition system
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does not allow mass hydrogen production with adequate purity. Therefore, ammonia
decomposition may become the bottleneck of the hydrogen chain, which is why it is getting
dramatically increased attention [9–11].
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In the past ten years, and especially in the past five, pioneering research and follow-up
studies have resulted in new conceptions, methods, and materials for ammonia decomposi-
tion. These approaches and underlying mechanisms urgently need to be summarized and
understood in detail and are reviewed herein. This paper first analyzes the benefits and
drawbacks of various technologies and then describes their characteristics, principles, and
mechanisms. Afterward, the composition, performance, and synthesis methods of a series
of catalysts are covered.

2. Categories of NH3 Decomposition

The utilization of NH3 as a carrier for H2 has become more widespread due to its
beneficial properties and importance in industrial settings, as well as its ability to mitigate
air pollution [2,12]. Compared to H2, NH3 is more easily liquefied and stored, making it a
more feasible alternative.

NH3(g)→
1
2

N2(g) +
3
2

H2(g)∆H = +46 kJ/mol

To produce clean H2, various technologies have been developed, such as thermo-
catalytic NH3 decomposition, photocatalytic NH3 decomposition, plasma-catalytic NH3
decomposition, and electrocatalytic NH3 decomposition. Figure 2 shows the advantages
and disadvantages of each method [10,11,13–18]. Understanding these methods is key to
determining the current capabilities of the NH3-to-H2 conversion technologies. Figure 3
compares the performance of various technical methods for ammonia decomposition. The
results were obtained under different conditions, enabling a thorough evaluation of the
effectiveness of each approach [10,19–25]. Further discussion has been explored regarding
the benefits and drawbacks of each approach below.
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Figure 3. A comparison of various technical methods for ammonia decomposition. (As the evaluation
of electrocatalytic NH3 decomposition for H2 production is mainly based on current density, no
comparison is made here with other technical methods) [10,19–25].

2.1. Thermocatalytic NH3 Decomposition

It should be noted that without a catalyst, the temperature needed for ammonia
decomposition is quite high. This is due to the strong hydrogen bonds present within
ammonia molecules, which demand a high level of energy to break apart. As a result,
ammonia molecules break down into hydrogen and nitrogen [10,13,26,27]. Therefore, am-
monia decomposition without a catalyst is not practical, as it necessitates high temperature
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and energy consumption as well as having a low reaction rate. Consequently, catalysts
have been created to hasten the sluggish kinetics of NH3 decomposition and stimulate H2
production, as shown in Figure 4.
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The catalytic dissociation of ammonia can be explained as a process where ammonia
molecules are absorbed into the active site of the catalyst, leading to a sequence of reactions
involving dehydrogenation and recombinative desorption [7,9,28]. The reaction is generally
accepted to occur in several steps, as shown in Scheme 1. Firstly, there is a molecular
adsorption of NH3 that generates surface NH3* at the active sites of metal catalysts. Then,
NH3* undergoes incremental dehydrogenation, resulting in the production of N* and H*
atoms. Finally, N* and H* undergo recombinative desorption, leading to the release of N2
and H2 into the gas phase. These reactions culminate in the creation of di-nitrogen and
di-hydrogen on the surface of the catalyst.
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pied adsorption site on the catalyst [29].

Regarding the ammonia synthesis reaction, dissociative nitrogen adsorption is typi-
cally viewed as the rate-determining step. Nevertheless, there’s a possibility that recombi-
native nitrogen desorption could also impact the rate of the decomposition reaction. This
matter requires further investigation and research to determine its actual impact on the reac-
tion kinetics. Lucentini et al. conducted a survey and analysis of various catalytic systems.
The technological status and challenges of ammonia decomposition were first presented
in their paper. Then, state-of-the-art catalytic systems and related reaction mechanisms
were described in detail. Finally, the structured reactors for the decomposition reaction
of ammonia were explored [10]. In summary, the nitrogen desorption is the dominant
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slow step, but the complexity of the reaction increases with the catalyst composition, active
phase, and reaction conditions.

Regarding the catalysts, there has been a growing interest in using transition metal-
based catalysts for NH3-to-H2 conversion. Although Ru-based catalysts have demonstrated
excellent performance, they are less practical for large-scale applications due to their high
cost [30–32]. Therefore, Fe and Ni-based catalysts have emerged as promising alternatives
due to their superior performance, but efforts are still underway to further reduce costs,
optimize activity, and increase their operational lifespan [33–38]. One approach to improv-
ing the activity of these catalyst systems is to use rare earth element-based heteroatoms,
such as La and Ce, for doping. This results in improving the surface properties, increas-
ing the number of active sites, and enhancing the catalytic activity of Fe and Ni-based
catalysts [39–43]. Another approach is to create multi-metal alloy-based structures, which
can further enhance the catalytic activity by providing better dispersion of the metal atoms,
improving the stability of the catalyst, and increasing the resistance to poisoning [28,44–49].

