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Abstract: X-linked inhibitor of apoptosis protein (XIAP) exercises its biological function by locking
up and inhibiting essential caspase-3, -7 and -9 toward apoptosis execution. It is overexpressed in
multiple human cancers, and it plays an important role in cancer cells’ death skipping. Inhibition of
XIAP-BIR3 domain and caspase-9 interaction was raised as a promising strategy to restore apoptosis
in malignancy treatment. However, XIAP-BIR3 antagonists also inhibit cIAP1-2 BIR3 domains,
leading to serious side effects. In this study, we worked on a theoretical model that allowed us
to design and optimize selective synthetic XIAP-BIR3 antagonists. Firstly, we assessed various
MM-PBSA strategies to predict the XIAP-BIR3 binding affinities of synthetic ligands. Molecular
dynamics simulations using hydrogen mass repartition as an additional parametrization with and
without entropic term computed by the interaction entropy approach produced the best correlations.
These simulations were then exploited to generate 3D pharmacophores. Following an optimization
with a training dataset, five features were enough to model XIAP-BIR3 synthetic ligands binding
to two hydrogen bond donors, one hydrogen bond acceptor and two hydrophobic groups. The
correlation between pharmacophoric features and computed MM-PBSA free energy revealed nine
residues as crucial for synthetic ligand binding: Thr308, Glu314, Trp323, Leu307, Asp309, Trp310,
Gly306, Gln319 and Lys297. Ultimately, and three of them seemed interesting to use to improve
XIAP-BR3 versus cIAP-BIR3 selectivity: Lys297, Thr308 and Asp309.

Keywords: XIAP-BIR3; synthetic inhibitor; molecular dynamics; MM-PBSA free energy prediction;
3D Pharmacophore

1. Introduction

Apoptosis escape is one of the major causes of cancer development and progression.
It also contributes to chemoresistance [1]. Restoring apoptosis in cancer cells is therefore
a promising strategy for the new anticancer therapy development. X-linked inhibitor
of apoptosis protein (XIAP), also known as “inhibitor of apoptosis protein 3” (IAP3) or
“baculoviral IAP repeat-containing protein 4” (BIRC4), is a protein inhibiting cell apoptosis.
To stop apoptotic cell death, XIAP binds to caspase-9, caspase-3 and caspase-7, three en-
zymes that are essential for apoptosis initiation and execution [2,3]. Binding to caspases
allows XIAP to inhibit their activation to block intrinsic, as well as extrinsic, signaling
apoptosis pathways. XIAP is overexpressed in many tumors [4], and its anti-apoptotic
effect contributes to the cancer cell’s escape from apoptosis. Moreover, it plays an im-
portant role in chemoresistance and has therefore become an important target for the
malignancy treatment [4].

XIAP belongs to the inhibitor of apoptosis proteins (IAPs) family, which consists
of eight different proteins. They all share the zinc-binding baculovirus-IAP-repeat (BIR)
domain comprising around 70 amino acids. Among IAP family members, XIAP is the only
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one that inhibits caspases by direct physical interactions. Two other members of this family,
c-IAP1 and c-IAP2, are also able to bind caspase-3 and -7 but do not inhibit them through
physical interaction.

XIAP contains three BIR domains in the N-terminal region (BIR1, BIR2 and BIR3), an
ubiquitin-associated (UBA) domain and a C-terminal region called zinc-binding Really
Interesting New Gene (RING) domain [5]. To inhibit the caspase catalytic activity, XIAP
uses different XIAP domains and different mechanisms.

Caspase-9 inhibition by XIAP occurs through its BIR3 domain. Through its surface
groove in Zn chelator proximity, XIAP-BIR3 domain traps caspase-9 in a monomeric inactive
state. This way, it deprives caspace-9 of any catalytic activity. Four amino acids in caspase-9
N-terminal region small subunit (A316-T317-P318-F319) bind to the XIAP-BIR3 surface groove.
In the case of caspase-3/-7 effector, BIR1-BIR2 linker peptide preceding XIAP-BIR2 interacts
with caspase-3/-7 [6–8]. This XIAP BIR1-BIR2 linker segment directly occupies the caspase
active site, resulting in a substrate entry blockage. Interestingly, although the XIAP BIR1-
BIR2 linker sequence plays a dominant role in inhibiting caspase-3 and -7, this fragment in
isolation is insufficient to provide an inhibitory effect [9,10]. Indeed, caspase-3 in a crystal
structure also binds to XIAP-BIR2 domain surface groove in Zn chelator proximity [8].

In normal cells, second mitochondrial caspase activator (Smac) protein is a natu-
ral XIAP inhibitor. In response to an apoptotic stimulus, Smac protein is released by
mitochondria; binds to XIAP-BIR3 and XIAP-BIR2 binding grooves; and removes IAP-
mediated inhibition of caspase-3, -7 and -9. The released caspases can then exert their
pro-apoptotic activity.

The XIAP-BIR3 domain solved structure complexed with a functionally active 9-
residue peptide derived from the Smac N-terminus showed that interaction occurs princi-
pally through four residues located on Smac N-terminal region (A1-V2-P3-I4, called AVPI).
AVPI binds to a surface groove on XIAP-BIR3, with the protonated N-terminal Ala1 making
several hydrogen bonds with neighboring residues on XIAP-BIR3 [11,12]. Smac N-terminal
binding groove in XIAP-BIR3 is the same as the one binding caspase-9, and Smac tetrapep-
tide has a sequence similarity with the caspase-9 binding N-terminus. Smac N-terminal
peptide is structured in a beta strand [12,13]. Three intramolecular hydrogen bonds be-
tween Val2/Ile4 backbone in Smac and Gly306/Thr308 backbone in XIAP-BIR3 allow the
formation of a four-stranded antiparallel β-sheet. Thus, the antiparallel β-sheet of three
strands from the XIAP-BIR3 domain is completed during the complex formation by a fourth
strand, Smac N-terminal AVPI peptide.

