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Abstract: Symmetrical and dissymmetrical bolaforms were prepared with good to high yields from
unsaturated L-rhamnosides and phenolic esters (ferulic, phloretic, coumaric, sinapic and caffeic)
using two eco-compatible synthetic strategies involving glycosylation, enzymatic synthesis and
cross-metathesis under microwave activation. The plant-eliciting activity of these new compounds
was investigated in Arabidopsis model plants. We found that the monocatenar rhamnosides and
bolaforms activate the plant immune system with a response depending on the carbon chain length
and the nature of the hydrophilic heads. Their respective antioxidant activities were also evaluated,
as well as their cytotoxic properties on dermal cells for cosmetic uses. We showed that phenolic
ester-based compounds present good antioxidant activities and that their cytotoxicity is low. These
properties are also dependent on the carbon chains used.

Keywords: amphiphilic; monocatenar; bolaform; phenolic acids; rhamnosides; antioxidant;
microwaves; plant immunity; dermal cytotoxicity

1. Introduction

Surfactants are natural or synthetic amphiphilic compounds presenting specific polar
and non-polar domains with typical solubility in water. They are able to reduce the
interfacial tension of mixtures (oil and water) by adsorbing at the interfaces. Surfactants
are classified into three large families according to the nature of their hydrophilic part [1]:
ionic (cationic or anionic), zwitterionic (or amphoteric) and neutral (Figure 1) [2–7]. The
malleability of their structure and the diversity of their properties allow them to be used in
many products, particularly in household and industrial detergents, cosmetic formulations
and as plant defense inducers [8–11]. Anionic surfactants (low molecular weight cation
associated with sulphates, sulfonates or carboxylates) are the most widely used industrially,
particularly in the field of detergents, thanks to their foaming properties [12–16]; cationic
surfactants (trimethylated quaternary ammonium salts or pyridinium salts) [17–19] are
active products in softeners (used to reduce static electricity) or shampoos.
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Figure 1. Examples of surfactants. 

Surfactants can also be classified into several categories according to their structure 
(number and arrangement of hydrophilic and hydrophobic poles within the molecule). 
The most common structure (in derivatives called monocatenar surfactants) displays a 
hydrophilic head and a hydrophobic chain. There are surfactants with several 
hydrophobic chains grafted onto the same hydrophilic head (double-stranded and three-
stranded surfactants), but several hydrophilic heads can also be linked to one or more 
hydrophobic chains (called bolaform or twinned surfactants) [20]. 

In the current context of sustainable development, the lower availability of raw 
materials of petrochemical origin and consumers’ acceptance of a “bio-sourced 
surfactant” have increased interest in new surfactant technologies worldwide. 
Amphiphilic molecules from agro-resources are an innovative and interesting alternative 
for the substitution of petroleum-derived surfactants because they present relatively good 
biodegradability and low toxicity [21]. However, their production cost remains a limiting 
factor for their development [22]. Among the bio-based surfactants recently developed 
with these criteria, we can exemplify a sugar head containing alkyl polyglycosides (APG) 
[23–25]. 

Partially or completely bio-based surfactants are often anionic or non-ionic, including 
glycolipid, lipopeptide, phospholipid or even fatty acid types [26,27]. The hydrophilic 
head of the molecule can be a sugar, a carboxylic acid, an amino acid, an alcohol or 
peptides, while the lipophilic part is often a fatty acid or a fatty alcohol [28–30]. Bio-
surfactants from agro-resource origins or plant bio-based surfactants are compounds that, 
in general, have one of the two hydrophilic or hydrophobic moieties of plant origin. 

The synthesis of bio-sourced surfactants based on sugars has previously been 
described in the literature, particularly xylosides and rhamnosides [28–34]. Indeed, in 
1993, 1,12-digluconamidododecane was synthetized from D-gluconolactone [35]. In 2004, 
Satgé and al. prepared a bolaform surfactant from D-galactose by a microwave-assisted 
glycosylation of a D-galactose protected by an unsaturated long-chain alcohol, followed 
by metathesis in the presence of the Grubbs I catalyst; hydrogenation in the presence of 
(Rh/Al2O3, H2) led to the saturated bolaform [36]. In 2010, K. Dzulkefly et al. synthesized 
symmetrical bolaform amphiphiles from an acid chloride with D-glucose as the 
hydrophilic head [37]. 

Sugar based-bolaamphiphiles have also been prepared, as exemplified by D-xyloside 
or L-rhamnosides-based bolaamphiphiles [31,32]. In a previous work [38], we described 
fatty ester-based bolaamphiphiles derived from phloretic acid and dissymmetric 
bolaamphiphiles with rhamnose and phloretic moieties as polar heads. The first step 
consisted of glycosylation of the sugar, followed by the enzymatic esterification of the 
phloretic acid with lipase B from Candida antarctica (CALB). Finally, a classical cross 
metathesis reaction using a Grubbs I catalyst led to the development of bolaform 
compounds. However, the kinetics of these reactions was low for an industrial application 
and the purification requires several chromatographies on silica columns, which are time-
consuming and solvent-intensive processes. 

Herein, we discuss our newly developed approaches to obtain these bio-based 
compounds using two eco-compatible and fast synthetic methods coupling either 
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Surfactants can also be classified into several categories according to their structure
(number and arrangement of hydrophilic and hydrophobic poles within the molecule).
The most common structure (in derivatives called monocatenar surfactants) displays a
hydrophilic head and a hydrophobic chain. There are surfactants with several hydrophobic
chains grafted onto the same hydrophilic head (double-stranded and three-stranded surfac-
tants), but several hydrophilic heads can also be linked to one or more hydrophobic chains
(called bolaform or twinned surfactants) [20].

In the current context of sustainable development, the lower availability of raw ma-
terials of petrochemical origin and consumers’ acceptance of a “bio-sourced surfactant”
have increased interest in new surfactant technologies worldwide. Amphiphilic molecules
from agro-resources are an innovative and interesting alternative for the substitution of
petroleum-derived surfactants because they present relatively good biodegradability and
low toxicity [21]. However, their production cost remains a limiting factor for their devel-
opment [22]. Among the bio-based surfactants recently developed with these criteria, we
can exemplify a sugar head containing alkyl polyglycosides (APG) [23–25].

Partially or completely bio-based surfactants are often anionic or non-ionic, including
glycolipid, lipopeptide, phospholipid or even fatty acid types [26,27]. The hydrophilic head
of the molecule can be a sugar, a carboxylic acid, an amino acid, an alcohol or peptides,
while the lipophilic part is often a fatty acid or a fatty alcohol [28–30]. Bio-surfactants from
agro-resource origins or plant bio-based surfactants are compounds that, in general, have
one of the two hydrophilic or hydrophobic moieties of plant origin.

The synthesis of bio-sourced surfactants based on sugars has previously been described
in the literature, particularly xylosides and rhamnosides [28–34]. Indeed, in 1993, 1,12-
digluconamidododecane was synthetized from D-gluconolactone [35]. In 2004, Satgé and
al. prepared a bolaform surfactant from D-galactose by a microwave-assisted glycosylation
of a D-galactose protected by an unsaturated long-chain alcohol, followed by metathesis
in the presence of the Grubbs I catalyst; hydrogenation in the presence of (Rh/Al2O3, H2)
led to the saturated bolaform [36]. In 2010, K. Dzulkefly et al. synthesized symmetrical
bolaform amphiphiles from an acid chloride with D-glucose as the hydrophilic head [37].

Sugar based-bolaamphiphiles have also been prepared, as exemplified by D-xyloside
or L-rhamnosides-based bolaamphiphiles [31,32]. In a previous work [38], we described
fatty ester-based bolaamphiphiles derived from phloretic acid and dissymmetric bolaam-
phiphiles with rhamnose and phloretic moieties as polar heads. The first step consisted of
glycosylation of the sugar, followed by the enzymatic esterification of the phloretic acid with
lipase B from Candida antarctica (CALB). Finally, a classical cross metathesis reaction using
a Grubbs I catalyst led to the development of bolaform compounds. However, the kinetics
of these reactions was low for an industrial application and the purification requires several
chromatographies on silica columns, which are time-consuming and solvent-intensive
processes.

Herein, we discuss our newly developed approaches to obtain these bio-based com-
pounds using two eco-compatible and fast synthetic methods coupling either glycosylation
or enzymatic synthesis and activation by microwaves [39], which can reduce the reaction
times and enhance the selectivity (few degradation products and appropriate quantities
with no excess in one or the other substrates). Furthermore, greener solvents have been
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employed and demonstrated success as a reacting medium. For the processing and purifica-
tion of the compounds, automated flash chromatography was used to considerably reduce
the purification times. In these experiments, we compared old methodologies with the new
approaches that we developed. Subsequently, we designed a panel of bio-based bolaforms
from L-rhamnose (sugar from pectin) and other phenolic acid derivatives of lignin, such
as phloretic, para-coumaric, ferulic, caffeic and sinapic acids, which could present better
antioxidant properties (Figure 2).
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Figure 2. Structures of derivatives of hydroxycinnamic acids.

The antioxidant properties of the monocatenar and bolaform adducts were then
evaluated. Because rhamnose-based surfactants, classified as rhamnolipid mimetics, are
well known for their antifungal properties and their ability to trigger an innate immune
response in Arabidopsis thaliana [40], we also investigated the plant-eliciting properties of
the monocatenar and bolaform adducts. Finally, cytotoxicity on dermal fibroblasts was also
tested for a potential use in cosmetics.

2. Results and Discussion
2.1. Synthesis

The glycosylation of L-rhamnose (Scheme 1) was initially performed with
p-toluenesulfonic acid (PTSA) as a catalyst under conventional heating conditions with or
without a solvent (Table 1). Low yields were obtained at 80 ◦C for 48 h (Table 1, entries 1
and 2). The time and temperatures were decreased to limit sugar degradation but similar
results were obtained (Table 1, entries 3–6); however, the yields increased in the absence of
a solvent, as the alcohol itself could be used as a solvent [2–7].
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Scheme 1. Glycosylation of L-rhamnose.

In order to increase the yield while avoiding the degradation of the starting reagents,
we induced the reaction by microwaves [36,39,41]. First, the reaction conditions were
optimized with a combination of L-rhamnose/Hex-5-enol using various conditions of time,
temperature and power (Table 2).
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Table 1. Preliminary results for L-rhamnose glycosylation under classic thermic conditions.

Entry Alcohol Conditions Rhamnoside/Isolated Yields (%) after Flash
Chromatography (CH2Cl2/MeOH: 9/1)

1 Hex-5-enol THF, 80 ◦C, 48 h 1a/19

2 Dec-9-enol THF, 80 ◦C, 48 h 5a/10

3 Hex-5-enol THF, 60 ◦C, 48 h 1a/5

4 Dec-9-enol THF, 60 ◦C, 48 h 5a/5

5 Hex-5-enol THF, 60 ◦C, 48 h
Addition of the catalyst 3 times 1a/7

6 Dec-9-enol THF, 60 ◦C, 48 h
Addition of the catalyst 3 times 5a/7

7 Hex-5-enol Neat, 60 ◦C, 5 h 1a/38

8 Dec-9-enol Neat, 60 ◦C, 5 h 5a/40

L-rhamnose (1 eq.), alcohol (2 eq.), PTSA (0.6 eq.).

Table 2. Glycosylation of L-rhamnose with hex-5-enol in THF (5 mL) under microwave conditions.

Entry Ratios (eq.)
L-Rhamnose/Hex-5-enol/PTSA Conditions Isolated Yields in 1a (%)

(Combiflash)

1 1/2/0.6 35 ◦C, 5 min, 80 W -

2 1/2/0.6 35 ◦C, 10 min, 80 W 17

3 1/2/0.6 80 ◦C, 35 min, 60 W 40

4 1/2/0.6 60 ◦C, 60 min, 60 W 48

5 1/2/0.6 80 ◦C, 60 min, 60 W 50

6 1/4/0.6 60 ◦C, 60 min, 60 W 58

7 1/4/0.6 80 ◦C, 60 min, 60 W 55

8 1/4/0.6 60 ◦C, 120 min, 60 W 64

9 1/6/0.6 60 ◦C, 120 min, 60 W 62

10 1/6/0.6 80 ◦C, 60 min, 60 W 60

The best results were obtained with an excess of four equivalents of 5-hexen-1-ol at a
temperature of 60 ◦C for 2 h with a power of 60 W (Table 2, entry 8). The more homogeneous
heating achieved by the microwaves improved the yield from 19% by conventional heating
over 48 h to nearly 64% in only 2 h. It should also be noted that under these conditions,
no degradation of rhamnose was observed. These same conditions were then used for the
synthesis of L-rhamnosides of different chain lengths. The results obtained are summarized
in Table 3.