The conventional process of H2 production through thermocatalytic NH3 decompo-
sition is slow. It requires external energy input to heat the catalyst to at least 400 °C for
a sufficient time, resulting in time delay and low energy efficiency. Therefore, a more
suitable approach for the H2 production process is needed that does not require external
energy input. One such approach involves exposing a pretreated catalyst to a mixture
of NH3 and O2 gases at a specific ratio at room temperature. This approach is known as
low-temperature ammonia oxidation, and it removes the need for the high-temperature
decomposition of NH3. The reaction proceeds as follows:

NH3 + 1/4O2 → H2 + 1/2N2 + 1/2H2O (∆H = −75 kJ/mol)

Katsutoshi Nagaoka et al. studied hydrogen production using an acidic RuO2/γ-Al2O3
catalyst by exposing ammonia and O2 at room temperature, as shown in Figure 5 [50]. The
exothermic adsorption of ammonia on the catalyst causes the catalyst bed to rapidly heat
up to the auto-ignition temperature of catalytic ammonia, resulting in the oxidative decom-
position of ammonia to generate hydrogen. A differential calorimeter and a volumetric gas
sorption analyzer were used in the study to measure the heat released by the physisorption
of multiple ammonia molecules and the chemisorption of ammonia onto both the RuO2
and acidic sites on the γ-Al2O3. The results showed a significant amount of heat evolved
during both processes.
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2.2. Non-Thermal Plasma-Catalytic NH3 Decomposition

Thermocatalytic decomposition of NH3 generally occurs at a temperature above 873 K,
while traditional thermal reforming or decomposition of NH3 typically requires a high
temperature of about 1300 K. Despite the presence of a catalyst, the reaction temperature
is still relatively high, restricting the reaction’s useful applications. To start chemical
reactions at lower temperatures, researchers have investigated the potential of alternate
strategies involving electrical discharges or non-thermal plasmas [18,21,51]. Researchers
have explored the potential of plasma-catalytic NH3 decomposition. The results show
that non-thermal plasma can effectively transform NH3 into H2 with less influence from
the gas temperature [52–54]. The results of studies conducted on plasma-catalytic NH3
decomposition suggest that it can be produced with lower energy consumption and higher
efficiency [22,55–57].

Generally, the decomposition of ammonia induced through the direct application of
plasma is restrained due to the following reasons: (1) Energy efficiency: Direct application
of plasma does not now have any significant advantages in terms of energy use in contrast
to catalytic decomposition [58–60]. This is because, beneath equilibrium conditions, ammo-
nia can decompose at relatively low temperatures. (2) Plasma stabilization: When ammonia
undergoes direct-discharge conditions, it decomposes to produce nitrogen and high concen-
trations of hydrogen [61]. This makes it challenging to stabilize the plasma, which similarly
complicates the process of ammonia decomposition. However, one can still take advantage
of the benefits of plasma, such as the speedy introduction of high-temperature reaction
conditions. In the catalytic reaction system, plasma can function solely in the preliminary
start-up stage segment till the catalyst bed is heated up to the reaction temperature [14]. In
this case, hydrogen can be produced immediately at the beginning of the plasma system
via the capability of a decomposition reaction. At the same time, the catalyst can be heated
quickly via the warmth supplied via the plasma.

The mechanism for the plasma-assisted conversion of NH3 can be divided into two
parts. (1) Plasma mechanisms: These involve electron-induced chemistry, such as electron
impact reactions, quenching of excited species, and ion reactions. The energetic electrons
in the plasma interact with the NH3 molecules, leading to various chemical reactions.
(2) Thermal mechanisms: These involve conventional thermal mechanisms for thermally
induced chemistry. The heat generated by the plasma contributes to the overall conversion
of NH3. Thermal energy helps break and form chemical bonds, facilitating the conversion
process. Bang et al. conducted an experimental and numerical study of the plasma-assisted
conversion of NH3 (Figure 6). They used a mixture of NH3 (1 mol%) diluted in N2 at
atmospheric pressure. This allowed them to investigate the effects of plasma on NH3
conversion under specific conditions [62]. They observed that the conversion of NH3 took
place even at room temperature during their study. They found a local peak in conversion
at around 600 K. This finding suggests that the plasma-assisted cracking of NH3 has the
potential to be cost-effective by reducing the temperature range required for the cracking
reaction. Lowering the temperature window for the cracking reaction can lead to energy
savings and improved efficiency in the conversion process.