The XIAP-BIR3 domain was initially exploited as a potential target for anticancer
drugs in overexpressing IAP tumors. Smac AVPI sequence was the basis of the initial work
in XIAP antagonist field. These antagonists, called “Smac-mimetics”, have a high struc-
tural similarity with the endogenous AVPI peptide from Smac. Four main generations of
small molecules have emerged, including peptides and peptidomimetics, conformational-
constrained monovalent or bivalent antagonists. More recently, non-alanine-based antago-
nists have risen. Nevertheless, “Smac-mimetics” presented drawbacks, such as structural
fragility. Thus, an effort was made to develop synthetic non-peptide antagonists. The XIAP-
BIR3 antagonist development resulted in a few small molecule inhibitors that reached
clinical evaluation [14,15]. Nevertheless, it was observed that XIAP-BIR3 antagonists lack
selectivity for XIAP. Indeed, XIAP inhibitors interact with both cIAP-1 and cIAP-2 through
their BIR3 domains, leading to a cIAP1-2 inhibition [16]. As a consequence, there is an
increase of TNFα releasing, resulting in a serious side effect called cytokine release syn-
drome [17,18]. Cytokine release syndrome has caused the early termination of several
clinical trials. Consequently, the development of optimized and selective antagonists for
XIAP remains a challenge to overcome.

In this study, we focused on the setting up of an in silico tool that allowed us to
design and/or optimize non-peptidic and non-peptidomimetic XIAP-BIR3 selective antag-
onists. To this end, we implemented and evaluated the efficiency of different molecular
dynamic simulation strategies. Our strategies included a ranking of relative XIAP-BI3
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antagonist binding affinities, using the Molecular Mechanics Poisson–Boltzmann Surface
Area (MM-PBSA) approach. MM-PBSA is widely employed to predict ligand–receptor free
energy thanks to its efficiency and reasonable accuracy. Then, we exploited the molecular
dynamics simulations that were producing the best agreement with experimental binding
data in order to build a 3D pharmacophore for a synthetic XIAP-BIR3 antagonist. The
pharmacophore performance was assessed and optimized with a testing chemolibrary. The
MM-PBSA data analysis correlated with the held features of our final optimized pharma-
cophore. This also allowed us to highlight the residues to target and increase XIAP-BIR3 vs.
cIAP1/2-BIR3 selectivity.

2. Results and Discussion
2.1. MM-PBSA Binding Free-Energy Prediction

To reach our goal, we started by setting up a method for rapid and reliable predictions
of synthetic ligand-binding affinities to the XIAP-BIR3 domain. To assess the predictive per-
formance, we selected four XIAP-BIR3 synthetic ligands for which the X-ray structures of
their complexes with XIAP-BIR3 (residues 248–352) were known, and the binding constants
were measured experimentally. At the time of our work, 36 3D structures with XIAP-BIR3
were available in the PDB database [19]; 4 NMR solution structures and 32 structures
were solved using X-ray diffraction. Among them, only 16 were co-crystallized with a
non-peptide or non-peptidomimetic ligand. For our study, we selected four complexes
from sixteen available ones with the following PDB IDs: 5C7C [20], 5M6M [21], 5OQW [22]
and 5M6L [21]. The choice of these complexes was based on the ligand structural diver-
sity/similarity, as well as on the difference/similarity in their binding activities to the
XIAP-BIR3 domain determined by fluorescence polarization assay (see Figure 1).
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To predict the experimental ligand binding affinities, we chose to use the MM-PBSA
method. Firstly, short molecular dynamics (MDs) simulations of 50 ns (NAMD 2.13) using
all-atom CHARMM36m force field for protein and CGENFF for ligands were carried
out for each tested XIAP-BIR3/ligand complex. During these simulations, the possible
impact of different additional parameterizations, as the repartitioning of the hydrogen
mass (HMR) [23] and the effect of parametrization of cation π-interactions for tryptophan,
tyrosine and phenylalanine residues (WYF) [24], was tested. In HMR parametrization, the
heavy atom mass is redistributed on the bound hydrogen atoms, making it possible to slow
down the high-frequency movements of the macromolecule and increase the simulation
time step. The cation-π interaction is a noncovalent binding force occurring between the
aromatic ring, providing both a negative electrostatic potential surface and cations through
electrostatic interaction. It was highlighted that cation-π interactions can play an important
role in protein–ligand recognition. That is why we wanted to evaluate the influence of these
two additional parametrizations in our study. In this way, each complex was simulated four
times: (i) without any additional parametrization, (ii) with HMR, (iii) with WYF and (iv)
with both WYF and HMR additional parametrizations. Finally, MM-PBSA methodology
was applied on each simulation to predict ligand binding free energy ∆GMM−PBSA.

First, protein and ligand stability in the XIAP-BIR3 binding site in all simulations was
checked visually and then through the Root Mean Square Deviation (RMSD) calculations.
Visually, we observed that, during some simulations, the XIAP-BIR3 N and C termini
fluctuated a lot (see Supplementary Materials Figure S1). Thus, to assess the stability
of the binding site in each simulation, we aligned the protein conformations excluding
both termini (without residues 248–258 for N-terminus and without residues 336–352
for C-terminus) and counted the backbone atom RMSD of the protein core (residues
259–335—see Supplementary Materials Figure S2). The RMSD did not exceed 1Å average
in all simulations, thus confirming the XIAP-BIR3 binding site’s stability. To check the
ligand stability during each simulation, a protein alignment without both termini was
applied at first, and then the ligand RMSDs were calculated. On average, the ligand
RMSDs were smaller than 2Å in all simulations (see Supplementary Materials Figure S3),
thus confirming the ligand stability in the simulated complexes (with only the exception
of ligand in complex 5C7C simulated with WYF parametrization—see Supplementary
Materials Figure S5). During this simulation, the 1-methyl- 3-dimethyl-6-chloroindoline
moiety of the ligand moves from its initial position around 15 ns, and it is positioned rather
outside the XIAP-BIR3 binding site at the end of the simulation (RMSD = 3.97 ± 1.81Å).