Rhamnosides were obtained with yields between 47 and 64%, which are inversely pro-
portional to the chain length of the alkyl groups, as observed in the literature with sugars
such as D-glucose, D-galactose and D-mannose [42]. The use of microwaves considerably
reduces the reaction time and also improves the selectivity (few degradation products).
Moreover, 2-methyltetrahydrofuran and γ-valerolactone were used as greener solvents [43]
and they led to better yields, especially γ-valerolactone (Table 2, entries 2 and 8 vs. entries
1 and 7, respectively). This can be explained by the more polar and less viscous character of
these solvents, which are favorable to the activation of the reagents under microwaves [44].
The formation of the rhamnosides was confirmed by IR (bands at 2926 cm−1 and 1640 cm−1,
respectively, for the CH3 group of the rhamnose and the terminal alkene function on the
unsaturated alcohols) and 1H NMR, with a shift at 1.25 ppm relative to the CH3 in the C6
position of rhamnose and signals between 4.52–4.72 ppm and 3.17–3.58 ppm for all the
protons of rhamnose and at 4.98 ppm and 5.80 ppm for the terminal alkene function. The
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13C NMR also confirmed the formation of rhamnosides with a terminal insaturation at
115.2 ppm and 139.2 ppm. In order to obtain bolaform compounds from these monocate-
nars, a cross-metathesis reaction (Scheme 2) was performed from rhamnosides using two
types of Grubbs catalyst (Grubbs I and Grubbs II).

Table 3. Glycosylation of L-rhamnose under microwaves (60 ◦C, 120 min, 60 W).

Entry Alcohol Solvent (5 mL) Rhamnoside Isolated Yields (%)
(Combiflash)

1 Hex-5-enol THF 1a 64

2 Hex-5-enol γ-valerolactone 1a 66

3 Hex-5-enol 2-methyltetrahydrofuran 1a 63

4 Hept-6-enol THF 2a 60

5 Oct-7-enol THF 3a 50

6 Non-8-enol THF 4a 53

7 Dec-9-enol THF 5a 48

8 Dec-9-enol γ-valerolactone 5a 73

9 Dec-9-enol 2-methyltetrahydrofuran 5a 55

10 Undec-10-enol THF 6a 47
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Scheme 2. Metathesis of L-rhamnoside.

In the first step, we used classical conditions in the presence of Grubbs I with a
conventional thermal activation. After several purification steps by silica chromatography,
and with the addition of activated carbon and filtration of the celite, we obtained very low
yields, lower than 20% (Table 4), regardless of the carbon chain length (Table 4, entries 1–3).
These low yields could be explained not only by the purification steps or by the nature
of the Grubbs I catalyst, which is less reactive compared to other generations, but also by
the solvent used (the dichloromethane in which rhamnosides are not very soluble). The
activation through microwaves also induced higher yields (37 and 52%, respectively, for
carbon chains of 12 or 10 carbons; Table 4, entries 4 and 5) with a Z/E ratio of 20/80 as
confirmed by NMR. These yields were again improved to 60 and 77% by using a Grubbs II
catalyst and a mixture of CH2Cl2/MeOH (9/1) (Table 4, entries 7 and 8). Similar results
have been also observed concerning the C18 chain (Table 4, entries 3, 6 and 9) and optimal
conditions were used to prepare compound 10a involving a C20 chain (Table 4, entry 10).
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Table 4. Cross metathesis of rhamnosides.

Entry Monocatenar
Rhamnoside Conditions Grubbs Catalyst (0.1 eq.) Purification Bolaform Rhamnoside

Isolated Yields (%)

1 1a CH2Cl2 Grubbs I Silica
Chromatography

7a
19

2 2a CH2Cl2 Grubbs I Silica
Chromatography

8a
13

3 5a CH2Cl2 Grubbs I Silica
Chromatography

9a
10

4 1a CH2Cl2/MeOH (9/1) Grubbs I CombiFlash 7a
52

5 2a CH2Cl2/MeOH (9/1) Grubbs I CombiFlash 8a
37

6 5a CH2Cl2/MeOH (9/1) Grubbs I CombiFlash 9a
31

7 1a CH2Cl2/MeOH (9/1) Grubbs II CombiFlash 7a
77

8 2a CH2Cl2/MeOH (9/1) Grubbs II CombiFlash 8a
60

9 5a CH2Cl2/MeOH (9/1) Grubbs II CombiFlash 9a
56

10 6a CH2Cl2/MeOH (9/1) Grubbs II CombiFlash 10a
32

This synthetic methodology was extended for the preparation of bolaforms derived
from hydroxycinnamic acids, which are widely used in cosmetics and are known for their
antioxidant properties [45–59]. We used a method previously described in the literature [38]
but improved the yields by using the CombiFlash technique for the purification. These
bolaforms derived from cinnamic acids were prepared in two steps. The first step consists
of synthesizing monocatenar esters from hydroxycinnamic acids and unsaturated fatty
alcohols of different chain lengths. These monocatenar compounds were synthesized by
a chemoenzymatic method in the presence of a lipase (lipase Novozym 435, lipase B from
Candida antarctica “CAL-B”). According to the results of the literature [38], we chose 2-
methyl-2-butanol as a solvent because of the stability and reactivity of the “CAL-B” enzyme.
Polar alcohol allows for better chemical and thermal stability of the enzyme, but also avoids
the possibility of having a competitive esterification with the starting phenolic acids.

Initial experiments with phloretic acid (used in excess amounts to obtain better yields)
and alcohols of different unsaturated chain lengths (5-hexen-1-ol, 6-hepten-1-ol, 9-decen-
1-ol 10-undecen-1-ol respectively) under the conditions described by Obounou et al. [38]
showed low yields of phloretic acid esters despite good conversion (Table 5). Therefore,
we modified the purification method by using a semiautomatic method with CombiFlash
coupled with a UV detector at the output (UV1 = 280 nm and UV2 = 360 nm). After several
trials, the elution program retained for all the products was as follows: a flow of 15 mL/min,
3 min eluting with 92% petroleum ether and 8% ethyl acetate, 27 min with 80% petroleum
ether and 20% ethyl acetate and 32 min with 60% petroleum ether and 40% ethyl acetate.
This eluting program allowed the recovery of the different pure monocatenars in a single
step as opposed to a classical purification by flash chromatography, which requires several
purification steps. This new purification method was very efficient in reducing product
losses because the yields in the esters were closed to the conversions (Table 5).
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%

1b 97 95 12

2b 90 88 28

3b 97 96 46

4b 85 79 31

After purification, these esters were characterized by infrared spectroscopy (IR), nu-
clear magnetic resonance (NMR) and mass spectrometry. In FTIR, we observed an elon-
gation band at 1215 cm−1, characteristic of the phenol function; a band at 1640 cm−1,
characteristic of the alkene function; and a band at 1704 cm−1 corresponding to the ester
(C=O) function. The 1H NMR shows two doublets between 7.01 and 6.72 ppm (integrating
for 8 H) corresponding to the aromatic protons, a multiplet for the protons of the alkene
function between 5.82 and 4.95 ppm and a triplet at 4.02 ppm, which corresponds to the
protons in alpha position of the ester function. The 13C NMR also confirms the presence of
the aromatic ring (between 130 and 115 ppm), the carbonyl ring (173 ppm) and the alkene
ring (131 ppm).

This methodology was extended to other phenolic acids (paracoumaric, ferulic, caffeic
and sinapic). The first experiments carried out with these different acids in 2-methyl-2-
butanol (2M2B) did not give any result for some of them (ferulic and sinapic acids) because
of their very low solubility in 2M2B. Therefore, we used a mixture of 2M2B/THF (1/2)
for caffeic acid and acetone for sinapic acid, respectively, as the solvents. However, the
yields obtained from these acids were lower compared to those obtained with phloretic acid
(Table 6). This result can be explained by the presence of an unsaturation in the α-position of
the acid function, which reduces their reactivity towards enzymatic transformations [50,51];
this is not the case with phloretic acid.

In the second step, the synthesis of phloretic ester bolaforms was first performed by a
metathesis in the presence of a Grubbs I catalyst added in 6 portions for 40 min at 45 ◦C and
under microwave activation. These conditions led to low yields of C10 (20%), C12 (16%)
and C18 (24%) bolaform compounds, respectively. We subsequently used the more reactive
Grubbs II catalyst; after 40 min under microwave conditions, the yields were improved
(Table 7). The same experiment was extended using the para-coumaric esters 5 and 6b;
good yields were obtained with a short carbon chain, while the yields remained relatively
low with a longer chain (Table 7).

The compounds were classically characterized by IR, NMR, UV and elemental analysis.
In IR, we identified the band at 1704 cm−1 of the carbonyl group, the band between
1640–1690 cm−1 corresponding to the double bond and the elongation band at 1215 cm−1,
characteristic of the phenol function. In NMR, the singlet at 5.37 ppm integrating the two
protons was also significant for the alkene function.

In order to obtain a system with both a good hydrophilic character (necessary, for ex-
ample, for a good interaction with phospholipid membranes) and good antioxidant activity,
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we considered dissymmetric bolaform surfactants with a glycosylated head (L-rhamnose)
and the other based on a hydroxycinnamic acid derivative. These dissymmetric bolaform
surfactants were prepared by cross-metathesis. Different methods were tested according
to the protocols described in the literature using different Ru-based catalysts, different
ratios of rhamnosides/fatty acid esters or reaction conditions (time or temperature) [52].
Dissymmetric bolaamphiphiles were always obtained in a minority compared to the sym-
metric ones. However, inspired by the work of Blechert and Obounou et al. [38,53], four
dissymmetric bolaamphiphiles were obtained under classical heating conditions and in the
presence of Grubbs II (Scheme 3).

Table 6. Esterification of paracoumaric, ferulic, caffeic and sinapic acids (conditions: acid (6 eq.) and
alcohol (1 eq., lipase 2.5 g per 100 g of reaction mixture, molecular sieves (50 g·L−1), 60 ◦C, 48 h).

Starting
Phenolic Acid Compounds Solvent Isolated Yields (%)

p-coumaric acid
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Acetone (30 mL) 40

These dissymmetrical bolaforms were thus prepared by cross-metathesis of the sym-
metrical L-Rhamnose-based bolaform and the derived unsaturated phloretic esters. The use
of a CH2Cl2/MeOH solvent mixture significantly improved the solubility of the reactants
in contrast to CH2Cl2. TLC monitoring showed that the predominant compound formed
was the dissymmetrical bolaform with a small amount of symmetrical bolaform derived
from the unsaturated phloretic esters. After rapid purification (35 min) by automated flash
chromatography, bolaforms 1ab–4ab were obtained in yields up to 70% in 24 h.
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Table 7. Metathesis of phenolic esters.
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These dissymmetric bolaforms were characterized by classical spectroscopic and
spectrometric methods: IR (1615, 1732 and 3353 cm−1, respectively, for the C=C, C=O
and OH bonds), NMR (5.80 ppm for the protons of the C=C, 2 doublets between 6.99 and
6.65 ppm for the aromatic protons and signals between 3.12 and 3.54 ppm for the hydrogens
of the rhamnose, except the methyl group), UV and elemental analysis.

2.2. Antioxidant Properties

To evaluate the antioxidant activity, several methods [54,55] exist in the literature
demonstrating the use of 2,2’-azinobis-3-ethylbenzothiazoline-6-sulfonic acid (ABTS) [56],
β-carotene [57], Trolox (ORAC method) [58] and 2,2-diphenyl-1-picrylhydrazyl DPPH [59]
(Scheme 4), respectively. The latter is based on the reduction of DPPH•, which is ac-
companied by a significant color change from purple to yellow, monitored by UV-visible
spectroscopy at an absorption wavelength of 517 nm. We used this method to determine
the antioxidant activity of our surfactants.

The antioxidant activity of phenolic ester and the derived bolaforms were evalu-
ated in methanol by measuring their ability to reduce the DPPH• at a concentration of
10−4 mol·L−1. These activities were expressed as percent of inhibition according to the
formula given in Scheme 4; vitamin C was used as a positive control. The antioxidant tests
were performed at 45 min and in triplicate to confirm the repeatability of the results.
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Preliminary observations showed that the monocatenar phloretic esters 1b and 3b
have no antioxidant activity, but corresponding bolaforms 12b and 14b presented rather
interesting antioxidant activity (Table 8, entries 8 and 9). In addition, the antioxidant
activity of ferulic ester is greater than that of the phloretic ester containing the same carbon
chain (Table 8, entries 5 and 7). This difference could be explained by the low stability of
the phenoxy radical resulting from phloretic ester compared to the radical derived from
ferulic ester, which could be more stabilized through the methoxy function in the ortho
position. These results show that the antioxidant activity depends on both the stability of
the resulting radical and the number of phenolic moieties.

Table 8. Antioxidant properties of phenolic (di)esters.

Entry Compounds IC50 (µmol/L)

1 Vitamin C 34

2 5b 45

3 7b 29

4 9b 31

5 10b 47

6 6b 32

7 11b 32

8 12b 36

9 14b 35

10 15b 27

In order to better understand the structure/antioxidant activity relationship of mono-
catenar esters, we have extended our measurements to para-coumaric, caffeic and sinapic
esters; the values of IC50 are summarized in Table 8.