2.3. Electrocatalytic NH3 Decomposition

The electrochemical process is also a promising alternative for onboard use, as hy-
drogen and nitrogen can be gained from the decomposition of ammonia at a moderate
temperature [17,63,64]. Liquid ammonia has a theoretical electrolysis voltage of 0.077 V,
significantly lower than water’s electrolysis voltage of 1.23 V [16,63]. When ammonia is
electrolyzed, hydrogen molecules are produced at the cathode, and amide ions are released.
Amide ions are oxidized at the anode to form nitrogen molecules. The electrolysis reactor
must be designed as a highly closed electrolytic cell under stringent experimental condi-
tions to prevent the oxidation and hydration of metal amides [63]. However, the current
efficiency is only 85% at a high cell voltage of 2 V due to the inevitable reverse reaction in
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liquid ammonia. To make ammonia electrolysis practical, it is necessary to reduce the cell
voltage as much as possible at a high current.
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The electrocatalytic NH3 decomposition can occur in an aqueous electrolyte under
certain pH conditions, either through the NH3 oxidation in an alkaline environment caused
by OH− ions after the adsorption of NH3 onto the electrode or through NH4

+ oxidation
by the oxidants such as hypochlorous acid in low pH environments [65–67]. However,
electro-corrosion and sluggish kinetics in acidic electrolytes can lead to low efficiency in the
electrochemical process. Alternative approaches to address this issue involve using alkaline
electrolytes for electrocatalytic NH3 decomposition, which have been extensively studied
and offer the potential to overcome undesirable problems related to acidic environments
towards electrode materials. Ideally, in an NH3 decomposition system, NH3 is oxidized to
N2 at the anode, while H2O is reduced to H2 at the cathode, producing the gaseous H2 and
N2 from an ammonia solution. However, it is well known that the side reaction of OER
may be a competing process with the Electrocatalytic NH3 decomposition at the anode.

Anode reaction:

2NH3 + 6OH− −→ N2 + 6H2O + 6e− Eθ = −0.77 V vs. SHE

Cathode reaction:

2H2O + 2e− −→ H2 + 2OH− Eθ = −0.829 V vs. SHE
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Overall reaction:
2NH3 −→ 3H2 + N2 Eθ = −0.059 V

The use of electrocatalytic NH3 decomposition to produce H2 has many benefits,
including simplicity and cost-effectiveness. However, problems remain, such as slow
kinetics and poor selectivity. To increase the electrocatalytic NH3 decomposition efficiency,
various types of electrocatalysts have been studied, but their performance still cannot
satisfy the requirements of industrial applicability. Therefore, it is important to develop
new high-efficiency ammonia electrolysis electrodes for hydrogen production, as shown in
Figure 7. Although platinum and other precious metal-based catalysts are effective for the
process of electrocatalytic NH3 decomposition (alkaline water electrolysis), their high cost
and limited availability are significant drawbacks [16,17,68–70]. Recently, catalysts based
on transition metals have shown promise for electrocatalytic NH3 decomposition through
various structural and morphological engineering techniques, including alloyed/core-shell
formation, shape control, heteroatom doping, and self-supporting materials [40,66,71–73].
However, the current density of oxidation and selectivity achieved by these catalysts is
still lower than what is required for practical application. Therefore, further research and
development in this area is necessary.
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2.4. Photocatalytic NH3 Decomposition

The photocatalytic method of splitting NH3 into N2 and H2 is also a promising
approach, as it can be carried out using recyclable catalysts at room temperature and can
easily control light exposure with a switch. Using sunlight to decompose ammonia through
photocatalysis is an artificial photosynthetic reaction that occurs in alkaline conditions [15].
As shown in Figure 8, when the energy of the irradiating light exceeds the band gap of
the photocatalyst it creates electron-hole pairs. The resulting holes act as strong oxidants,
while the electrons in the conduction band can reduce O2 to form hydroxyl radicals. To
achieve the photocatalytic degradation of ammonia, the electrons and holes generated on
the surface of a semiconductor must have appropriate reduction and oxidation abilities
to interact with the adsorbed species on the catalyst surface and produce free radicals or
other products.