Then, MM-PBSA analyses were carried out on the generated MD trajectories. Firstly,
we estimated ∆GMM−PBSA values without taking into account the entropic term, −T∆S, as
usually applied in the literature (Table 1). Among the four parametrizations, the simulation
without any additional parametrization usually applied in theoretical studies has given
rather poor correlations (r = 0.56884 see Figure 2). On the other hand, the simulations with
HMR and HMR + WYF additional parametrizations made it possible to predict ligand
affinities in the correct order and with very good correlation compared to the experimental
data. The best correlation between experimental and predicted ∆G was observed for HMR
parametrization (r ≈ 0.98 see Figure 2A). Even if the correlation with HMR additional
parametrization was very satisfactory, predicted ∆GMM−PBSA values showed a significant
difference (of about 30 kcal/mol) compared to the measured experimental data. We
therefore decided to evaluate the contribution of the entropic part −T∆S, and we tested
two methods described in the literature: the normal mode (NM) [25] method and the
interaction entropy method (IE) [26,27]. The calculated ∆GMM−PBSA values, including the
entropic contribution for each tested simulation protocol, are summarized in Table 1. We
observed that the adding of the entropic member calculated using the NM decreased the
prediction accuracy in all four protocols. The non-tested protocol with NM entropic term
predicted the correct order of ligand affinities. For all of the tested protocols, we obtained a
satisfactory correlation (r ≤ 0.81, Figure 2B). In contrast, the ∆GMM−PBSA values, which
were calculated using the IE method, gave overall better results than those obtained using
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NM. A new MD simulation with the HMR additional parametrization produced a very
good correlation (r = 0.97436; Figure 2C).

Table 1. Experimental binding free energy, ∆Gexp, and calculated ones using the MM-PBSA method,
∆GMM-PBSA, for different parametrizations of the force field.

(a) Without entropic term.

∆Gexp
(kcal/mol)

∆GMM-PBSA (kcal/mol)

Without Additional
Parametrization HMR WYF HMR + WYF

5C7C −7.29 −36.5 ± 4.0 −37.4 ± 4.2 −30.5 ± 5.3 −34.4 ± 5.2

5M6M −10.20 −35.6 ± 7.0 −43.0 ± 4.1 −35.8 ± 8.9 −40.3 ± 5.8

5OQW −10.26 −46.2 ± 4.7 −43.9 ± 5.1 −46.8 ± 4.3 −45.4 ± 5.2

5M6L −11.49 −43.5 ± 5.0 −44.7 ± 4.4 −45.1 ± 5.0 −47.4 ± 3.7

AVPI −8.91 −46.2 ± 4.9 −39.5 ± 6.6 −47.5 ± 9.2 −38.2 ± 5.9

(b) With entropic term calculated using normal mode analysis of harmonic frequencies (NM) or using the interaction entropy method (IE).

∆Gexp
(kcal/mol)

∆GMM-PBSA (kcal/mol)

Without Additional
Parameterization HMR WYF HMR + WYF

NM IE NM IE NM IE NM IE

5C7C −7.29 −25.6 ± 2.8 −10.9 ± 4.4 −26.5 ± 3.0 −17.6 ± 4.6 −18.3 ± 3.2 −17.5 ± 5.4 −23.7 ± 3.6 −8.1 ± 6.3

5M6M −10.20 −18.7 ± 3.7 − 8.9 ± 8.8 −27.5 ± 2.6 −24.9 ± 4.4 −17.7 ± 4.4 −4.6 ± 12.1 −23.5 ± 3.4 −12.1 ± 6.3

5OQW −10.26 −29.9 ± 3.0 −28.0 ± 5.0 −27.0 ± 3.1 −24.2 ± 5.7 −30.8 ± 2.8 −34.0 ± 4.4 −30.1 ± 3.5 −25.8 ± 5.4

5M6L −11.49 −27.9 ± 3.2 −24.2 ± 5.6 −29.2 ± 2.9 −25.6 ± 4.8 −28.8 ± 3.2 −30.0 ± 5.1 −32.3 ± 2.5 −26.1 ± 4.4

AVPI −8.91 −28.7 ± 3.0 −33.2 ± 5.0 −23.0 ± 3.8 −22.8 ± 7.0 −32.2 ± 6.2 −31.7 ± 9.9 −21.0 ± 3.2 −19.5 ± 6.2

In conclusion, the HMR additional parametrization produces the best correlation
between predicted and experimental free energies when the entropic term is not taken into
account (Figure 2). Moreover, this parametrization also maintains a very good performance
when the entropic term calculated using the IE method is included (r = 0.98264 without
entropic term compared to r = 0.97436 with entropy from IE). Moreover, the predicted
∆GMM−PBSA values with the entropic term calculated using the IE method are closer to the
experimental ∆Gexp (Table 1); the differences between the predicted and experimental data
were decreased to 10 kcal/mol.

We also probed the influence of the simulation temps on the correctness of the MM-
PBSA prediction by computing ∆GMM−PBSA values at 10 ns and 25 ns of the simulations
(see Supplementary Materials Table S1). We were able to identify certain trends. In the
prediction without the entropic term, the lengthening of the simulations decreased the
prediction accuracies for the simulations with any additional parametrization and with
WYF additional parametrization, but it increased the exactness in the simulations with
HMR additional parametrization. The same trend was also detected for the predictions
with the entropic temp calculated using the IE method, except for the simulations without
additional parametrization, for which the lengthening of the simulations increased the
prediction accuracies this time. Nevertheless, in the case of predictions with the entropic
term computed using NM, we did not succeed in deriving rules.