With the same carbon chain length, we observed that the monocatenar ester of caffeic
acid presents the best antioxidant activity before the sinapic, the coumaric and the ferulic
esters, respectively (Table 8, entries 2–5). We can therefore deduce that the number of OH
groups on the aromatic ring has a great influence on the antioxidant power, as well as the
double bond in the α position of the ester (compared to the phloretic ester, which shows no
antioxidant activity). This ranking of antioxidant activities corresponds fairly well to one of
the acids alone, except for the derivatives of sinapic acid because it has higher antioxidant
activities alone than all the other acids [60]. The length of the carbon chain also seems to play
an important role because we can note that the antioxidant powers are higher for a chain
in C10 than for a chain in C6 (Table 8, entries 6 and 7 vs. entries 2 and 5), which could be
explained by a more important inductive effect of a chain in C10, which stabilizes the radical.

Moreover, the antioxidant activity of dissymmetric bolaforms 1ab and 3ab was evalu-
ated, but the study revealed no antioxidant activity, which is not very surprising considering
that the phenolic part of the bolaform is constituted of phoretic acid. The solubility, on
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the other hand, is enhanced by the presence of the rhamnoside entity. Thus, it would be
interesting to develop dissymmetrical bolaforms based on caffeic or sinapic esters and
rhamnosides in a future study.

In conclusion, we have five compounds (7b, 6b, 9b, 11b and 15b) that present antiox-
idant activity superior to that of ascorbic acid (Table 8, entry 1). Furthermore, some of
these compounds (7b and 15b) have a very interesting hydrophilic character, which may
demonstrate them as good candidates for cosmetic applications.

2.3. Plant-Eliciting Properties

As rhamnolipid- and xylolipid-based bolaforms have previously been characterized as
plant defense inducers [40], we evaluated the eliciting properties of our new compounds in
the plant model Arabidopsis thaliana. Rhamnolipids bolaforms were found to differentially
activate early and late immunity-related plant defense responses, depending on the carbon
chain length [40]. In this previous study, the 1′,14′-bis-tetradec-7′-enyl-L-rhamnopyranoside
was proven to be the best candidate by combining the right chain length, an unsaturation
and rhamnose as sugar.

Here, we aimed to compare the eliciting activities of monocatenar and bolaform
rhamnosides (1–10a) to the dissymmetric bolaform 4ab in order to observe a potential
synergy between phenolic and rhamnose moieties. To investigate the immune response of
compounds 1–10a and 4ab in Arabidopsis thaliana, we monitored the extracellular reactive
oxygen species (ROS) production [40].

Our results show that only monocatenar rhamnosides with carbon chains containing 10
or 11 atoms are active on Arabidopsis thaliana, as compounds 5a and 6a triggered significant
ROS production in planta (Figure 3).
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Figure 3. Plant-eliciting activities of monocatenar rhamnosides. Extracellular reactive oxygen species
(ROS) production following treatment of Arabidopsis with C6 to C11 rhamnosides. Production
of ROS was measured in leaf disks following treatment with the synthetic glycolipids at 100 µM.
MeOH (0.5%) was used as a control. ROS production was measured using the chemiluminescence
of luminol, and photon counts were expressed as relative luminescence units (RLUs). Histograms
were calculated as the total RLUs over 12 h of monitoring. Data are mean (n = 6). Experiments were
independently realized twice with similar results.

We also compared the activity of the unsaturated and saturated compounds, re-
spectively, 5a and 6a towards 5a′ and 6a′ obtained from 5a and 6a through classical Pd-
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catalyzed hydrogenation [61]. Our results show that the unsaturation of lipid chains leads
to a stronger ROS response (Figure 4). Therefore, these data highlight the importance of
combined long chains and unsaturation to enhance a monocatenar rhamnoside-triggered
immune response in Arabidopsis.
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Figure 4. Plant-eliciting activities comparison between saturated and unsaturated monocatenar
rhamnosides. Production of ROS was measured in leaf disks following treatment with the synthetic
glycolipids at 100 µM. MeOH (0.5%) was used as a control. ROS production was measured using the
chemiluminescence of luminol, and photon counts were expressed as relative luminescence units
(RLUs). Histograms were calculated as the total RLUs over 12 h of monitoring. Data are mean ± SEM
(n = 6). Experiments were independently realized twice with similar results.

In addition, we found that the dissymmetrical C20 bolaform 4ab induces ROS produc-
tion close to the level measured for its monocatenar analogue 6a (Figure 5). The symmetrical
C20 bolaform 10a was inactive at a concentration of 100 µM. In our previous study, we
showed that symmetrical bolaform C18 (9a) was inactive and that the C10 bolaform (7a)
was only slightly active at this concentration [40]. This robust immune response obtained
with the dissymmetric bolaform may be explained by the presence of the phloretic acid, a
relatively close analogue to salicylic acid, a well-known plant signal [62,63].
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Figure 5. Plant-eliciting activities comparison between C11 rhamnoside, C20 dissymmetrical and
symmetrical bolaforms. Production of ROS was measured in leaf disks following treatment with the
synthetic glycolipids at 100 µM. MeOH (0.5%) was used as a control. ROS production was measured
using the chemiluminescence of luminol and photon counts were expressed as relative luminescence
units (RLUs). Kinetics of production (left panel) and sum of RLU from the same samples (right
panel) are shown. Data are mean ± SEM (n = 6). Experiments were independently realized twice
with similar results.
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Altogether, our results demonstrate that monocatenar rhamnosides 5a and 6a and the
dissymmetrical bolaform 4ab can trigger a strong plant defense response in Arabidopsis,
and therefore could be promising as plant-elicitor compounds.

2.4. Cytotoxicity Evaluation

As surfactants can be used in cosmetics, we completed our study with cytotoxic-
ity tests on dermal fibroblasts. The toxicity of monocatenar and bolaform rhamnosides
was evaluated on human dermal fibroblasts according to the protocol described in the
experimental section. A fibroblast model is the best suited to the desired applications in
cosmetics, specifically in the field of dermatology; we used the WST1 assay [64] to measure
cell viability.

We first incubated dermal fibroblast cells for 48 h in the presence of our rhamnose-
based compounds at increasing concentrations (1 to 1000 µg/mL). A dose-response pre-
sented by the residual dehydrogenase activity as a function of the surfactant concentration
represented in mg/mL allowed us to determine the cytotoxic effect for each compound
tested.

In the concentration range tested, we observed a slight cytotoxicity of monocatenar
rhamnosides 1–4a; in contrast, 5a (chain length of 10 carbons) showed a lower cell growth
of about 46% starting from 50 µg/mL (Figure 6). This cytotoxicity could be due to the
hydrophobic character of 5a, which enables it to form micelles in the intracellular medium
that can induce a disruption of the cell cycle and causing cell death by either apoptosis or
necrosis [65].
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Figure 6. Cytotoxicity of monocatenar unsaturated rhamnosides.

This low toxicity of rhamnosides is in accordance with the use of rhamnose or rham-
nose derivatives, which are known as promising biocompatible molecules for biomedical
applications, e.g., in the internalization of nanoparticles with a therapeutic aim [66].

We subsequently studied the cytotoxicity of the unsaturated bolaform rhamnosides 7a
and 9a (Figure 7a). As discussed previously, the length of the carbon chain has a strong
influence on the cytotoxic character; indeed, the results show that 9a is five times more
cytotoxic than 7a (cytotoxicity at 200 µg/mL and 1000 µg/mL, respectively). Neverthe-
less, when we compared monocatenar rhamnosides and bolaform rhamnosides, i.e., 5a
and 9a, the bolaamphiphilic structures clearly decrease the cytotoxicity compared to the
monocatenar compounds (Figure 7b).
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Figure 7. Cytotoxicity of (a) unsaturated bolaform rhamnosides and (b) monocatenar and bolaform
rhamnosides.

Next, the cytotoxicity of unsaturated phloretic esters was evaluated under the same
conditions at concentrations between 1 and 1000 µg/mL. In contrast to the monocate-
nar rhamnosides, all the unsaturated phloretic esters present cytotoxicity starting from
50 µg/mL (Figure 8a). This result can be explained by the intrinsic cytotoxicity of phloretic
acid on specific cells, as previously described in the literature [67].

Regarding the boloform compounds, only the cytotoxicity of the dissymmetrical
rhamnose/phloretic ester bolaforms could be evaluated because of the low solubility of
the phloretic ester bolaforms in the culture medium. We also observed a decrease of the
cytotoxicity when the phloretic esters are coupled with a monocatenar rhamnoside through
a cross-metathesis step. In Figure 8b, we can observe low cytotoxicity for compounds 1ab
and 2ab at 100 µg/mL, but high cytotoxicity for higher concentrations or for compound
3ab at 100 µg/mL. This cytotoxicity decrease is most likely due to the presence of rhamnose,
which is biocompatible with dermal cells and more hydrophilic, improving the solubility
of the bolaform.

An in vitro study on dermal cells showed, first, a large difference concerning the cyto-
toxicity between the monocatenar compounds derived from L-rhamnose and those derived
from phloretic acid and, secondly, the importance of the carbon chain length. Moreover,
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the bolaform structures (always depending on the carbon chain length) contribute to a
reduction of the cytotoxic effect on dermal cells (even with bolaforms phloretic esters).
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Figure 8. Cytotoxicity of (a) unsaturated monocatenar phloretic esters and (b) dissymmetric bo-
laforms.

3. Experimental

All the reagents were commercially available and used as received. The solvents
were dried and distilled under argon before use (CH2Cl2 over CaCl2 and THF over
sodium/benzophenone) and stored over molecular sieves. The NMR spectra were recorded
on a spectroscopic apparatus of the Bruker Avance Neo AC type (Wissembourg, France)
(500 MHz for 1H, 126 MHz for 13C). The multiplicity of signals is cited according to s:
singlet; sl: large singlet; d: doublet; t: triplet; q: quadruplet; m: multiplet; dt: doublet of
triplets; dd: doublet of doublets; ddd: doublet of doublets of doublets; and td: triplet of
doublets. The coupling constants (J) are expressed in Hertz (Hz). The chemical shifts (in
ppm) for the 1H and 13C NMR spectra were referenced to residual protic solvent peaks.
Elemental analyses (C, H and N) were carried out on a PerkinElmer 2400 C, H and N
element analyzer. The IR spectra of the liquid and solid compounds were recorded on
a Bruker Alpha-T FTIR (Wissembourg, France) spectrometer at room temperature. The
1H and 13C NMR spectra were recorded at room temperature with a Bruker AC 500 spec-
trometer (Wissembourg, France) (500 MHz for 1H, 62.5 MHz for 13C). The specific optical
rotation ([α]20

D ) of rhamnosides and rhamnoside-based boloamphiphiles or fatty ester and
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rhamnoside-based asymmetric bolaamphiphiles were measured using a polarimeter Anton
Paar MCP 5100 (Les Ulis, France) at room temperature. Chromatography was carried out
on SDS Silica 60 (40–63 nm), Art 2050044 (flash-chromatography) using the Reveleris® X2
Flash Chromatography System from BUCHI. The microwave oven is a monomode CEM
DISCOVERS-CLASS.

3.1. Cytotoxicity and Plant-Eliciting Activities

Normal human dermal fibroblasts were purchased from Promocell (Heidelberg, Ger-
many). They were grown in DMEM supplemented with 10% fetal bovine serum (FBS),
according to the manufacturer’s specifications, in Nunclon® 75 cm2 flasks (Dutscher Bru-
math, France) at 37 ◦C in a humid atmosphere containing 5% CO2.

For the WST-1 assay, the cells were seeded in sterile 96-well microtiter plates
(1 × 10,000 cells/well) and were allowed to settle for 24 h. Effectors were added to the
cells at final concentrations ranging from 0 to 1000 µg/mL in DMEM supplemented with
0.5% FBS. The cells were incubated for 48 h and the medium was replaced by fresh medium
containing 10% Wst-1 reagent. The absorbance was measured at 450 nm using a microplate
spectrophotometer (SPECTROstar® Nano, BMG Labtech, Champigny-sur-Marne, France)
and the cell viability was calculated. The results are expressed as the mean ± standard
deviation (n = 4). The plant-eliciting properties were monitored through the production of
reactive oxygen species (ROS) in planta, as described in [22].

3.2. General Procedure for the Preparation of Rhamnosides under Microwave Activation with
Tetrahydrofuran (THF) or 2-Methyltetrahydrofuran (2-MeTHF) as a Solvent

In a microwave tube, a solution of L-rhamnose and unsaturated alcohol in THF or
2-MeTHF (5 mL) was added at 60 ◦C with p-toluene sulfonic acid (PTSA). The mixture was
stirred (600 rpm) under microwave irradiation for 2 h at a power of 60 W and a temperature
of 60 ◦C. After 2 h of reaction, the reaction medium was neutralized with the addition of a
0.5 M MeONa solution (≈26 mL). After evaporation under reduced pressure, the purifi-
cation of the rhamnosides was realized through a Reveleris® X2 Flash Chromatography
System by gradient elution of a CH2Cl2/MeOH mixture (8/2).