Photocatalyst + hv −→ e− + h+

2NH3 + 6h+ −→ N2 + 6H+

2H+ + 2e− −→ H2
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Figure 8. Illustration of the process of photocatalytic ammonia decomposition (reproduced with
permission from [15], Copyright Royal Soc Chemistry, 2020).

So far, only a limited number of photocatalysts have been found to be effective in the
decomposition of an aqueous ammonia solution. These include common photocatalysts,
such as TiO2, ZnO, ZnS, Mo2N, and graphene, as well as their hybrid materials that are
loaded with metals [15,74–83]. Utsunomiya et al. studied the photocatalytic activity of
TiO2 loaded with different metals on the decomposition of ammonia and explored the
NH3 decomposition mechanism by proposing three reaction pathways [83]. As shown
in Figure 9, route 1 involves the formation of NH radicals by removing one hydrogen
atom from each of the two NH2 radicals, while route 2 involves the coupling of adjacent
NH2 radicals to form NH2-NH2. Route 2′ involves the formation of NH2-NH2 through
the formation of H2N-NH3. The activation energies for routes 1 and 2 calculated by
density functional theory (DFT) are 236 kcal/mol and 74.8 kcal/mol, respectively. Of these
pathways, route 2 is considered energetically more favorable than route 1. Possible reaction
pathways for the formation of N2 and H2 through NH2-NH2 coupling were further divided
into two routes: route 2, which involves the coupling of NH2 radicals to form H2N-NH2,
and route 2′, which involves the interaction of NH2 with one NH3 molecule in the gas
phase. The activation energies of the two routes were estimated to be 74.4 kcal/mol and
59.2 kcal/mol, respectively. Therefore, it is plausible that NH3 decomposition occurs via the
formation of NH2-NH2 through routes 2 and 2′. Razak et al. reported the linear generation
of H2 from NH3 over Pd/TiO2 catalyst. They suggest that the production of H2 from NH3
was initiated by the interaction of N atoms on the Pd surface. This interaction led to the
dissociation of N-H bonds under the catalysis of photogenerated electrons [84].

Recently, Yuan et al. have discovered that Cu-Fe-AR, which is not an effective thermo-
catalyst, can function as an excellent photocatalyst for NH3 decomposition when exposed
to short-pulse laser illumination [85]. The formation of adsorbate–metal excited states by
hot carriers leads to the lowering of activation barriers, active site cleaning, and product
desorption, resulting in enhanced reactivity and stability of Cu-Fe-AR compared to tradi-
tional thermocatalysts. Under continuous-wave LED illumination, Cu-Fe-AR manifests
a high efficiency comparable to Cu-Ru-AR. Although Cu-Ru-AR exhibits slightly greater
reactivity due to photothermal heating, the study demonstrates that photocatalysis can
be efficiently performed with inexpensive LED photon sources, as shown in Figure 10.
The results suggested that abundantly available metals might serve as productive and
cost-effective catalyst substrates for plasmonic antenna-reactor photocatalysis.
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Figure 10. Schematic comparison of the energy diagram for photocatalysis (excited states) and
thermocatalysis (ground state) on Cu-Fe- and Cu-Ru-ARs. Red arrows refer to electronic excitation
on Fe-N, and blue to Ru-N. Only the two possible RDSs are included for simplicity; migrations
of nitrogen species are not considered for the same reason (reproduced with permission from [85],
Copyright Science, 2022).

3. Catalysts for NH3 Decomposition

The choice of catalyst is critical for the efficient decomposition of ammonia to produce
hydrogen at low temperatures, and different technologies require different catalysts. For ex-
ample, the Ru group of catalysts is commonly used in thermocatalytic NH3 decomposition,
while the Pt group is suitable for both electrocatalytic and photocatalytic NH3 decom-
position. In addition to co-catalysts, such as Ru and Pt, photocatalysts are also required
in photocatalytic NH3 decomposition [9,26,72,73]. In non-thermal plasma-catalytic NH3
decomposition, Fe-based catalysts have been the most studied [48,51,54]. Furthermore,
for the industrialization of hydrogen production from ammonia decomposition, catalyst
support is vital as it has a synergistic effect on the catalyst’s performance. Therefore, this
review will focus on precious metal catalysts, non-precious metal catalysts, multi-alloy
catalysts, and other aspects, emphasizing the research emphasis on various catalysts in
different NH3 decomposition techniques. By understanding the unique roles catalysts play
in different technologies, researchers can optimize performance and improve the overall
efficiency of the ammonia decomposition process.