Next, we tested the prediction performance protocols on a ligand not belonging to the
synthetic ligand category. We chose to use the AVPI tetrapeptide of Smac. To be able to
compare the predicted free energies for the synthetic ligands to that of AVPI, the CGENFF
force field was also applied to parameterize the AVPI tetrapeptide. As the XIAP-BIR3 3D
structure co-crystallized with only AVPI tetrapeptide is not available in the PDB databank,
we generated this complex by using the docking (see Supplementary Materials Figure S4)
and submitted it to four MD simulation protocols, like for the previous complexes with
synthetic ligands. The prediction accuracy of the binding free energy for the AVPI complex
was also successful in the simulations with HMR additional parametrization, without the
entropic term, as well as with the IE entropic term (Table 1). Very good results were also
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observed for the HMR + WYF additional parametrization protocol without the entropic
term. This confirms that the use of the HMR additional parametrization significantly
increases the exactness of the binding free-energy prediction in the MM-PBSA strategy.
The inclusion of the entropic term calculated using the IE method maintains the correct
accuracy for the HMR additional parametrization protocol, generating predicted values
that are closer to the experimental ones.

To annotate the key interactions established between the studied ligands and
the XIAP-BIR3 domain, contact maps were calculated for all simulated complexes, as
well as their dynamical evolution along MD trajectories (see Supplementary Materials
Figures S5 and S7). Afterward, we chose to focus our analysis on the 5M6L complex.
Indeed, the 5M6L ligand is the most affine one, and we analyzed the contribution of
each residue of XIAP-BIR3 to the ligand binding. To do so, an average ligand-binding
free energy per residue was calculated from the MD simulation with HMR additional
parametrization (Figure 3). The polar and non-polar contribution to binding free energy
par residue was then analyzed separately (Figure 3C,D).
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(A) without entropic term, (B) with entropic term calculated using the normal mode strategy and
(C) with entropic term calculated using interaction entropy method (gray curves—without additional
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Figure 3. Calculated free-energy contribution per residue to ligand binding in 5M6L complex from
molecular dynamics simulation with HMR additional parametrization. (A) ∆GMM-PBSA per residue
without entropic term. (C,D) Polar and non-polar decomposition of the ∆GMM-PBSA per residue.
(B) XIAP-BIR3 binding site view with strongly contributing residues colored in red (polar contribu-
tion) and blue (non-polar contribution).

The analysis results showed that seven residues contribute to the ligand binding in
the XIAP-BIR3 active site with a |∆G| > 3.0 kcal/mol: Thr308, Glu314, Trp323, Leu307,
Asp309, Trp310 and Gly306. Among these residues, the major polar contribution, calculated
as the sum of electrostatic interaction energy and the polar solvation term, was assigned to
the Glu314 (−8.0 ± 8.9 kcal/mol) and Thr308 (−5.6 ± 2.1 kcal/mol). These two residues,
indeed, engage hydrogen bonds with the ligand: Glu314 side chain interacts through a
salt bridge with one hydrogen atom of the protonated nitrogen of the piperazine ring of
the ligand, and Thr308 interacts through its backbone carbonyl group with the second
hydrogen atom. Thr308 established a second hydrogen bond by its backbone nitrogen
atom with the ligand-carbonyl group. The occupation of these three hydrogen bonds at
the course of the trajectory is globally in the same order, 87.4% for Glu314, 89.0% for the
H-bond with Thr308 backbone nitrogen and 84.1% for the H-bond with Thr308 backbone
oxygen atom (see Supplementary Materials Figure S5). In the course of the dynamics, the
fluctuations of the ligand position in the XIAP-BIR3 binding groove occasionally caused
the ligand to approach Asp309 (−1.7 ± 6.4 kcal/mol). Indeed, in 28.9% of the trajectory,
a hydrogen bond is also formed between the protonated nitrogen atom of the piperazine
ring of the ligand and Asp309 main chain carbonyl group.
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The analysis of the non-polar contribution (sum of van der Waals interaction energy
with the non-polar solvation term) revealed several residues as stabilizing the ligand binding
through non-polar contacts, and the most important contributions were detected for Trp323
(−7.9 ± 0.8 kcal/mol), Leu307 (−6.6 ± 0.8 kcal/mol), Thr308 (−5.3 ± 1.0 kcal/mol), Gly306
(−3.3 ± 0.5 kcal/mol), Trp310 (−3.0 ± 0.5 kcal/mol) and Asp309 (−2.9 ± 1.1 kcal/mol).
Interestingly, Thr308 and its neighboring residue Asp309 contribute to the ligand binding
through polar and non-polar interactions.

The published structural and mutation data on the XIAP-BIR3 complex determined
the following residues as being critical in binding the Smac N-terminus: Glu314, Gln319
and Trp323 [12]. The residues annotated in our study showed that the synthetic ligands
interact through the same residues. However, the Gln319 contribution to the synthetic
ligand binding is less important (−2.6 ± 1.3 kcal/mol) according to our study.

2.2. Construction and Validation of a 3D Pharmacophore of Synthetic XIAP-BIR3 Inhibitors

In the final step, we built a representative 3D pharmacophore for the synthetic lig-
ands binding to the XIAP-BIR3 binding groove. Indeed, the pharmacophore approach
has become one of the important ligand-based tools in in silico methodologies for drug
research and development process. The interest of this approach is to highlight essential
motifs for the ligand–target interaction, which can then be applied to guide the design
of new ligands. The LigandScout software [28] used in this study allowed us to generate
the 3D pharmacophore either using only the ligand structures (ligand-based approach)
or using the target structure in addition to the ligand structure (structure-based pharma-
cophore) [29]. In our study, in order to take into account the essential structural motifs
for the interaction with the target, we generated XIAP-BIR3 pharmacophores by using the
structure-based approach.