Hex-5′-enyl-α-L-rhamnopyranoside (1a)

The general procedure for the preparation of the rhamnosides under microwave
activation with L-rhamnose (2 g; 10.35 mmol; 1 eq.), 5-Hexen-1-ol (5.27 mL; 41.4 mmol;
4 eq.) and PTSA (1.25 g; 6.21 mmol; 0.6 eq.) is as follows. Compound 1a is obtained as a
thick yellow liquid with a yield of 64% (with THF) and 63% (with 2-MeTHF).
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Non-8′-enyl-α-L-rhamnopyranoside (4a) 

νmax (ATR) cm−1: 3363 (OH), 2926–2856 (C–H), 1641 (C=C), 1384 (CH3), 1265–1231 (C–
OHTert.). [α]20

D (589 nm, MeOH) = −52.501. 1H NMR (500 MHz; DMSO-d6, ppm) δ 1.25
(3H, d, J 7.5 Hz, H6′), 1.50 (2H, m, H3), 1.63 (2H, m, H2), 2.13 (2H, m, H4), 3.17–3.58 (5H, m,
H1, H2′, H3′, H4′, H5′), 4.52–4.72 (3H, s, 3 OH), 4.98 (2H, d, J 7.2 Hz, H6), 5.80 (1H, m, H5).
13C NMR (125 MHz; DMSO-d6, ppm) δ 18.4 (C6′), 25.4 (C3), 29.1, 33.4 (C2, C4), 66.6 (C1),
68.9–73.9 (C2′, C3′, C4′, C5′), 100.6 (C1′), 115.3 (C6), 139.1 (C5). Analysis (%): calculated
for: C12H22O5: C 58.52, H 9.02. Found: C 58.97, H 8.88.

Hept-6′-enyl-α-L-rhamnopyranoside (2a)

The general procedure for the preparation of the rhamnosides under microwave
activation with L-rhamnose (0.76 g; 3.93 mmol; 1 eq.), 6-hepten-1-ol (3 mL; 15.72 mmol;
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Non-8′-enyl-α-L-rhamnopyranoside (4a)

The general procedure for the preparation of the rhamnosides under microwave
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4 eq.), and PTSA (1.25 g; 6.21 mmol; 0.6 eq.) is as follows. Compound 4a is obtained as a
thick yellow liquid with a yield of 53%.
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The general procedure for the preparation of the rhamnosides under microwave
activation with L-rhamnose (0.53 g; 2.74 mmol; 1 eq.), 9-decen-1-ol (2.5 mL; 10.96 mmol;
4 eq.) and PTSA (1.25 g; 6.21 mmol; 0.6 eq.) is as follows. Compound 5a is obtained as a
thick yellow liquid with a yield of 48% (with THF) and 55% (with 2-MeTHF).
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Analysis (%): calculated for: C15H28O5: C 62.47, H 9.79. Found: C 62.35, H 9.65. 
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νmax (ATR) cm−1: 3366 (OH), 2926–2856 (C–H), 1641 (C=C), 1382 (CH3),1229 (C–OHTert.).
[α]20

D (589 nm, MeOH) =−37.001. 1H NMR (500, 1 MHz; CD3OD) δ 1.13 (3H, d, J 7.5 Hz, H6′),
1.31 (12H, H6, H7, H5, H4, H8, H3), 1.50 (2H, m, H2), 2.01 (2H, m,H9), 3.08–3.54 (5H, m, H1,
H2′, H3′, H4′, H5′), 4.52–4.72 (3H, s, 3 OH), 4.97 (2H, d, J 7.2 Hz, H11), 5.80 (1H, m, H10). 13C
NMR (125 MHz; DMSO-d6) δ 18.4 (C6′), 26.1 (C6), 28.7, 28.9, 29.2, 29.3, 29.4, 29.5, 33.6 (C5,
C7, C4, C8, C3, C2, C9), 66.80 (C1), 68.9–72.5 (C2′, C3′, C4′, C5′),100.6 (C1′),115.1 (C11), 139.3
(C10). Analysis (%): calculated for C17H32O5: C 64.53, H 10.19. Found: C 63.91, H 10.14.

3.3. General Procedure for the Preparation of Rhamnosides under Microwave Activation with
γ-Valerolactone as Solvent

The solution of L-rhamnose and unsaturated alcohol (5-Hexen-1-ol or 9-decen-1-ol) in
γ-valerolactone was stirred at 60 ◦C with PTSA (p-toluenesulfonic acid) in a microwave
tube. The mixture was irradiated under microwaves for 2 h at a power of 60 W and
a temperature of 60 ◦C. After 2 h, the crude was extracted with diethylether (60 mL) after
the addition of a NaCl-saturated solution (50 mL). The organic phase was dried over MgSO4
and evaporated under reduced pressure. The purification of the rhamnosides was then
realized through the Reveleris® X2 Flash Chromatography System by gradient elution of a
CH2Cl2/MeOH mixture.

Compound 1a was obtained as a thick yellow liquid with a yield of 66% from L-
rhamnose (2 g; 10.35 mmol; 1 eq.), 5-Hexen-1-ol (5.27 mL; 41.4 mmol; 4 eq.), 1.25 g of PTSA
(6.21 mmol; 0.6 eq.) and γ-valerolactone (5 mL).

Compound 5a was obtained as a thick yellow liquid with a yield of 73% from L-
rhamnose (1 g; 5.18 mmol; 1 eq.), 9-decen-1-ol (3.75 mL; 20.7 mmol; 4 eq.), 0.62 g of PTSA
(3.11 mmol; 0.6 eq.) and γ-valerolactone (2.5 mL).
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3.4. General Procedure for the Preparation of Rhamnoside-Based Boloamphiphiles under
Microwave Activation

The rhamnoside was dissolved in a mixture of CH2Cl2/MeOH (8/2 mL) in a mi-
crowave tube under argon and the Grubbs II catalyst was added in three portions over
the whole reaction time. The mixture was irradiated under microwaves for 40 min at
a power of 60 W and a temperature of 60 ◦C. After 40 min of reaction, the reaction medium
was treated with activated charcoal to remove the residual Grubbs catalyst or derivatives
and was then filtered through celite. After evaporation, the residue was purified by the
Reveleris® X2 Flash Chromatography System with an elution mixture of CH2Cl2/MeOH
(9/1) during 45 min.

1′,10′-bis-dec-5′-eny-L-rhamnopyranoside (7a)

The general procedure for the preparation of the rhamnoside-based bolaamphiphiles
with compound 1a (1.5 g, 6.09 mmol, 1 eq.) under microwave activation with Grubbs
II catalyst (0.5 g, 0.6 mmol; 0.1 eq.) dissolved in 10 mL CH2Cl2/MeOH is as follows.
Compound 7a is obtained as a brown paste with a yield of 77%.
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The general procedure for the preparation of the rhamnoside-based bolaamphiphiles 
with compound 1a (1.5 g, 6.09 mmol, 1 eq.) under microwave activation with Grubbs II 
catalyst (0.5 g, 0.6 mmol; 0.1 eq.) dissolved in 10 mL CH2Cl2/MeOH is as follows. 
Compound 7a is obtained as a brown paste with a yield of 77%. 
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[α]20 

D  (589 nm, MeOH) = −34.801. 1H NMR (500 MHz; DMSO-d6, ppm) δ 1.24 (6H, d, J 7.5 
Hz, H6′), 1.48 (4H, m, H3), 1.61 (4H, m, H2), 2.17(4H, m, H4), 3.56–3.12 (10H, m, H1, H2′, 
H3′, H4′, H5′), 4.70–4.48 (6H, s, 6 OH), 5.78 (2H, d, J 7.2 Hz, H5). 13C NMR (125 MHz; 
DMSO-d6, ppm) δ 18.3 (2 C6′), 23.6 (2 C3), 30.1, 33.2 (2 C2, 2 C4), 64.3 (2 C1), 67.6–71.9 (2 
C2′, 2 C3′, 2 C4′, 2 C5′), 102.1 (2 C1′), 130.1 (CH2CH(Z)=CH(Z)CH2), 130.6 
(CH2CH(E)=CH(E)CH2). Analysis (%): calculated for C22H40O10: C 56.88, H 8.68. Found: C 
56.47, H 8.96. 

νmax (ATR) cm−1: 3347 (OH), 2971–2901 (C–H), 1634 (C=C), 1384 (CH3),1128–1048 (C-O-C).
[α]20

D (589 nm, MeOH) = −34.801. 1H NMR (500 MHz; DMSO-d6, ppm) δ 1.24 (6H, d,
J 7.5 Hz, H6′), 1.48 (4H, m, H3), 1.61 (4H, m, H2), 2.17(4H, m, H4), 3.56–3.12 (10H, m,
H1, H2′, H3′, H4′, H5′), 4.70–4.48 (6H, s, 6 OH), 5.78 (2H, d, J 7.2 Hz, H5). 13C NMR
(125 MHz; DMSO-d6, ppm) δ 18.3 (2 C6′), 23.6 (2 C3), 30.1, 33.2 (2 C2, 2 C4), 64.3 (2 C1),
67.6–71.9 (2 C2′, 2 C3′, 2 C4′, 2 C5′), 102.1 (2 C1′), 130.1 (CH2CH(Z)=CH(Z)CH2), 130.6
(CH2CH(E)=CH(E)CH2). Analysis (%): calculated for C22H40O10: C 56.88, H 8.68. Found:
C 56.47, H 8.96.

1′,12′-bis-dodec-6′-enyl-L-rhamnopyranoside (8a)

The general procedure for the preparation of the rhamnoside-based bolaamphiphiles
with compound 2a (0.7 g, 2.69 mmol, 1 eq.) under microwave activation with Grubbs
II catalyst (0.2 g, 0.27 mmol; 0.1 eq.) dissolved in 10 mL CH2Cl2/MeOH is as follows.
Compound 8a is obtained as a brown paste with a yield of 60%.
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3.58 (10H, m, H1, H2′, H3′, H4′, H5′), 4.31–4.58 (6H, s, 6 OH), 5.70 (2H, d, J 7.2 Hz, H9). 13C 
NMR (125 MHz; DMSO-d6, ppm) δ 18.3 (2 C6′), 26.2 (2 C5), 28.6, 28.9, 29.4, 29.7, 33.8 (2 C3, 
2 C2, 2 C4, 2 C5, 2 C6, 2 C7, 2 C8), 66.8 (2 C1), 68.7–72.9 (2 C2′, 2 C3′, 2 C4′, 2 C5′), 100.4 (2 
C1′), 130.1 (CH2CH(Z)=CH(Z)CH2), 130.5 (CH2CH(E)=CH(E)CH2). Analysis (%): 
calculated for C30H56O10: C 62.47, H 9.79. Found: C 62.11, H 9.29. 

1′,20′-bis-eicosa-10′-enyl-L-rhamnopyranoside (10a) 
The general procedure for the preparation of the rhamnoside-based bolaamphiphiles 

with compound 6a (1.09 g, 3.60 mmol, 1eq.) under microwave activation with Grubbs II 
catalyst (0.3 g, 0.36 mmol; 0.1 eq.) dissolved in 10 mL CH2Cl2/MeOH is as follows. 
Compound 10a is obtained as a brown paste with a yield of 32%. 

 

νmax (ATR) cm−1: 3342 (OH), 2970–2913 (C–H), 1632 (C=C), 1386 (CH3), 1124–1051 (C–O–
C). [α]20

D (589 nm, MeOH) = −41.301. 1H NMR (500 MHz; DMSO-d6, ppm) δ 1.14 (6H, d,
J 7.5 Hz, H6′), 1.38 (8H, m, H3, H4), 1.51 (4H, m, H2), 2.07 (4H, m, H5), 3.36–3.18 (10H,
m, H1, H2′, H3′, H4′, H5′), 4.71–4.58 (6H, s, 6 OH), 5.78 (2H, d, J 7.2 Hz, H5). 13C NMR
(125 MHz; DMSO-d6, ppm) δ 17.3 (2 C6′), 25.6 (2 C3), 29.0, 29.4, 33.6 (2 C3, 2 C2, 2 C5), 65.1
(2 C1), 68.6–72.6 (2 C2′, 2 C3′, 2 C4′, 2 C5′), 100.2 (2 C1′), 138.0 (CH2CH(Z)=CH(Z)CH2),
138.1 (CH2CH(E)=CH(E)CH2). Analysis (%): calculated for: C24H44O10: C 58.52, H 9.00.
Found: C 58.87, H 9.19.

1′,18′-bis-octadec-9′-enyl-L-rhamnopyranoside (9a)

The general procedure for the preparation of the rhamnoside-based bolaamphiphiles
with compound 5a (1.45 g, 4.80 mmol, 1 eq.) under microwave activation with Grubbs
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II catalyst (0.4 g, 0.48 mmol; 0.1 eq.) dissolved in 10 mL CH2Cl2/MeOH is as follows.
Compound 9a is obtained as a brown paste with a yield of 56%.
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3.16–3.58 (10H, m, H1, H2′, H3′, H4′, H5′), 4.31–4.58 (6H, s, 6 OH), 5.70 (2H, d, J 7.2 Hz,
H9). 13C NMR (125 MHz; DMSO-d6, ppm) δ 18.3 (2 C6′), 26.2 (2 C5), 28.6, 28.9, 29.4, 29.7,
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C5′), 100.4 (2 C1′), 130.1 (CH2CH(Z)=CH(Z)CH2), 130.5 (CH2CH(E)=CH(E)CH2). Analysis
(%): calculated for C30H56O10: C 62.47, H 9.79. Found: C 62.11, H 9.29.