3.1. Precious Metal Catalysts

Precious metals are a significant type of catalyst material, with Ru-based materials being
particularly noteworthy for their exceptional performance in NH3 decomposition [7,9,10,31].
As a result, they have been extensively studied. The catalysis of NH3 decomposition on Ru-
based catalysts is primarily attributed to B5 active sites [31,86–88]. The B5-type site comprises
a configuration of three Ru atoms in one layer and two additional Ru atoms in the layer
directly above it at a monoatomic step on a Ru(0001) terrace [89], as shown in Figure 11. Thus,
the number of B5 active sites is frequently linked to the size and shape of Ru nanoparticles on
the catalyst surface [90,91].
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(3) desorption of the N2 molecule (‘three stages of the growth of an Ru particle’ reproduced with
permission from [91], Copyright Springer, 2009).

Kim et al. investigated the influence of the crystalline phase of alumina on the de-
composition of NH3 over Ru catalysts supported on alumina [87]. The results show that
the dispersion and morphology of Ru are key factors for H2 production from NH3 decom-
position over Ru/Al2O3 catalysts and can be regulated by the support and calcination
temperature. Among the Ru/Al2O3 catalysts calcined at various temperatures and re-
duced at 573 K, Ru/γ-Al2O3 with Ru particle sizes of 7~8 nm displayed the highest rate
of ammonia decomposition. Feng et al. have demonstrated that Yttrium oxide (Y2O3) can
effectively disperse and stabilize Ru nanoparticles as a functional support for catalysts [92].
Highly dispersed Ru nanoparticles on Y2O3 (Ru/Y2O3) were prepared, and the catalytic
activity of ammonia decomposition was evaluated. The results showed that at a relatively
high weight gas hourly space velocity of 30,000 mLg−1h−1, the 5 wt.% Ru/Y2O3 catalyst
exhibited excellent catalytic activity, achieving near-complete NH3 conversion at 475 ◦C, su-
perior to many Ru catalysts supported by typical oxides. Cha et al. reported the successful
loading of highly monodisperse Ru particles onto alkali-exchanged zeolite Y support using
an ion-exchange method coupled with a vacuum calcination treatment [93]. As shown in
Figure 12, the resulting Ru/M-Y catalysts exhibit an average particle size of approximately
1 nm and contain both nanometer- and sub-nanometer-sized Ru particles. Hu et al. re-
ported the successful synthesis of stable ruthenium (Ru) clusters with a size of about 1.5 nm
by reduction of single Ru atoms under an ammonia atmosphere at 550 ◦C [94]. These
Ru clusters are uniformly dispersed on the surface of the ceria. The obtained supported
ruthenium cluster catalysts exhibit exceptional activity for ammonia decomposition with an
extremely high hydrogen production rate. Ru-based materials have potential applications
in Photocatalytic NH3 decomposition and Plasma-catalytic NH3 decomposition. Iwase et al.
have reported that a Ru-loaded ZnS photocatalyst demonstrated remarkable activity in
decomposing an aqueous ammonia solution into H2 and N2 with a stoichiometric amount
under simulated solar radiation [79]. In this reaction, the Ru co-catalyst was crucial in
promoting ammonia oxidation to N2.
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Elsevier, 2021).

On the other hand, the support used also strongly affects the catalytic activity of Ru-
based materials. Firstly, a support with a high specific surface area can enhance the dispersal
of Ru nanoparticles, leading to improved NH3 adsorption capacity [92–94]. Secondly, the
characteristics of the support itself can have a synergistic effect with Ru nanoparticles,
thereby enhancing catalytic activity [23,95–99]. For example, Jeon et al. synthesized a
Y-doped BaCeO3 perovskite and constructed a strong metal support interaction (SMSI)
interface with Ru particles, as shown in Figure 13 [95]. The catalyst achieved 100% NH3
decomposition efficiency at 500 ◦C and had a higher H2 generation rate than most Ru-based
catalysts. The improvement in catalytic performance can be attributed to the promotion of
N2 desorption by the SMSI interface. Yamazaki et al. studied Ru catalysts supported on
CeO2−PrOx composites (Ru/CP) prepared through coprecipitation [99]. The study found
that the activity of the Ru/CP catalyst is higher than that of the Ru/CeO2 and Ru/PrOx
catalysts, and the Pr content (=Pr/(Ce + Pr)) reached the target value of 33–67%. It was



Molecules 2023, 28, 5245 14 of 25

also revealed that increasing the Pr content in the catalysts enhanced the Ru dispersion but
suppressed Ru metalation due to a strong “metal–support interaction”.
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Figure 13. Schematic diagram of NH3 decomposition of Ru/Y-dosed BaCeO3 catalyst (reproduced
with permission from [95], Copyright American Chemical Society, 2022).