Our 3D pharmacophore model was built from 5M6L (X-ray structure co-crystallized
with the most affine synthetic ligand to date). To generate the 3D pharmacophore, we
exploited not only the crystallographic complex structure but also the previously generated
MD trajectory simulated with HMR additional parametrization. We built one pharma-
cophore from the X-ray complex structure and another from the 2500 structures representing
the entire MD trajectory (see Supplementary Materials Figure S6). The pharmacophore
built from the X-ray structure had one hydrophobic and one aromatic–hydrophobic feature
more and one hydrogen bond acceptor at least compared to the pharmacophore generated
from MD trajectory (see Supplementary Materials Figure S6). The two pharmacophores
were then aligned and merged, and the resulting pharmacophore comprised 8 features
and 22 exclusion volumes (see Figure 4). Among the eight pharmacophoric features, Lig-
andScout annotated four hydrophobic (H) and one aromatic–hydrophobic features (HAr),
one hydrogen bond acceptor (HBA) and two hydrogen bond donors (HBD). The identified
features of the pharmacophore reflect the ligand interaction with the XIAP-BIR3 binding
site through Lys297, Thr308, Asp309, Glu314, Trp323 and Tyr324 (Figure 4). Thr308, Asp309,
Glu314 and Trp323 residues already emerged as crucial from our free-energy decomposition
per residue (Figure 3). In addition, LigandScout software also highlighted Lys297 and
Tyr324 as important anchoring residues by positioning the hydrophobic features in their
proximity. For Lys297 and Tyr324, we detected via our MM-PBSA analyses their dominant
contribution non-polar one, which is in good agreement with the proposed hydrophobic
characters of these residues. However, these two residues’ contributions to the global
ligand-binding free energy were rather moderate: Lys297 (−2.4 ± 4.1 kcal/mol) and Tyr324
(−1.7 ± 0.8 kcal/mol).

To assess the generated 3D pharmacophore accuracy to discriminate active and inac-
tive compounds, we used it to screen our test chemical library (see Materials and Methods
Table 2) composed of 173 active compounds and 5417 inactive compounds. A good phar-
macophore model would be able to identify a significant portion of active compounds and
as few inactive ones as possible. Thus, an efficient screening should have high sensitivity,
specificity, enrichment factor and area under the ROC curve values. The screening on
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our testing library showed that the pharmacophore n◦1 performed rather weakly in terms
of its sensitivity value (see Table 3). The sensitivity was only 2.9% when we overlaid all
pharmacophoric features on the library ligands and 30.6% when we allowed the software
to randomly discard one feature during alignment on the ligands. In view of these results,
we decided to optimize it by omitting one or more features in order to test the impact
on the overall screening performance. In view of the MM-PBSA results, we first tested
the influence of features linked to Lys297 (first optimization round). We generated three
pharmacophores, starting by deleting one (H4) of the two hydrophobic features linked
to Lys297 (pharmacophore n◦2, see Figure 4). Next, we removed the second remaining
hydrophobic feature (H3), and we conserved the hydrophobic–aromatic feature (HAr)
(pharmacophore n◦3 on Figure 4). Finally, we removed the hydrophobic–aromatic feature
(HAr) instead of the hydrophobic feature H3 (pharmacophore n◦4; see Figure 4).
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We observed that the removal of any of the three Lys297-related features did not
notably improve the performance of the pharmacophore when the alignment of all pharma-
cophore features on the chemolibrary ligands was imposed: the sensitivity increased only
by 1.1–6.9% (pharmacophore n◦2–n◦4; Table 3). In contrast, we noted that the sensitivity
performances improved significantly for each tested pharmacophore when the screening
allowed for the random exclusion of one feature during the alignment on ligands (phar-
macophore n◦1–n◦4, Table 3). For example, the sensitivity increased from 9.8% to 77.5%
for the pharmacophore n◦4. Among the four tested pharmacophores in the first round of
optimization, the n◦4 one produced the best overall performance. We therefore selected it
for the second optimization round. To perform this second optimization round, we ana-
lyzed, in detail, the discarded features in the screening (allowing for the random exclusion
of one feature during the chemical-library alignment on pharmacophore n◦4). We thus
identified that the most frequently omitted feature among the six initial ones was the H1
hydrophobic feature. In view of these results, we generated a pharmacophore n◦5 without
the hydrophobic feature H1 (therefore composed of only five features). The library screen-
ing against this pharmacophore without the exclusion of any feature during alignment on
the library revealed a very good performance (see Table 3). Altogether, the suppression
of the H1 hydrophobic feature was unexpected because it was one of the features located
near Trp323. Indeed, Trp323 is a residue highlighted as a one interacting strongly with the
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ligand in our per-residue free-energy analysis (non-polar contribution). To clarify the role
of every part of the ligand in the interaction with the XIAP-BIR3 binding site, we carried
out a decomposition of the interaction energy per ligand group (see Figure 5). The results
confirmed the outcome of pharmacophore optimization. Indeed, we observed that Trp323
interacts strongly with 2,3-dihydro-pyrrolo[3,2-6]pyridine scaffold (G1 on Figure 5) and
with carbonyl-linker (G3, specially with its hydrophobic CH2 group) and rather weakly
with the morpholine part (G5 in Figure 5). Thus, the suppression of a feature placed on this
morpholine will not affect the synthetic ligand interaction modelling with the XIAP-BIR3
binding site and, in particular, with Trp323. This analysis also highlighted that Tyr324
only plays a minor role in ligand binding (see Figure 5). The H2 presence of the hydropho-
bic feature of our pharmacophore is rather related to the interaction with Trp323 than
with Tyr324.

Table 2. Characteristics of the library used for 3D pharmacophore validation.

Active/inactive cutoff in pIC50 6
Total number of ligands 5590

Number of active molecules 173
Number of inactive molecules 5417

Molecules with 6 > pIC50 > 4.5 not retained 96
Active/inactive ratio 1/31

Number of ligands retained in the testing
library 5494

Table 3. Statistical screening results with the testing chemical library for each different pharmacophore
(TP = selected compounds from 173 active ones; TN = selected compounds from 5417 inactive ones).