1′,20′-bis-eicosa-10′-enyl-L-rhamnopyranoside (10a)

The general procedure for the preparation of the rhamnoside-based bolaamphiphiles
with compound 6a (1.09 g, 3.60 mmol, 1 eq.) under microwave activation with Grubbs
II catalyst (0.3 g, 0.36 mmol; 0.1 eq.) dissolved in 10 mL CH2Cl2/MeOH is as follows.
Compound 10a is obtained as a brown paste with a yield of 32%.
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(CH2CH(E)=CH(E)CH2). Analysis (%): calculated for: C24H44O10: C 58.52, H 9.00. Found: C 
58.87, H 9.19. 
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The general procedure for the preparation of the rhamnoside-based bolaamphiphiles 

with compound 5a (1.45 g, 4.80 mmol, 1eq.) under microwave activation with Grubbs II 
catalyst (0.4 g, 0.48 mmol; 0.1 eq.) dissolved in 10 mL CH2Cl2/MeOH is as follows. 
Compound 9a is obtained as a brown paste with a yield of 56%. 

 
νmax (ATR) cm−1: 3345 (OH), 2971–2922 (C–H), 1634 (C=C), 1382 (CH3), 1127–1051 (C–O–
C). [α]20 
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3.58 (10H, m, H1, H2′, H3′, H4′, H5′), 4.31–4.58 (6H, s, 6 OH), 5.70 (2H, d, J 7.2 Hz, H9). 13C 
NMR (125 MHz; DMSO-d6, ppm) δ 18.3 (2 C6′), 26.2 (2 C5), 28.6, 28.9, 29.4, 29.7, 33.8 (2 C3, 
2 C2, 2 C4, 2 C5, 2 C6, 2 C7, 2 C8), 66.8 (2 C1), 68.7–72.9 (2 C2′, 2 C3′, 2 C4′, 2 C5′), 100.4 (2 
C1′), 130.1 (CH2CH(Z)=CH(Z)CH2), 130.5 (CH2CH(E)=CH(E)CH2). Analysis (%): 
calculated for C30H56O10: C 62.47, H 9.79. Found: C 62.11, H 9.29. 

1′,20′-bis-eicosa-10′-enyl-L-rhamnopyranoside (10a) 
The general procedure for the preparation of the rhamnoside-based bolaamphiphiles 

with compound 6a (1.09 g, 3.60 mmol, 1eq.) under microwave activation with Grubbs II 
catalyst (0.3 g, 0.36 mmol; 0.1 eq.) dissolved in 10 mL CH2Cl2/MeOH is as follows. 
Compound 10a is obtained as a brown paste with a yield of 32%. 

 
νmax (ATR) cm−1: 3338 (OH), 2968–2919 (C–H), 1632 (C=C), 1381 (CH3), 1124–1053 (C–O–
C). [α]20

D (589 nm, MeOH) = −35.001. 1H NMR (500 MHz; DMSO-d6, ppm) δ 1.18 (6H, d,
J 7.5 Hz, H6′), 1.39 (24H, m, H3, H4, H5, H6, H7, H8), 1.57 (4H, m, H2), 2.15 (4H, m, H9),
3.19–3.61 (10H, m, H1, H2′, H3′, H4′, H5′), 4.28–4.47 (6H, s, 6 OH), 5.74 (2H, d, J 7.2 Hz,
H10). 13C NMR (125 MHz; DMSO-d6, ppm) δ 17.5 (2 C6′), 24.9 (2 C5), 27.4, 28.8, 29.1, 29.8,
32.5, 35.0 (2 C3, 2 C2, 2 C4, 2 C5, 2 C6, 2 C7, 2 C8, 2 C9), 66.5 (2 C1), 70.1–73.0 (2 C2′, 2 C3′,
2 C4′, 2 C5′), 107.3 (2 C1′), 131.3 (CH2CH(Z)=CH(Z)CH2), 133.1 (CH2CH(E)=CH(E)CH2).
Analysis (%): calculated for C32H60O10: C 63.55, H 10.00. Found: C 63.41, H 9.89.

3.5. General Procedure for the Hydrogenation of Monocatenar Unsaturated Rhamnosides

The unsaturated rhamnoside (1 eq.) was dissolved in 4 mL of ethanol under an
argon atmosphere. After 10 min of stirring, palladium on activated charcoal (Pd/C, 10%
w/w, 0.02 eq.) was added and the solution was stirred for an additional 10 min under
an argon atmosphere before being submitted to a H2 flow until completion (24 h at room
temperature). Once the reaction was completed, the reaction mixture was filtered through
celite. The obtained solution was then evaporated under reduced pressure. The saturated
rhamnoside was obtained with quantitative yields.

Decyl-α-L-rhamno-pyranoside (5a’)

The general procedure for the hydrogenation of monocatenar unsaturated rhamno-
sides with unsaturated L-rhamnoside 5a (0.4 g; 2.04 mmol; 1 eq.), palladium on activated
charcoal (4.6 mg; 0.02 eq.) and 4 mL ethanol is as follows. Compound 5a′ is obtained as a
thick yellow liquid with a quantitative yield.
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D (589 nm,

MeOH) = −43.501. 1H NMR (500, 1 MHz; CD3OD) δ 0.86 (3H, t, J = 7.5 Hz, H10); 1.14 (3H,
d, J 7.5 Hz, H6′), 1.32 (10H, m, H3, H4, H5, H6, H7, H8, H9), 1.51 (2H, m, H2), 3.14–3.56
(5H, m, H1, H2′, H3′, H4′, H5′), 4.12–4.57 (3H, s, 3 OH). 13C NMR (125 MHz; DMSO-d6) δ
14.1 (C10), 18.4 (C6′), 28.7, 28.9, 29.2, 29.3, 29.5, 33.6 (C9, C8, C7, C6, C5, C4, C3), 46.2 (C2),
66.8 (C1), 68.9–73.5 (C2′, C3′, C4′, C5′), 100.4 (C1′). Analysis (%): calculated for: C16H32O5:
C 63.13, H 10.60. Found: C 63.32, H 10.72.

Undecyl-α-L-rhamnopyranoside (6a′)

The general procedure for the hydrogenation of monocatenar unsaturated rhamno-
sides with unsaturated L-rhamnoside 6a (4 g; 2.34 mmol; 1 eq.), palladium on activated
charcoal (4.4 mg; Pd/C 10% w/w; 0.02 eq.) is as follows. Compound 6a’ was obtained as a
thick yellow liquid with a quantitative yield.
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obtained as a thick yellow liquid with a quantitative yield. 
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νmax (ATR) cm−1: 3375 (OH), 2927–2854 (C–H), 1383 (CH3),1228 (C–OHTert). [α]20
D (589 nm,

MeOH) = −37.03. 1H NMR (500, 1 MHz; CD3OD) δ 0.85 (3H, t, J = 7.5 Hz, H11); 1.17 (3H, d,
J 7.5 Hz, H6′), 1.34 (10H, m, H3, H4, H5, H6, H7, H8, H9, H10), 1.54 (2H, m, H2), 3.16–3.67
(5H, m, H1, H2′, H3′, H4′, H5′), 4.14–4.55 (3H, s, 3 OH). 13C NMR (125 MHz; DMSO-d6)
δ 13.6 (C11), 18.3 (C6′), 27.5, 28.6, 28.9, 29.7, 30.5, 33.9 (C10, C9, C8, C7, C6, C5, C4, C3),
48.1 (C2), 67.1 (C1), 69.8–75.5 (C2′, C3′, C4′, C5′), 103.4 (C1′). Analysis (%): calculated for:
C17H34O5: C 64.12, H 10.76. Found: C 64.25, H 10.64.

3.6. General Procedure for the Preparation of Monocatenar Esters Derived from Phenolic Acids

In a 250 mL flask, bicol was dissolved in phenolic acid (6 eq.) and unsaturated alcohol
(1 eq.) in a solvent (2-methyl-2-butanol, or 2-methyl-2-butanol/THF or acetone, depending
on the nature of the phenolic acid) under magnetic stirring. The resulting mixture was
heated at 60 ◦C in the presence of 3 Ǻ molecular sieves (50 g·L−1). After adding an
appropriate amount of the enzyme (2.5 g per 100 g of reaction mixture), the mixture was
stirred for 48 h. Once the reaction was completed, the reaction mixture was filtered through
celite to remove the enzyme; the resulting solution was evaporated under reduced pressure
and the residue was purified on silica gel by the Reveleris® X2 Flash Chromatography
System with elution of a gradient petroleum ether/ethyl acetate.

Hex-5′-enyl-3-(4-hydroxyphenyl)propionic (1b)

The general procedure for the preparation of the monocatenar ester with 5-hexen-1-ol
(0.7 mL; 6.53 mmol; 1 eq.) and 3-(4-hydroxyphenyl)propionic acid (6.50 g; 39.18 mmol;
6 eq.) in 60 mL of 2-methyl-2-butanol is as follows.

Compound 1b was obtained as a clear oil with a yield of 95%.
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νmax (ATR) cm−1: 3397 (OH), 2932 (C–H), 1732 (C=O), 1614 (C=C). 1H NMR (500 MHz;
CD3OD, ppm) δ 1.36 (2H, broad, H3), 1.55 (2H, broad, H4), 2.03 (2H, broad, H2), 2.54 (2H,
t, J 7.2 Hz, H2′), 2.77 (2H, t, J 7.2 Hz, H1′), 4.01 (2H, t, J 7.2 Hz, H1), 4.98 (2H, broad, H6),
5.78 (1H, broad, H5), 6.73 (2H, d, J 10 Hz, H4′, H8′), 7.00 (2H, d, J 10 Hz, H5′, H7′). 13C
NMR (125 MHz; DMSO-d6, ppm) δ 25.0 (C3), 28.1 (C4), 30.0 (C2), 33.2 (C2′), 36.0 (C1′), 64.0
(C1),115.4 (C4′, C8′), 115.5 (C5′, C7′), 129.5 (C6), 131.0 (C5), 138.9 (C3′), 156.1 (C6′), 172.8
(C=O). Analysis (%): calculated for C15H20O3: C 72.55, H 8.12. Found: C 72.93, H 8.46.

Hept-6′-enyl-3-(4-hydroxyphenyl)propionic (2b)

The general procedure for the preparation of the monocatenar ester with 5-hepten-1-ol
(0.47 mL; 3.01 mmol; 1 eq.) and 3-(4-hydroxyphenyl)propionic acid (3 g; 18.05 mmol; 6 eq.)
in 60 mL of 2-methyl-2-butanol is as follows.

Compound 2b was obtained as a clear oil with a yield of 88%.
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ol (0.7 mL; 6.53 mmol; 1 eq) and 3-(4-hydroxyphenyl)propionic acid (6.50 g; 39.18 mmol; 
6 eq) in 60 mL of 2-methyl-2-butanol is as follows. 

Compound 1b was obtained as a clear oil with a yield of 95%. 

 
νmax (ATR) cm−1: 3397 (OH), 2932 (C–H), 1732 (C=O), 1614 (C=C). 1H NMR (500 MHz; 
CD3OD, ppm) δ 1.36 (2H, broad, H3), 1.55 (2H, broad, H4), 2.03 (2H, broad, H2), 2.54 (2H, 
t, J 7.2 Hz, H2′), 2.77 (2H, t, J 7.2 Hz, H1′), 4.01 (2H, t, J 7.2 Hz, H1), 4.98 (2H, broad, H6), 
5.78 (1H, broad, H5), 6.73 (2H, d, J 10 Hz, H4′, H8′), 7.00 (2H, d, J 10 Hz, H5′, H7′). 13C 
NMR (125 MHz; DMSO-d6, ppm) δ 25.0 (C3), 28.1 (C4), 30.0 (C2), 33.2 (C2′), 36.0 (C1′), 64.0 
(C1),115.4 (C4′, C8′), 115.5 (C5′, C7′), 129.5 (C6), 131.0 (C5), 138.9 (C3′), 156.1 (C6′), 172.8 
(C=O). Analysis (%): calculated for C15H20O3: C 72.55, H 8.12. Found: C 72.93, H 8.46. 

Hept-6′-enyl-3-(4-hydroxyphenyl)propionic (2b) 
The general procedure for the preparation of the monocatenar ester with 5-hepten-1-

ol (0.47 mL; 3.01 mmol; 1 eq) and 3-(4-hydroxyphenyl)propionic acid (3 g; 18.05 mmol; 6 
eq) in 60 mL of 2-methyl-2-butanol is as follows. 

Compound 2b was obtained as a clear oil with a yield of 88%. 