Apart from Ru-based materials, Pt-based materials are also extensively studied in the
field of NH3 decomposition. While Ru-based materials are mainly used for thermocatalytic
NH3 decomposition, Pt-based materials are typically employed for photocatalytic and
electrocatalytic NH3 decomposition [16,17,68,69,75,76,100]. In a study by Kominami et al.,
the photocatalytic NH3 decomposition performance of metal-supported TiO2 catalysts was
investigated [76]. Pt/TiO2 exhibited the best performance, with the amount of H2 and N2
reaching 90 and 28 umol, respectively, after 4 h of light irradiation, as shown in Figure 14.
The H2/N2 ratio was 3.2, consistent with the stoichiometric ratio of NH3 decomposition.
Dong et al. successfully electrolyzed liquid ammonia with metal amide as the supporting
electrolyte using Pt electrodes [16]. In a subsequent study, they replaced the Pt electrode
with a Pt/Rh/Ir alloy electrode, which tripled the current density [69].
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3.2. Non-Precious Metal Catalysts

Although precious metal materials have excellent NH3 decomposition ability, their
high cost as precious metals limits their potential for large-scale applications. Therefore,
researchers are exploring the development of non-precious metal catalysts. Currently,
non-precious metals such as Ni, Co, and Fe have demonstrated good NH3 decomposition
activity and are being investigated as potential alternatives [6,9,10,101].

Ni-based catalysts have received significant attention among numerous non-precious
metal catalysts due to their lower cost and significant activity [7,102]. The activity of
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Ni-based catalysts is primarily influenced by the size of Ni nanoparticles present on the
catalyst surface [103–105]. Deng et al. obtained Ni nanoparticles with varying particle sizes
through direct thermal reduction of nickel-containing Ca-Al layered double hydroxides
(LDH) and tested them for NH3 decomposition, as shown in Figure 15 [104]. Among these
catalysts, the Ni/CaAlOx catalyst with Ni(NO3)2 as the precursor exhibited the best NH3
decomposition performance, with an NH3 conversion rate of 99% at 550 ◦C. This is because
the average particle size of the Ni nanoparticles, reduced with Ni (NO3)2 as the precursor,
is the smallest (4.7 nm), allowing for better dispersion on the surface of CaAlOx and, thus,
more effective adsorption of NH3.
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Besides the size of Ni nanoparticles, the support used in Ni-based catalysts also plays
a crucial role in their catalytic activity. Currently, metal oxides such as CeO2 [43,106–109],
Y2O3 [110,111], Al2O3 [112–114], and La2O3 [115] are commonly used as supports for
Ni-based catalysts used in NH3 decomposition. The high activity of these metal oxide-
supported Ni-based catalysts is typically due to the high dispersity of Ni nanoparticles, the
strong interaction between the support and Ni nanoparticles, and the presence of oxygen
vacancies on the support surface. Li et al. successfully used a Ni single-atom supported
CeO2 (SA Ni/CeO2) catalyst for NH3 decomposition into H2 under solar heating condi-
tions [109]. The experimental results showed that at 300 ◦C, the rate of NH3 decomposition
to H2 reached 3.544 mmol g−1 min−1, which was superior to all non-precious metal cat-
alysts and most precious metal catalysts. Based on this, they combined their self-made
solar heating system, and the H2 generation rate of the catalyst under 1 sun reached
1.58 mmol g−1 min−1, which was 100 times higher than the previous record. Do et al.
synthesized a series of Ni/AlCeOx composites using the cation-anion double hydrolysis
method and used them as catalysts for NH3 decomposition to H2 production [114]. The
experimental results showed that the catalyst exhibited excellent catalytic performance and
could completely decompose NH3 at around 550 ◦C. The improved catalytic performance
can be attributed to the highly dispersed and reducible Ni atoms, the increased amount of
surface oxygen vacancies, and the significantly enhanced NH3 adsorption affinity.