Pharmacophore

Number of
Omitted
Features

during Ligand
Alignments

Sensitivity Specificity Enrichment
Factor AUC at 1.5% AUC at 100%

n◦1
0 TP = 5

2.9%
TN = 5417

100% 32.3 1 0.51

1 TP = 53
30.6%

TN = 5413
99.9% 30.0 1 0.65

n◦2
0 TP = 7

4.0%
TN = 5417

100% 32.3 1 0.52

1 TP = 97
56.1%

TN = 5411
99.9% 30.4 1 0.78

n◦3
0 TP = 7

4.0%
TN = 5417

100% 32.3 1 0.52

1 TP = 96
55.5%

TN = 5155
95.2% 8.7 1 0.76

n◦4
0 TP = 17

9.8%
TN = 5416

100% 30.5 1 0.55

1 TP = 134
77.5%

TN = 5056
93.3% 8.7 1 0.87

n◦5 0 TP = 136
78.1%

TN = 5338
98.5% 20.4 1 0.89
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Figure 5. (A) Decomposition of ligand/XIAP-BIR3 interaction energy per ligand group in kcal/mol.
(B) Interaction energy cross-analysis in kcal/mol per ligand group and per residue for the 10 residues
revealed from MM-PBSA free-energy analysis or from pharmacophore construction. (C) XIAP/cAIP1-
2 BIR3 domain sequence alignment, * annotate the residues interacting with the ligand.

In conclusion, this cross-analysis pointed out as important groups for ligand binding
to XIAP-BIR3 the protonated piperazine moiety (G4) and carbonyl-linker (G3), with the two
groups forming hydrogen bonds between ligand and XIAP-BIR3. We also highlighted the
important contribution of the 2,3-dihydro-pyrrolo[3,2-6]pyridine scaffold (G1) and 4-fluoro-
benzyl moiety (G2), which interact mainly in a hydrophobic manner. We observed that the



Molecules 2023, 28, 5155 13 of 19

G1 group interacts mostly with Trp323, while the G2 group interacts simultaneously with
several residues on a moderate level: Lys297, Gly306, Leu307 and Thr308 (see Figure 5B).
These results lead us to believe that this pocket of the BIR3 binding site hosting the group
G2 is not completely filled by published synthetized ligands.

Interestingly, comparing XIAP-BIR3 residues to cIAP1-BIR3 and cIAP2-BIR3 residues
revealed crucial residues that bind to synthetic ligands (see Figure 5C). Only three residues
are not conserved between XIAP and cIAP1-2: Lys297/Asp, Thr308/Arg and Asp309/Cys.
It can therefore be concluded that targeting these three residue side chains could increase the
ligand selectivity for XIAP versus cIAP1-2. Among them, the Lys297 side-chain interaction
through pharmacomodulations of the G2 group seems to be the most promising way to
improve the selectivity.

A pharmacophore for XIAP-BIR3 inhibitors has already been published in the litera-
ture [30]. Opo and co-workers also generated their pharmacophore by using LigandScout
software, but from the 5OQW X-ray structure, one of the structures used in our MM-
PBSA study. Unlike us, their pharmacophore was generated by also considering the
co-crystallized water molecules in the XIAP-BIR3 binding site, and it is composed of twelve
features: four hydrophobic features, one positive ionizable group, three hydrogen bond
acceptors, five hydrogen bond donors and fifteen exclusion volumes. The performance of
our optimized pharmacophore n◦5 is of the same level compared to the AUC value, and
it is even better from the point of view of the enrichment factor, 20.4, with respect to 10.0.
Indeed, our simpler 3D pharmacophore, with only five features, represents the chemical
groups necessary for synthetic ligands to bind in the XIAP-BIR3 binding groove.

3. Conclusions

The aim of this study was to establish a computational tool that would allow us to
design and/or optimize the XIAP-BIR3 selective synthetic ligands. Firstly, we demonstrated
that the MM-PBSA approach for free-energy calculation from molecular dynamics predicts
ligand-binding affinities in the right order (CHARMM36 force field and HMR additional
parametrization). The inclusion of the entropic term calculated using the interaction energy
methodology maintains good predictability of the binding affinities, and the free-energy
predicted values tend to be closer to the experimental ones. Our study showed that the key
residues for synthetic ligand binding are Thr308 and Glu314. They both form hydrogen
bonds with the ligand protonated nitrogen of the piperazine ring and with the ligand
carbonyl-linker part. Therefore, the presence of double H-bond donors, as well as the H-
bond acceptor on ligands, is required to bind to XIAP-BIR3. Indeed, the 3D pharmacophore
for XIAP-BIR3 inhibitors, built and optimized by us, reflects these observations. Among the
retained five features that are necessary for the binding of synthetic ligands to XIAP-BIR3,
we revealed two hydrogen-bond donors and one hydrogen-bond acceptor. Nevertheless,
these H-bonds are formed either through Thr308 main-chain atoms or through Glu314
side-chain carboxyl groups. Glu134 is a conserved residue (Glu/Asp) in the IAPs family
and does not allow us to reach XIAP-BIR3 ligand selectivity.