 
νmax (ATR) cm−1: 3392 (OH), 2930 (C–H), 1732 (C=O), 1614 (C=C). 1H NMR (500 MHz; 
CD3OD, ppm) δ 1.29 (2H, m, H4), 1.38 (2H, m, H3), 1.56 (2H, m, H5), 2.03 (2H, m, H2), 2.55 
(2H, t, J 7.2 Hz, H2′), 2.74 (2H, t, J 7.2 Hz, H1′), 3.98 (2H, t, J 7.2 Hz, H1), 5.03 (2H, m, H7), 
5.83 (1H, m, H6), 6.66 (2H, d, J 10 Hz, H5′, H7′), 7.02 (2H, d, J 10 Hz, H4′, H8′). 13C NMR 
(125 MHz; DMSO-d6, ppm) δ 25.3 (C4), 28.3 (C3), 28.4 (C5), 30.0 (C2), 33.5 (C2′), 36.0 (C1′), 
64.1 (C1),115.2 (C7), 115.5 (C4′, C8′), 129.5 (C5′, C7′), 131.0 (C3′), 139.1 (C6), 156.1 (C6′), 
172.8 (C=O). Analysis (%): calculated for C16 H22O3: C 73.25, H 8.45. Found: C 72.93, H 8.24. 

Dec-9′-enyl-3-(4-hydroxyphenyl)propionic (3b) 

νmax (ATR) cm−1: 3392 (OH), 2930 (C–H), 1732 (C=O), 1614 (C=C). 1H NMR (500 MHz;
CD3OD, ppm) δ 1.29 (2H, m, H4), 1.38 (2H, m, H3), 1.56 (2H, m, H5), 2.03 (2H, m, H2), 2.55
(2H, t, J 7.2 Hz, H2′), 2.74 (2H, t, J 7.2 Hz, H1′), 3.98 (2H, t, J 7.2 Hz, H1), 5.03 (2H, m, H7),
5.83 (1H, m, H6), 6.66 (2H, d, J 10 Hz, H5′, H7′), 7.02 (2H, d, J 10 Hz, H4′, H8′). 13C NMR
(125 MHz; DMSO-d6, ppm) δ 25.3 (C4), 28.3 (C3), 28.4 (C5), 30.0 (C2), 33.5 (C2′), 36.0 (C1′),
64.1 (C1),115.2 (C7), 115.5 (C4′, C8′), 129.5 (C5′, C7′), 131.0 (C3′), 139.1 (C6), 156.1 (C6′),
172.8 (C=O). Analysis (%): calculated for C16 H22O3: C 73.25, H 8.45. Found: C 72.93, H 8.24.

Dec-9′-enyl-3-(4-hydroxyphenyl)propionic (3b)

The general procedure for the preparation of the monocatenar ester with 9-decen-1-ol
(1.2 mL; 3.01 mmol; 1 eq.) and 3-(4-hydroxyphenyl)propionic acid (6,51 g; 18.06 mmol;
6 eq.) in 60 mL of 2-methyl-2-butanol is as follows.

Compound 3b was obtained as a clear oil with a yield of 96%.
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methyl-2-butanol is as follows. Compound 5b was obtained as a pale yellow oil with a 
yield of 70%. 
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νmax (ATR) cm−1: 3397 (OH), 2925 (C–H), 1733 (C=O), 1614 (C=C). 1H NMR (500 MHz;
CD3OD, ppm) δ 1.26 (8H, m, H4, H5, H6, H7), 1.36 (2H, m, H3), 1.55 (2H, m, H8), 2.04 (2H,
m, H2), 2.54 (2H, t, J 7.2 Hz, H2′), 2.77 (2H, t, J 7.2 Hz, H1′), 4.00 (2H, t, J 7.2 Hz, H1), 5.00
(2H, m, H10), 5.83 (1H, m, H9), 6.71 (2H, d, J 10 Hz, H5′, H7′), 6.99 (2H, d, J 10 Hz, H4′,
H8′). 13C NMR (125 MHz; DMSO-d6, ppm) δ 25.8 (C5), 28.6 (C6), 28.8 (C4), 28.9 (C7), 29.1
(C3), 29.2 (C8), 30.1 (C2), 33.7 (C2′), 36.1 (C1′), 64.2 (C1), 115.0 (C10), 115.5 (C4′, C8′), 129.5
(C5′, C7′), 130.9 (C3′), 139.2 (C9), 156.1 (C6′), 172.7 (C=O). Analysis (%): calculated for C19
H28O3: C 74.96, H 9.27. Found: C 75.13, H 9.03.
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The general procedure for the preparation of the fatty esters with 36.83 mmol of 3-(4-
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1 eq.) is as follow. Compound 4b was obtained as a bright oil with a yield of 79%.
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Hex-5′-enyl-3-(4-hydroxyphenyl)prop-2-enoic (5b) 
The general procedure for the preparation of the monocatenar ester with 5-hexen-1-

ol (0.36 mL; 3.04 mmol; 1 eq) and p-coumaric acid (3.28 g; 18.21 mmol; 6 eq) in 40 mL of 2-
methyl-2-butanol is as follows. Compound 5b was obtained as a pale yellow oil with a 
yield of 70%. 

 
νmax (ATR) cm−1: 3397 (OH), 2932 (C–H), 1732 (C=O), 1614 (–CH=CH2–), 1668 (Phenyl-
CH=CH-COO). 1H NMR (500 MHz; CD3OD, ppm) δ 1.51 (2H, m, H3), 1.75 (2H, m, H4), 
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νmax (ATR) cm−1: 3387 (OH), 2931 (C–H), 1732 (C=O), 1613 (C=C). 1H NMR (500 MHz;
CD3OD, ppm) δ 1.24 (8H, m, H4, H5, H6, H7, H8), 1.34 (2H, m, H3), 1.58 (2H, m, H9), 2.07
(2H, m, H2), 2.51 (2H, t, J 7.2 Hz, H2′), 2.74 (2H, t, J 7.2 Hz, C1′), 3.97 (2H, t, J 7.2 Hz, H1),
5.21 (2H, m, C11), 5.81 (1H, m, H10), 6.65 (2H, d, J 10 Hz, H5′, H7′), 7.09 (2H, d, J 10 Hz,
H4′, H8′). 13C NMR (125 MHz; DMSO-d6, ppm) δ 24.8 (C5), 28.1 (C6), 28.5 (C4), 28.8 (C7),
29.1 (C3), 29.2 (C8), 30.0 (C9), 30.1 (C2), 33.5 (C2′), 35.3 (C1′), 65.1 (C1), 114.0 (C11), 115.6
(C4′, C8′), 130.0 (C5′, C7′), 130.7 (C3′), 140.0 (C10), 154.6 (C6′), 172.1 (C=O). Analysis (%):
calculated for C20 H30O3: C 75.43, H 9.50. Found: C 75.37, H 9.49.

Hex-5′-enyl-3-(4-hydroxyphenyl)prop-2-enoic (5b)

The general procedure for the preparation of the monocatenar ester with 5-hexen-1-ol
(0.36 mL; 3.04 mmol; 1 eq.) and p-coumaric acid (3.28 g; 18.21 mmol; 6 eq.) in 40 mL of
2-methyl-2-butanol is as follows. Compound 5b was obtained as a pale yellow oil with a
yield of 70%.
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Hex-5′-enyl-3-(4-hydroxyphenyl)prop-2-enoic (5b) 
The general procedure for the preparation of the monocatenar ester with 5-hexen-1-

ol (0.36 mL; 3.04 mmol; 1 eq) and p-coumaric acid (3.28 g; 18.21 mmol; 6 eq) in 40 mL of 2-
methyl-2-butanol is as follows. Compound 5b was obtained as a pale yellow oil with a 
yield of 70%. 

 
νmax (ATR) cm−1: 3397 (OH), 2932 (C–H), 1732 (C=O), 1614 (–CH=CH2–), 1668 (Phenyl-
CH=CH-COO). 1H NMR (500 MHz; CD3OD, ppm) δ 1.51 (2H, m, H3), 1.75 (2H, m, H4), 
2.15 (2H, m, H2), 4.25 (2H, t, J 7.2 Hz, H1), 5.01 (2H, m, H6), 5.80 (1H, m, H5), 6.35 (1H, d, 

νmax (ATR) cm−1: 3397 (OH), 2932 (C–H), 1732 (C=O), 1614 (–CH=CH2–), 1668 (Phenyl-
CH=CH-COO). 1H NMR (500 MHz; CD3OD, ppm) δ 1.51 (2H, m, H3), 1.75 (2H, m, H4), 2.15
(2H, m, H2), 4.25 (2H, t, J 7.2 Hz, H1), 5.01 (2H, m, H6), 5.80 (1H, m, H5), 6.35 (1H, d, J 7.2
Hz, H1′), 6.80 (2H, d, J 7.2 Hz, H7′, H5′), 7.40 (1H, d, J 7.2 Hz, H1′), 7.65 (2H, d, J 7.2 Hz, H4′,
H8′). 13C NMR (125 MHz; DMSO-d6, ppm) δ 23.2 (C3), 25.2 (C4), 34.2 (C2), 68.3 (C1), 114.2
(C6), 115.0 (C1′), 127.3 (C5), 130.1 (C7′, C5′), 140.1 (C8′, C4′), 145.0 (C3′), 158.0 (C6′), 168.4
(C=O). Analysis (%): calculated for C15H18O3: C 73.15, H 7.37. Found: C 72.77, H 7.66.

Dec-9′-enyl-3-(4-hydroxyphenyl)prop-2-enoïc (6b)

The general procedure for the preparation of the monocatenar ester with 9-decen-1-ol
(0.57 mL; 3.2 mmol; 1 eq.) and para-coumaric acid (3.15 g; 19.2 mmol; 6 eq.) in 40 mL of
2-methyl-2-butanol is as follows. Compound 6b was obtained as a yellow oil with a yield
of 74%.
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(C6′), 168.9 (C=O). Analysis (%): calculated for C19 H26O3: C 75.46, H 8.67. Found: C 75.67, 
H 9.21. 

Hex-5′-enyl-3-(3,5-dihydroxyphenyl)prop-2-enoic (7b) 
The general procedure for the preparation of the monocatenar ester with 5-hexen-1-

ol (0.36 mL; 3.04 mmol; 1 eq) and caffeic acid (3.28 g; 18.24 mmol; 6 eq) in 30 mL of 2-
methyl-2-butanol/THF (10/20) is as follows. Compound 7b was obtained as a pale yellow 
oil with a yield of 52%. 

 
νmax (ATR) cm−1: 3390 (OH), 2930 (C–H), 1734 (C=O), 1615 (–CH=CH2–), 1664 (Phenyl-
CH=CH-COO). 1H NMR (500 MHz; CD3OD, ppm) δ 1.59 (2H, m, H3), 1.61 (2H, m, H2), 
2.21 (2H, m, H4), 4.22 (2H, t, J 7.2 Hz, H1), 5.05 (2H, d, J 7.2 Hz, H6), 5.12 (1H, d, J 7.2 Hz, 
H1′), 5.85 (1H, m, H5), 6.36 (2H, d, J 7.2 Hz, H2′), 6.79 (1H, d, J 7.2 Hz, H8′), 6.94 (1H, d, J 
7.2 Hz, H7′), 7.18 (1H, s, C4′), 7.50 (1H, d, J 7.2 Hz, C2′). 13C NMR (125 MHz; DMSO-d6, 
ppm) δ 24.9 (C3), 25.4 (C4), 33.9 (C2), 65.1 (C1), 115.2 (C6), 116.4 (C1′), 117.1 (C7′), 122.2 
(C8′), 128.1 (C3′), 139.0 (C5), 144.2 (C4′), 147.2 (C5′, C6′), 167.4 (C=O). Analysis (%): 
calculated for C15H18O4: C 68.69, H 6.92. Found: C 68.24, H 7.98. 

Dec-9′-enyl-3-(4-hydroxyphenyl)prop-2-enoic (8b) 
The general procedure for the preparation of the monocatenar ester with 9-decen-1-

ol (0.74 mL; 3.7 mmol; 1 eq) and caffeic acid (4 g; 19.20 mmol; 6 eq) in 30 mL of 2-methyl-
2-butanol/THF (10/20) is as follows. Compound 8b was obtained as a pale yellow oil with 
a yield of 45%. 

νmax (ATR) cm−1: 3397 (OH), 2932 (C–H), 1732 (C=O), 1612 (–CH=CH2–), 1665 (Phenyl-
CH=CH-COO). 1H NMR (500 MHz; CD3OD, ppm) δ 11.22 (8H, m, H4, H5, H6, H7), 1.70
(2H, m, H3), 2.10 (2H, m, H8), 3.75 (2H, m, H2), 4.20 (2H, t, J 7.2 Hz, H1), 5.01 (2H, d, J 7.2 Hz,
H10), 5.81 (1H, m, H9), 6.32 (1H, d, J 7.2 Hz, H1′), 6.80 (2H, d, J 10 Hz, H7′, H5′), 7.43 (1H, d,
J 7.2 Hz, H2′), 7.65 (2H, d, J 10 Hz, H4′, H8′). 13C NMR (125 MHz; DMSO-d6, ppm) δ 25.1
(C5), 27.5 (C6), 28.4 (C4), 28.9 (C7), 29.1 (C3), 29.5 (C8), 34.0 (C2), 77.2 (C1), 114.1 (C10), 115.2
(C1′), 116.0 (C9), 127.1 (C5′, C7′), 130.3 (C4′, C8′), 140.2 (C9), 145.1 (C2′), 158.7 (C6′), 168.9
(C=O). Analysis (%): calculated for C19 H26O3: C 75.46, H 8.67. Found: C 75.67, H 9.21.