Co-based materials have also been extensively studied as catalysts for NH3 decom-
position [116–118]. Many properties of Co-based catalysts are similar to those of Ni-based
catalysts, and their catalytic activity is also influenced by the size of Co nanoparticles and
the support structure [119–125]. Lei et al. successfully prepared small Co nanoparticles
dispersed on N-doped carbon carriers (Co/NC-X) by pyrolyzing ZIF-67 in an N2 atmo-
sphere at different temperatures (X = 500, 600, 700, 800 ◦C). They used them as catalysts
for NH3 decomposition to H2, as shown in Figure 16 [125]. The Co NPs were evenly
distributed and highly dispersed on NC, resulting in high catalytic activity. Among these
catalysts, the NH3 conversion rate of Co/NC-600 at 500 ◦C was 80%, and the H2 production
rate was 26.8 mmol g−1 min−1. Yu et al. investigated the effect of BaNH, CaNH, and
Mg2N3 on the catalytic activity of Co in the NH3 decomposition reaction [124]. In the
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reaction temperature range of 300–550 ◦C, the formation rate of H2 was in the order of
Co-BaNH > Co-CaNH > Co-Mg2N3. Notably, the H2 generation rate of Co-BaNH at 500 ◦C
reached 20 mmol g−1 min−1, comparable to the active Ru/Al2O3. In-depth studies revealed
that a [Co-N-Ba]-like intermediate species was formed at the interface of Co metal and
BaNH, which led to the higher catalytic activity of Co-BaNH.
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Figure 16. Schematic illustration of the synthesis of Co/NC-X (reproduced with permission
from [125], Copyright Elsevier, 2022).

The NH3 decomposition activity of Fe-based materials is generally lower than that of
Ni-based materials and Co-based materials due to the higher bond energy of Fe-N com-
pared to Ni-N and Co-N [9,101]. However, despite this, researchers still have great interest
in Fe-based materials due to their low price [36–38,52,55,57,126,127]. Lu et al. found a
hidden active phase in Fe-based catalysts for NH3 decomposition, with the highest dehy-
drogenation rate corresponding to an evanescent Fe/Fe4N mixing phase [38]. However,
the deposition of excess nitrogen atoms on the Fe-based catalyst can cause deactivation
and a decrease in catalytic efficiency. Chen et al. observed a “particle size effect” in the
activity of Fe3O4/Al2O3 catalyst in NH3 decomposition, with TOFs increasing as the size
of Fe3O4 nanoparticles increased [57]. As shown in Figure 17, this effect was also observed
in plasma-catalyzed NH3 decomposition.
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3.3. Multi-Metallic Catalysts

To overcome the limitations of single noble metal catalysts and single non-noble metal
catalysts in the large-scale application of NH3 decomposition, researchers are exploring
the use of multi-metallic catalysts. These catalysts offer a balance between cost and per-
formance, with low cost, good catalytic performance, and high stability. Additionally,
the composition and morphology of different metals in the catalysts can be regulated,
providing more possibilities for optimization.

At present, bimetallic catalysts are the mainstream of multi-metallic catalysts [28]. Com-
mon bimetallic catalysts include Ru-Ni [128–130], Ni-Co [42,46,49,131,132],
Ni-Fe [47,48,133], etc. Hansgen et al. developed a computational framework that utilizes
nitrogen binding energies to identify potential monolayer bimetallic catalysts [134]. Through
this framework, they were able to predict that Ni-Pt-Pt(111) would be an effective bimetallic
catalyst for NH3 decomposition, even exceeding the activity of Ru. Their calculations proved
to be successful in identifying this high-performing catalyst. Tabassum et al. synthesized
CoNi alloy nanoparticles that were well dispersed on mixed oxide support of MgO-CeO2-SrO,
with potassium promotion, resulting in the K–CoNialloy–MgO–CeO2–SrO catalyst, as shown
in Figure 18 [49]. This catalyst exhibited high efficiency in converting NH3, with a conver-
sion rate of 97.7% under reaction conditions of 450 ◦C and 6000 mLh−1gcat−1. The study
suggests that the active sites located on the metal/oxide interface promote the recombination
of adsorbed N atoms, leading to N2 desorption and a significant reduction in activation
energy barriers. Shiraishi et al. developed a bimetallic alloy nanoparticle-supported TiO2
photocatalyst (Pt0.9Au0.1/TiO2) with 90 mol% Pt and 10 mol% Au [20]. This photocatalyst
demonstrated effective decomposition of NH3 into H2 and N2, with significantly higher
catalytic activity than Pt/TiO2. The enhanced performance can be ascribed to the presence of
Au in the alloy, which reduces the Schottky barrier height at the metal/TiO2 interface, leading
to a more efficient transfer of conduction band electrons on TiO2 to the metal particles. Yi et al.
conducted a study where they prepared various bimetallic catalysts (Fe-Co, Mo-Co, Fe-Ni,
and Mo-Ni) and utilized them for plasma-catalyzed NH3 decomposition [22]. The results
revealed that the Fe-Ni catalyst displayed the highest catalytic activity compared to the other
catalysts. Further analysis indicated that the Fe-Ni catalyst had the highest NH3 adsorption
capacity, likely the primary reason for its superior catalytic activity. Jiang et al. investigated
various morphologies of NiCo2N compounds. They specifically focused on the structure of
nanoneedles grown on 3D nickel foam. It was found that this particular structure exhibited
several advantages, including a significantly increased surface area, more exposed active sites,
enhanced charge transfer, and improved gas diffusion. Furthermore, the NiCo2N composite
demonstrated the most optimal catalytic activity in both the hydrogen evolution reaction
(HER) and ammonia electrolysis [135].