We also highlighted that the hydrophobic interactions are established principally by
Trp323, Leu307, Thr308, Gly306, Trp310, Asp309 and Lys297. Indeed, our 3D pharma-
cophore contains two hydrophobic features, 2,3-dihydro-pyrrolo[3,2-6]pyridine scaffold
with Trp323) and 4-fluoro-benzyl moiety with various residues: Lys297, Gly306, Leu307
and Thr308. Among these residues, only three are not conserved between XIAP and cIAPs
(Lys297, Thr308 and Asp309), which can be exploited to design XIAP-BIR3 versus cIAP1-2
specific small inhibitory compounds. According to our study, the most promising strategy
seems to be the pharmacomodulations of the 4-fluorobenzyl moiety interacting with the
Lys297 side chain.
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4. Materials and Methods
4.1. Structure Preparation

During this study, X-ray structures of the following complexes with XIAP-BIR3 re-
trieved from the PDB database were used (Table 4): 5C7C [20], 5M6M [21], 5OQW [22] and
5M6L [21]. Then, to calculate the experimental value of ligand binding free energy ∆Gexp,
the following equation was applied:

∆Gexp = RT × ln IC50 (1)

where the gas constant value was R = 1.985 8775 × 10−3 kcal·K−1·mol−1 and T = 303, 15 K.

Table 4. X-ray structures used in this study summary.

PDB ID Resolution (Å) R-Free IC50 (nM) ∆Gexp
(kcal/mol)

5C7C [20] 2.32 0.286 5500 −7.29

5M6M [21] 2.37 0.233 44 −10.20

5OQW [22] 2.31 0.246 40 −10.26

5M6L [21] 2.61 0.263 5.1 a −11.49

AVPI Docking into
5OQW - 320 −8.91

a Published value was an EC50 value.

As the XIAP-BIR3 complex with Smac AVPI tetra peptide was not solved to date, to
prepare this complex, we chose to apply the docking strategy. The AVPI tetra peptide, which
was retrieved from the PDB structure of XIAP-BIR3 co-crystallized with full SMAC (PDB
ID: 1G73 [12]), was docked into the X-ray crystal structure 5C7C of XIAP-BIR3, without
waters and bounded synthetic ligand. The docking was carried out using Glide software
(Schrödinger®) with the default parameters [31]. The protein structure was prepared before
using Schrödinger Protein Preparation Wizard (PrepWizard) [31]. The Glide score was
used to evaluate the generated AVPI poses, and the pose with the best score was selected
as a starting structure for MD simulations.

4.2. Molecular Dynamics Simulations

All dynamics simulations were performed using NAMD 2.13 [32]. The all-atom
CHARMM36m forcefield [33,34] was used for the XIAP-BIR3 protein, and CGENFF [35]
was used for ligands. Two additional force fields were applied in this order: (i) hydrogen
mass repartition (HMR) [23] and (ii) additional parametrizations of π-cation interaction for
tryptophan, tyrosine and phenylalanine (WYF) residues [24]. The starting systems were
generated by the CHARMM-GUI server [36]. The three Cys residues, Cys300, Cys303 and
Cys327, coordinating the zinc cation were parametrized as anionic cysteine (CYM), and the
four histidine residues were modeled along the PropKa suggestion [37,38]: 320 and 346 as
HSD, and 302 and 343 as HSE. Each system was solvated using the TIP3P explicit water
model [39] within a rectangular box; the box size ensured that the simulated complex was
at a minimum distance of 10 Å from the edge. To neutralize the total charge system, 0.15 M
of KCl was added. The vacuum dielectric constant was used during all calculations. Cubic
periodic boundary conditions were applied to the systems by using the IMAGE algorithm.
The applied cutoff distance was 16 Å, and van der Waals interactions were truncated using
a force-switching function between 10 and 12 Å. The Particle Mesh Ewald (PME) was used
to calculate long-range electrostatic interactions [40]. The SHAKE algorithm was applied to
restrain all bonds involving hydrogen atoms.

Each complex was subjected to 4 different dynamics simulations to assess the im-
pact of additional parameters of the force field (HMR and WYF). Firstly, each underwent
energy minimization in 10,000 steps, with harmonic restraints applied on heavy atoms
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(1 kcal/mol/Å2 force constant for backbone atoms and 0.5 kcal/mol/Å2 force constant
for sidechain atoms), followed by 10,000 steps of minimization without any restraints.
Next, the minimized systems were heated to 303.15 K, and the dynamics were temperature-
equilibrated during 250 ps via heating reassignment under NVT conditions, with harmonic
restraints applied to heavy atoms. Finally, the systems ran freely for 50 ns under NPT condi-
tions, with a time step of 2 fs for the simulations without HMR additional parametrization
and 4 fs with HMR parametrization. Langevin dynamics with a damping coefficient of
1 ps−1 was used to maintain the system temperature, and the Nosé–Hover–Langevin
piston method was used to control the pressure at 1 atm. Production trajectories were
saved every 20 ps, and subsequent analyses were performed using the CHARMM program
version c40b2 [41].

4.3. MM-PBSA Prediction

To estimate the binding free energy of a ligand to a receptor, the MM-PBSA method
was applied. MM-PBSA calculates the binding free energy as the sum of the classical
enthalpic contributions (bound, van der Waals and electrostatic energies), the solvation-free
energies and the entropic contribution [42]. In our protocol, we simulated only the complex
and the ensemble of data for the free receptor and ligand for each snapshot created by
removing the appropriate atoms. Then, the binding free energy was calculated using the
following equation [43,44]:

∆G = 〈Einte〉+
〈

Gpolar

〉
+
〈

Gnon−polar

〉
− T〈S〉 (2)

where the first term, Einte, is the standard Molecular Mechanics ligand–receptor interaction
energy calculated from electrostatic and van der Waals interaction energies; and Gpolar
and Gnon−polar are the polar and non-polar contributions to the solvation free energies,
respectively. Gpolar was determined by solving the Poisson–Boltzmann equation, whereas
the Gnon−polar term was estimated from a linear relation to the solvent accessible surface
area (SASA), using the equation 0.00542 × SASA + 0.92. The value of Gpolar and Gnon−polar
in each trajectory snapshot was calculated as follows:

Gpolar = GPB
Complex − GPB

Recptor − GPB
Ligand (3)

Gnon−polar = GSASA
Complex − GSASA

Recptor − GSASA
Ligand (4)

To calculate all contributions to the MM-PBSA CHARMM, homemade scripts
were applied.