Hex-5′-enyl-3-(3,5-dihydroxyphenyl)prop-2-enoic (7b)

The general procedure for the preparation of the monocatenar ester with 5-hexen-1-ol
(0.36 mL; 3.04 mmol; 1 eq.) and caffeic acid (3.28 g; 18.24 mmol; 6 eq.) in 30 mL of 2-methyl-
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2-butanol/THF (10/20) is as follows. Compound 7b was obtained as a pale yellow oil with
a yield of 52%.
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ol (0.36 mL; 3.04 mmol; 1 eq) and caffeic acid (3.28 g; 18.24 mmol; 6 eq) in 30 mL of 2-
methyl-2-butanol/THF (10/20) is as follows. Compound 7b was obtained as a pale yellow 
oil with a yield of 52%. 

 
νmax (ATR) cm−1: 3390 (OH), 2930 (C–H), 1734 (C=O), 1615 (–CH=CH2–), 1664 (Phenyl-
CH=CH-COO). 1H NMR (500 MHz; CD3OD, ppm) δ 1.59 (2H, m, H3), 1.61 (2H, m, H2), 
2.21 (2H, m, H4), 4.22 (2H, t, J 7.2 Hz, H1), 5.05 (2H, d, J 7.2 Hz, H6), 5.12 (1H, d, J 7.2 Hz, 
H1′), 5.85 (1H, m, H5), 6.36 (2H, d, J 7.2 Hz, H2′), 6.79 (1H, d, J 7.2 Hz, H8′), 6.94 (1H, d, J 
7.2 Hz, H7′), 7.18 (1H, s, C4′), 7.50 (1H, d, J 7.2 Hz, C2′). 13C NMR (125 MHz; DMSO-d6, 
ppm) δ 24.9 (C3), 25.4 (C4), 33.9 (C2), 65.1 (C1), 115.2 (C6), 116.4 (C1′), 117.1 (C7′), 122.2 
(C8′), 128.1 (C3′), 139.0 (C5), 144.2 (C4′), 147.2 (C5′, C6′), 167.4 (C=O). Analysis (%): 
calculated for C15H18O4: C 68.69, H 6.92. Found: C 68.24, H 7.98. 

Dec-9′-enyl-3-(4-hydroxyphenyl)prop-2-enoic (8b) 
The general procedure for the preparation of the monocatenar ester with 9-decen-1-

ol (0.74 mL; 3.7 mmol; 1 eq) and caffeic acid (4 g; 19.20 mmol; 6 eq) in 30 mL of 2-methyl-
2-butanol/THF (10/20) is as follows. Compound 8b was obtained as a pale yellow oil with 
a yield of 45%. 

νmax (ATR) cm−1: 3390 (OH), 2930 (C–H), 1734 (C=O), 1615 (–CH=CH2–), 1664 (Phenyl-
CH=CH-COO). 1H NMR (500 MHz; CD3OD, ppm) δ 1.59 (2H, m, H3), 1.61 (2H, m, H2), 2.21
(2H, m, H4), 4.22 (2H, t, J 7.2 Hz, H1), 5.05 (2H, d, J 7.2 Hz, H6), 5.12 (1H, d, J 7.2 Hz, H1′),
5.85 (1H, m, H5), 6.36 (2H, d, J 7.2 Hz, H2′), 6.79 (1H, d, J 7.2 Hz, H8′), 6.94 (1H, d, J 7.2 Hz,
H7′), 7.18 (1H, s, C4′), 7.50 (1H, d, J 7.2 Hz, C2′). 13C NMR (125 MHz; DMSO-d6, ppm)
δ 24.9 (C3), 25.4 (C4), 33.9 (C2), 65.1 (C1), 115.2 (C6), 116.4 (C1′), 117.1 (C7′), 122.2 (C8′),
128.1 (C3′), 139.0 (C5), 144.2 (C4′), 147.2 (C5′, C6′), 167.4 (C=O). Analysis (%): calculated
for C15H18O4: C 68.69, H 6.92. Found: C 68.24, H 7.98.

Dec-9′-enyl-3-(4-hydroxyphenyl)prop-2-enoic (8b)

The general procedure for the preparation of the monocatenar ester with 9-decen-1-ol
(0.74 mL; 3.7 mmol; 1 eq.) and caffeic acid (4 g; 19.20 mmol; 6 eq.) in 30 mL of 2-methyl-2-
butanol/THF (10/20) is as follows. Compound 8b was obtained as a pale yellow oil with a
yield of 45%.
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νmax (ATR) cm−1: 3392 (OH), 2934 (C–H), 1732 (C=O), 1612 (–CH=CH2–), 1665 (Phenyl-
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(C6′),139.2 (C5), 146.3 (C2′), 148.1 (C5′, C7′), 167.9 (C=O). Analysis (%): calculated for 
C17H22O5: C 66.65, H 7.24. Found: C 66.39, H 7.62. 

Hex-5′-enyl-3-(4-hydroxy-3-méthoxyphényl)prop-2-enoïc (10b) 
The general procedure for the preparation of the monocatenar ester with 5-hexen-1-

ol (0.7 mL; 6.53 mmol; 1 eq) and ferulic acid or 3-(4-hydroxy-3-methoxyphenyl)prop-2-
enoic (7.61 mg; 39.2 mmol; 6 eq) in 60 mL of 2-methyl-2-butanol is as follows. Compound 
10b was obtained as a clear oil with a yield of 52%. 

 
νmax (ATR) cm−1: 3392 (OH), 2927 (C–H), 1713 (C=O), 1659–1640 (CH=CH2), 1688–1664 
(Phenyl-CH=CH-COO). 1H NMR (500 MHz; CD3OD, ppm) δ 1.48 (2H, m, H3), 1.67 (2H, 
m, H4), 2.09 (2H, m, H2), 3.82 (3H, s, CH3-O-Phenyl), 4.14 (2H, t, J 7.2 Hz, H1), 5.05 (2H, 
m, H6), 5.86 (1H, m, H5), 6.49 (1H, d, J 7.2 Hz, H7′), 6.80 (1H, d, J 7.2 Hz, H1′), 7.13 (1H, d, 
J 7.2 Hz, H2′), 7.33 (1H, s, H4′), 7.56 (1H, d, J 7.2, H8′). 13C NMR (125 MHz; DMSO-d6, ppm) 
δ 25.2 (C3), 28.3 (C4), 33.2 (C2), 56.2 (CH3-O-Phenyl), 64.0 (C1), 111.6 (C7′), 114.9 (C1′), 
115.5 (C6), 115.9 (C4′), 123.6 (C2′), 126.0 (C3′), 138.9 (C5), 145.4 (C8′), 149.8 (C6′), 148.4 

νmax (ATR) cm−1: 3375(OH), 2926 (C–H), 1731 (C=O), 1614 (–CH=CH2–), 1661 (Phenyl-
CH=CH–COO). 1H NMR (500 MHz; CD3OD, ppm) δ 1.28 (8H, m, H4, H5, H6, H7), 1.44
(2H, m, H3), 1.62 (2H, m, H2), 2.18 (2H, m, H8), 3.99 (2H, t, J 7.2 Hz, H1), 5.02 (2H, d, J
7.2 Hz, H10), 5.17 (1H, d, J 7.2 Hz, H1′), 5.83 (1H, m, H9), 6.30 (1H, d, J 10 Hz, H8′), 6.79
(1H, d, J 7.2 Hz, H7′), 6.95 (1H, d, J 7.2 Hz, H4′), 7.49 (1H, d, J 7.2 Hz, H2′). 13C NMR
(125 MHz; DMSO-d6, ppm) δ 25.52 (C5), 29.32, 29.57, 31.16, 32.48 (C6, C4, C7, C3), 32.97
(C2), 33.93 (C8), 65.31 (C1), 115.25 (C10), 116.48 (C1′), 117.16 (C3′), 122.12 (C8′), 128.17
(C7′), 129.18 (C4′), 139.13 (C9), 144.95 (C1′), 147.23 (C5′, C6′), 167.13 (C=O). Analysis (%):
calculated for C19H26O4: C 71.67, H 8.23. Found: C 71.91, H 8.66.

Hex-5′-enyl-3-(3,5-dimethoxy-4-hydroxyphenyl)prop-2-enoic (9b)

The general procedure for the preparation of the monocatenar ester with 5-hexen-1-ol
(1 mL; 0.74 mmol; 1 eq.) and sinapic acid (1 g; 4.44 mmol; 6 eq.) in 30 mL of acetone is as
follows. Compound 9b was obtained as an orange-yellow oil with a yield of 40%.
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enoic (7.61 mg; 39.2 mmol; 6 eq) in 60 mL of 2-methyl-2-butanol is as follows. Compound 
10b was obtained as a clear oil with a yield of 52%. 

 
νmax (ATR) cm−1: 3392 (OH), 2927 (C–H), 1713 (C=O), 1659–1640 (CH=CH2), 1688–1664 
(Phenyl-CH=CH-COO). 1H NMR (500 MHz; CD3OD, ppm) δ 1.48 (2H, m, H3), 1.67 (2H, 
m, H4), 2.09 (2H, m, H2), 3.82 (3H, s, CH3-O-Phenyl), 4.14 (2H, t, J 7.2 Hz, H1), 5.05 (2H, 
m, H6), 5.86 (1H, m, H5), 6.49 (1H, d, J 7.2 Hz, H7′), 6.80 (1H, d, J 7.2 Hz, H1′), 7.13 (1H, d, 
J 7.2 Hz, H2′), 7.33 (1H, s, H4′), 7.56 (1H, d, J 7.2, H8′). 13C NMR (125 MHz; DMSO-d6, ppm) 
δ 25.2 (C3), 28.3 (C4), 33.2 (C2), 56.2 (CH3-O-Phenyl), 64.0 (C1), 111.6 (C7′), 114.9 (C1′), 
115.5 (C6), 115.9 (C4′), 123.6 (C2′), 126.0 (C3′), 138.9 (C5), 145.4 (C8′), 149.8 (C6′), 148.4 

νmax (ATR) cm−1: 3392 (OH), 2934 (C–H), 1732 (C=O), 1612 (–CH=CH2–), 1665 (Phenyl-
CH=CH-COO). 1H NMR (500 MHz; CD3OD, ppm) δ 0.58 (2H, m, H3), 1.62 (2H, m, H2),
2.19 (2H, m, H4), 3.83 (6H, t, J 7.2 Hz, (CH3-O)2-Phenyl), 3.99 (2H, d, J 7.2 Hz, H1), 5.12
(1 H, d, J 7.2 Hz, H6), 5.82 (1H, m, H1′), 6.32 (1H, d, J 7.2 Hz, H5), 6.72 (2H, s, H4′, H8′),
7.48 (1H, d, J 7.2 Hz, H2′). 13C NMR (125 MHz; DMSO-d6, ppm) δ 25.2 (C3), 25.6 (C2), 33.7
(C4), 56.3 ((CH3-O)2-Phenyl), 65.1 (C1), 108.2 (C6), 115.2 (C1′), 116.1 (C3′), 126.1 (C4′, C8′),
136.0 (C6′),139.2 (C5), 146.3 (C2′), 148.1 (C5′, C7′), 167.9 (C=O). Analysis (%): calculated
for C17H22O5: C 66.65, H 7.24. Found: C 66.39, H 7.62.
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Hex-5′-enyl-3-(4-hydroxy-3-méthoxyphényl)prop-2-enoïc (10b)

The general procedure for the preparation of the monocatenar ester with 5-hexen-1-ol
(0.7 mL; 6.53 mmol; 1 eq.) and ferulic acid or 3-(4-hydroxy-3-methoxyphenyl)prop-2-enoic
(7.61 mg; 39.2 mmol; 6 eq.) in 60 mL of 2-methyl-2-butanol is as follows. Compound 10b
was obtained as a clear oil with a yield of 52%.
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DMSO-d6, ppm) δ 25.52 (C5), 29.32, 29.57, 31.16, 32.48 (C6, C4, C7, C3), 32.97 (C2), 33.93 
(C8), 65.31 (C1), 115.25 (C10), 116.48 (C1′), 117.16 (C3′), 122.12 (C8′), 128.17 (C7′), 129.18 
(C4′), 139.13 (C9), 144.95 (C1′), 147.23 (C5′, C6′), 167.13 (C=O). Analysis (%): calculated for 
C19H26O4: C 71.67, H 8.23. Found: C 71.91, H 8.66. 

Hex-5′-enyl-3-(3,5-dimethoxy-4-hydroxyphenyl)prop-2-enoic (9b) 

The general procedure for the preparation of the monocatenar ester with 5-hexen-1-
ol (1 mL; 0.74 mmol; 1 eq) and sinapic acid (1 g; 4.44 mmol; 6 eq) in 30 mL of acetone is as 
follows. Compound 9b was obtained as an orange-yellow oil with a yield of 40%. 