Developing multi-metal catalysts containing three or more metal elements is a more
challenging task, but it also holds greater potential. Xie et al. successfully utilized a
novel high-entropy alloy (HEA) CoMoFeNiCu nanoparticles for highly efficient NH3
decomposition [44]. As illustrated in Figure 19, they overcame the miscibility limit of
bimetallic CoMo alloys by stably tuning the Co/Mo elemental ratio in CoMoFeNiCu HEA
nanoparticles. The HEA catalyst has a lower cost than Ru-based catalysts and exhibits
better catalytic performance than Co-Mo catalysts. At a reaction temperature of 500 ◦C, the
optimal conversion efficiency of NH3 using this catalyst can reach 100%. Furthermore, the
alloy composition and surface adsorption properties of the HEA catalyst can be well-tuned,
demonstrating its immense potential for practical applications.
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3.4. Other Catalysts

In addition to metal nanoparticles, some metal nitrides can also be used as NH3
decomposition catalysts, such as Mo2N [136–138], MnN [139], Co3Mo3N [140–142], etc.
Huo et al. designed Mo2N nanocrystals anchored on two-dimensional (2D) mesoporous
silica/reduced graphene oxide (rGO) hybrid nanosheets (Mo2N/SBA-15/rGO) as an NH3
decomposition catalyst [136]. Benefiting from the highly dispersed Mo2N nanocrystals and
modest Mo-N band strength, the catalyst exhibits excellent catalytic performance with an
ammonia decomposition rate as high as 30.58 mmol g−1 min−1. Srifa et al. synthesized
Mo2N-based catalysts with Fe, Ni, and Co additives, as shown in Figure 20 [141]. The
NH3 decomposition activities of Co3Mo3N, Ni3Mo3N, and Fe3Mo3N catalysts were higher
than Mo2N catalysts. Among them, Co3Mo3N has the best catalytic performance, and the
NH3 conversion efficiency reaches 94% at 550 ◦C. The increase in catalytic activity can be
attributed to adding Co, Ni, and Fe to increase the particle size and specific surface area of
the catalyst and promote the recombination and desorption of N atoms.
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Figure 20. Schematic diagram of Mo2N catalysts with the addition of Co, Ni, and Fe for NH3

decomposition (reproduced with permission from [141], Copyright Royal Society of Chemistry, 2016).

Researchers have also developed some NH3 decomposition catalysts of sulfides and
carbides, but the performance is average. Kraupner et al. synthesized mesoporous Fe3C
with high crystallinity [143]. The material has transmission pores with a diameter of 20 nm
and a high specific surface area (about 415 m2 g−1). At 700 ◦C, the conversion rate of NH3
is over 95%. Krishnan et al. successfully synthesized MoS2-supported acid, and alkaline
functionalized (Al, Ti, and Zr)-Laponite catalysts [144]. The results show that the presence
of heteroatoms (Al, Ti, and Zr) in the Laponite framework plays a key role in improving the
reducibility, acid-base functional groups, and textural properties of MoS2. Among them,
the MoS2/Zr-Laponite catalyst has the best NH3 decomposition performance, and its NH3
conversion rate at 600 ◦C degrees is 94%.

4. Conclusions

Ammonia decomposition is a highly efficient, environmentally friendly, and sustain-
able technology for hydrogen production that has attracted significant attention. This article
explores the technical path and catalysts used for hydrogen production through ammonia
decomposition. The article discusses various technologies and their catalytic mechanisms,
highlighting their advantages and disadvantages and their potential for industrialization.
The review also covers recent progress in catalyst research for ammonia decomposition,
emphasizing the importance of finding non-precious metals to reduce costs and improve
efficiency. Overall, this article provides valuable insights into the current state of NH3
decomposition for H2 production and the potential for future advancements in this field.
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