For the last term, entropic contribution, three approaches were tested: firstly, (i) the
entropic term was omitted, and then the entropic term was approximated using either
(ii) normal mode analysis of harmonic frequencies calculated at the Molecular Mechanics
level [25] or using the recently published approach (iii) interaction entropy that investigates
the entropy change upon binding [26,27]. The interaction entropy (IE) contribution to
binding free energy is defined as follows:

−T∆S = kBT× ln
〈

exp
{

∆Einte
kBT

}〉
(5)

where ∆Einte = Einte − 〈Einte〉 is the fluctuation of the receptor–ligand interaction energy.
The ensemble average of 〈Einte〉 was extracted from MD simulations.

4.4. 3D Pharmacophore Building

The 3D pharmacophore was generated using the 3D structure of human XIAP-BIR3
co-crystallized with a synthetic inhibitor (PDB ID code 5M6L [21]) and using the structural
data resulting from its MD simulations with additional HMR parametrization. LigandScout
software [28] was applied for the detection and interpretation of crucial interaction patterns
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between XIAP-BIR3 and the ligand. LigandScout extracts and interprets ligands and their
macromolecular environment from PDB files and automatically creates and visualizes
advanced 3D pharmacophores. Besides the features representing the interaction of the
ligand with the target (as hydrogen bond donor, hydrogen bond acceptor, hydrophobic
group, etc.), we also generated our pharmacophore exclusion volumes.

In order to compare the pharmacophore performance during the optimization rounds,
we referred to the evaluation metrics, such as sensitivity, specificity, enrichment factor and
area under the ROCs (Receiver Operating Characteristics) curve. The purpose of these
statistical tests is to clearly differentiate the pharmacophore performances from each other.
Sensitivity determines the model’s ability to retain active molecules. In contrast, specificity
assesses the model’s ability to reject inactive molecules. The enrichment factor (EF) is the
ratio between the number of active ligands aligned with the pharmacophore and the total
number of ligands. The enrichment factor therefore measures the enrichment of active
compounds in the hit list compared to a pure random selection. A method that is superior
to random selection results in an EF value greater than 1. The area under the ROC curve
(AUC), on the other hand, evaluates the probability that, for two screened ligands, one
active and the other inactive, the score value is higher for the active than for the inactive.
The AUC value between 0.5 and 1 is mandatory for a model to be validated (AUC = 1
perfect prediction; AUC = 0.5 random prediction).

These tests are defined by the following equations [45]:

Sensitivity =
N selected actives

N total actives
=

TP
A

(6)

Specificity =
H discarded inactives

H total inactives
=

TN
I

(7)

EF =
TP

Htot
A
D

(8)

where TP is the number of active ligands aligned with the pharmacophore, TN is the
number of discarded inactive ligands and FP is the number of inactive ligands aligned with
the pharmacophore. Moreover, Htot = (TP + FP) is the total number of aligned ligands, A is
the number of active ligands in the initial dataset, I is the number of inactive ligands in the
initial dataset and D is the total number of ligands in the initial dataset.

In general, an efficient screening should have high values of sensitivity, specificity,
enrichment factor and area under the ROC curve. During the screening, we applied an
alignment of all features on the ligands and the extraction mode based on the most stable
ligand energy conformation. For each pharmacophore, we carried out two screenings:
(i) in the first one, we imposed that all features of the 3D pharmacophore model had to be
aligned to ligands; and (ii) in the second screening, the software could randomly discard
one feature during the alignment on ligands.

4.5. Testing Chemical Library

To test our 3D pharmacophore performance, we created a validation dataset. To
build it, we first detected all compounds annotated with XIAP-BIR3 biological activities
in CHEMBL database [46,47]. From this dataset, the redundant ligands and the peptide
ligands or peptide-mimetic ones were deleted. This resulted in a dataset of 487 synthetic
XIAP-BIR3 ligands. Then, it was necessary to determine a cutoff (threshold) to classify
the ligands in terms of biological activity (active/inactive). As the number of ligands
available for XIAP-BIR3 was limited, we applied the approach that is usually used in
the literature for targets that are not perfectly annotated [48]. In this strategy, a pIC50
(pIC50 = −log10IC50) value of 6 is usually used as a cutoff. All molecules with a pIC50
value greater than 6 are considered active, and those with a value under 6 are considered
inactive. Moreover, molecules with a pIC50 value between 4.5 and 6 are excluded from
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the dataset (see Table 2). This led us to a dataset with a ratio of active to inactive ligands
of 1/1.3 (i.e., 173 active ligands with respect to 218 inactive ligands). This ratio was not
sufficient to obtain statistically significant values during the screening and correctly assess
its performance.

Thus, an increase in the number of inactive compounds in our dataset was necessary to
improve the screening performance, and to do so, we included XIAP-BIR3 decoys from the
DUD-E database [48] (compounds were assumed to be inactive and built from fragments
of active molecules). For our target, there were 5199 decoys available that we added to our
starting dataset, resulting in a library of 5686 compounds. This library was then used to
evaluate the performance of our 3D pharmacophores (see Table 2).

The 3D structure of library compounds was generated and protonated at pH = 7.4,
using LigandPrep tool of Schrödinger® software [31].
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atoms along the MD simulations; Figure S3: The RMSD of the ligands along the MD simulations;
Figure S4: (A) Selected pose from docking for AVPI into 5C7C structure. (B) The alignment of the end
structure from molecular dynamics simulation on the initial one for four studied complexes with
synthetic ligands; Figure S5: Key interacting residues of XIAP-BIR3 with ligands and their dynamical
evolution along MD trajectories for all simulated complexes; Figure S6: Two pharmacophores used to
create the final pharmacophore; Figure S7: ∆GMM-PBSA per residue for the five studied complexes;
Table S1: Experimental binding free energy ∆Gexp and calculated ones using the MM-PBSA method
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