 
νmax (ATR) cm−1: 3392 (OH), 2934 (C–H), 1732 (C=O), 1612 (–CH=CH2–), 1665 (Phenyl-
CH=CH-COO). 1H NMR (500 MHz; CD3OD, ppm) δ 0.58 (2H, m, H3), 1.62 (2H, m, H2), 
2.19 (2H, m, H4), 3.83 (6H, t, J 7.2 Hz, (CH3-O)2-Phenyl), 3.99 (2H, d, J 7.2 Hz, H1), 5.12 (1 
H, d, J 7.2 Hz, H6), 5.82 (1H, m, H1′), 6.32 (1H, d, J 7.2 Hz, H5), 6.72 (2H, s, H4′, H8′), 7.48 
(1H, d, J 7.2 Hz, H2′). 13C NMR (125 MHz; DMSO-d6, ppm) δ 25.2 (C3), 25.6 (C2), 33.7 (C4), 
56.3 ((CH3-O)2-Phenyl), 65.1 (C1), 108.2 (C6), 115.2 (C1′), 116.1 (C3′), 126.1 (C4′, C8′), 136.0 
(C6′),139.2 (C5), 146.3 (C2′), 148.1 (C5′, C7′), 167.9 (C=O). Analysis (%): calculated for 
C17H22O5: C 66.65, H 7.24. Found: C 66.39, H 7.62. 

Hex-5′-enyl-3-(4-hydroxy-3-méthoxyphényl)prop-2-enoïc (10b) 
The general procedure for the preparation of the monocatenar ester with 5-hexen-1-

ol (0.7 mL; 6.53 mmol; 1 eq) and ferulic acid or 3-(4-hydroxy-3-methoxyphenyl)prop-2-
enoic (7.61 mg; 39.2 mmol; 6 eq) in 60 mL of 2-methyl-2-butanol is as follows. Compound 
10b was obtained as a clear oil with a yield of 52%. 

 
νmax (ATR) cm−1: 3392 (OH), 2927 (C–H), 1713 (C=O), 1659–1640 (CH=CH2), 1688–1664 
(Phenyl-CH=CH-COO). 1H NMR (500 MHz; CD3OD, ppm) δ 1.48 (2H, m, H3), 1.67 (2H, 
m, H4), 2.09 (2H, m, H2), 3.82 (3H, s, CH3-O-Phenyl), 4.14 (2H, t, J 7.2 Hz, H1), 5.05 (2H, 
m, H6), 5.86 (1H, m, H5), 6.49 (1H, d, J 7.2 Hz, H7′), 6.80 (1H, d, J 7.2 Hz, H1′), 7.13 (1H, d, 
J 7.2 Hz, H2′), 7.33 (1H, s, H4′), 7.56 (1H, d, J 7.2, H8′). 13C NMR (125 MHz; DMSO-d6, ppm) 
δ 25.2 (C3), 28.3 (C4), 33.2 (C2), 56.2 (CH3-O-Phenyl), 64.0 (C1), 111.6 (C7′), 114.9 (C1′), 
115.5 (C6), 115.9 (C4′), 123.6 (C2′), 126.0 (C3′), 138.9 (C5), 145.4 (C8′), 149.8 (C6′), 148.4 

νmax (ATR) cm−1: 3392 (OH), 2927 (C–H), 1713 (C=O), 1659–1640 (CH=CH2), 1688–1664
(Phenyl-CH=CH-COO). 1H NMR (500 MHz; CD3OD, ppm) δ 1.48 (2H, m, H3), 1.67 (2H, m,
H4), 2.09 (2H, m, H2), 3.82 (3H, s, CH3-O-Phenyl), 4.14 (2H, t, J 7.2 Hz, H1), 5.05 (2H, m, H6),
5.86 (1H, m, H5), 6.49 (1H, d, J 7.2 Hz, H7′), 6.80 (1H, d, J 7.2 Hz, H1′), 7.13 (1H, d, J 7.2 Hz,
H2′), 7.33 (1H, s, H4′), 7.56 (1H, d, J 7.2, H8′). 13C NMR (125 MHz; DMSO-d6, ppm) δ 25.2
(C3), 28.3 (C4), 33.2 (C2), 56.2 (CH3-O-Phenyl), 64.0 (C1), 111.6 (C7′), 114.9 (C1′), 115.5 (C6),
115.9 (C4′), 123.6 (C2′), 126.0 (C3′), 138.9 (C5), 145.4 (C8′), 149.8 (C6′), 148.4 (C5′), 167.2
(C=O). Analysis (%): calculated for C16H20O4: C 69.55, H 7.30. Found: C 69.73, H 7.52.

Dec-9′-enyl-3-enyl-3-(4-hydroxy-3-méthoxyphényl)prop-2-enoïc (11b)

The general procedure for the preparation of the monocatenar ester with 9-decen-1-ol
(1.2 mL; 3.01 mmol; 1 eq.) and 3-(4-hydroxy-3-methoxyphenyl)prop-2-enoic acid (3.51 mg;
18.06 mmol; 6 eq.) in 60 mL of 2-methyl-2-butanol is as follows. Compound 11b was
obtained as a clear oil with a yield of 52%.
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1′,10′-bis-dec-5′-enyl-3-(4-hydroxyphenyl)propionic ester (12b) 

The general procedure for the preparation of the fatty ester-based bolaamphiphiles 
with compound 1b (1 g, 4.03 mmol, 1 eq.) under microwave activation with Grubbs II 
catalyst (0.34 g, 0.403 mmol; 0.1 eq.) dissolved in 10 mL CH2Cl2 is as follows. Compound 
12b is obtained as a brown paste with a yield of 56%. 
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6.96 (4H, d, J 10 Hz, H5′, H7′). 13C NMR (125 MHz; DMSO-d6, ppm) δ 25.9 (2 C3), 28.2 (2 
C4), 30.1 (2 C2), 33.4 (2 C2′), 36.4 (2 C1′), 64.2 (2 C1),116.2 (2 C4′, 2 C8′), 129.5 (2 C5′, 2 C7′), 
130.1 (2 C3′), 130.5 (CH2CH(Z)=CH(Z)CH2), 130.9 (CH2CH(E)=CH(E)CH2), 156.1 (2 C6′), 
172.8 (C=O). Analysis (%): calculated for: C28H36O6: C 71.77, H 7.74. Found: C 72.04, H 
7.44%. 

1′,12′-bis-dodec-6′-enyl-3-(4-hydroxyphenyl)propionic ester (13b) 

νmax (ATR) cm−1: 3394 (OH), 2926 (C–H), 1724 (C=O), 1660–1640 (CH=CH2), 1690–1664
(Phenyl-CH=CH-COO). 1H NMR (500 MHz; CD3OD, ppm) δ 1.33 (8H, m, H4, H5, H6, H7),
1.55 (2H, m, H3), 1.63 (2H, m, H8), 2.02 (2H, m, H2), 3.82 (3H, s, CH3-O-Phenyl), 4.12 (2H,
t, J 7.2 Hz, H1), 4.99 (2H, m, H10), 5.82 (1H, m, H9), 6.47 (1H, d, J 7.2 Hz, H7′), 6.80 (1H,
d, J 7.2 Hz, H1′), 7.11 (1H, d, J 7.2 Hz, H2′), 7.31 (1H, s, H4′), 7.56 (1H, d, J 7.2, H8′). 13C
NMR (125 MHz; DMSO-d6, ppm) δ 28.9 (C5), 28.9 (C6), 29.0 (C4), 29.1 (C7), 29.2 (C3), 29.3
(C8), 33.6 (C2), 56.1 (CH3-O-Phenyl), 64.2 (C1), 111.5 (C7′), 114.9 (C1′), 115.0 (C6), 115.9
(C4′), 123.5 (C2′), 126.0 (C3′), 139.2 (C5), 145.4 (C8′), 148.4 (C6′), 149.8 (C5′), 167.1 (C=O).
Analysis (%): calculated for C20H28O4: C 72.26, H 8.49. Found: C 71.92, H 8.64.

3.7. General Procedure for the Preparation of the Fatty Ester-Based Bolaamphiphiles under
Microwave Activation

In a microwave tube, the fatty ester in CH2Cl2 (10 mL) was dissolved under argon and
the Grubbs II catalyst was then added in three portions over the whole reaction time. The
mixture was irradiated for 40 min at a power of 60 W and a temperature of 60 ◦C. After
40 min of reaction, the reaction medium was treated with activated charcoal to remove the
Grubbs catalyst and filtered through celite. After evaporation of the solvent under reduced
pressure, the residue was purified by a flash chromatography system coupled with a UV
detector with elution mixture CH2Cl2/MeOH (9/1) over 35 min.

1′,10′-bis-dec-5′-enyl-3-(4-hydroxyphenyl)propionic ester (12b)

The general procedure for the preparation of the fatty ester-based bolaamphiphiles
with compound 1b (1 g, 4.03 mmol, 1 eq.) under microwave activation with Grubbs II
catalyst (0.34 g, 0.403 mmol; 0.1 eq.) dissolved in 10 mL CH2Cl2 is as follows. Compound
12b is obtained as a brown paste with a yield of 56%.
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with compound 1b (1 g, 4.03 mmol, 1 eq.) under microwave activation with Grubbs II 
catalyst (0.34 g, 0.403 mmol; 0.1 eq.) dissolved in 10 mL CH2Cl2 is as follows. Compound 
12b is obtained as a brown paste with a yield of 56%. 
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Hz, H1′), 3.98 (4H, t, J 7.2 Hz, H1), 5.74 (2H, d, J 7.2 Hz, H5), 6.71 (4H, d, J 10 Hz, H4′, H8′), 
6.96 (4H, d, J 10 Hz, H5′, H7′). 13C NMR (125 MHz; DMSO-d6, ppm) δ 25.9 (2 C3), 28.2 (2 
C4), 30.1 (2 C2), 33.4 (2 C2′), 36.4 (2 C1′), 64.2 (2 C1),116.2 (2 C4′, 2 C8′), 129.5 (2 C5′, 2 C7′), 
130.1 (2 C3′), 130.5 (CH2CH(Z)=CH(Z)CH2), 130.9 (CH2CH(E)=CH(E)CH2), 156.1 (2 C6′), 
172.8 (C=O). Analysis (%): calculated for: C28H36O6: C 71.77, H 7.74. Found: C 72.04, H 
7.44%. 

1′,12′-bis-dodec-6′-enyl-3-(4-hydroxyphenyl)propionic ester (13b) 

νmax (ATR) cm−1: 3385 (OH), 2927–2855 (C–H), 1730 (C=O), 1614 (C=C). 1H NMR (500 MHz;
CD3OD, ppm) δ 1.27–1.36 (12H, m, H3, H4, H2), 2.51 (4H, t, J 7.2 Hz, H2′), 2.74 (4H, t, J
7.2 Hz, H1′), 3.98 (4H, t, J 7.2 Hz, H1), 5.74 (2H, d, J 7.2 Hz, H5), 6.71 (4H, d, J 10 Hz, H4′,
H8′), 6.96 (4H, d, J 10 Hz, H5′, H7′). 13C NMR (125 MHz; DMSO-d6, ppm) δ 25.9 (2 C3),
28.2 (2 C4), 30.1 (2 C2), 33.4 (2 C2′), 36.4 (2 C1′), 64.2 (2 C1),116.2 (2 C4′, 2 C8′), 129.5 (2 C5′,
2 C7′), 130.1 (2 C3′), 130.5 (CH2CH(Z)=CH(Z)CH2), 130.9 (CH2CH(E)=CH(E)CH2), 156.1
(2 C6′), 172.8 (C=O). Analysis (%): calculated for: C28H36O6: C 71.77, H 7.74. Found: C
72.04, H 7.44%.

1′,12′-bis-dodec-6′-enyl-3-(4-hydroxyphenyl)propionic ester (13b)

The general procedure for the preparation of the fatty ester-based bolaamphiphiles
with compound 2b (0.45 g, 1.72 mmol, 1 eq.) under microwave activation with Grubbs II
catalyst (0.15 g, 0.172 mmol; 0.1 eq.) dissolved in 10 mL CH2Cl2 is as follows. Compound
13b is obtained as a brown paste with a yield of 48%.
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(CH2CH(E)=CH(E)CH2), 156.2 (2 C6′), 173.0 (C=O). Analysis (%): calculated for C30H40O6: 
C 72.55, H 8.12. Found: C 72.06, H 7.93. 

1′,18′-bis-octadec-9′-enyl-3-(4-hydroxyphenyl)propionic ester (14b) 
The general procedure for the preparation of the fatty ester-based bolaamphiphiles 

with compound 3b (1 g, 3.29 mmol, 1 eq.) under microwave activation with Grubbs II 
catalyst (0.28 g, 0.329 mmol; 0.1 eq.) dissolved in 10 mL CH2Cl2 is as follows. Compound 
14b is obtained as a brown paste with a yield of 60%. 

 
νmax (ATR) cm−1: 3383 (OH), 2927–2854 (C–H), 1731 (C=O), 1614 (C=C). 1H NMR (500 MHz; 
CD3OD, ppm) δ 1.29 (20H, m, H3, H4, H5, H6, H7), 1.51 (4H, m, J 7.2 Hz, H2), 1.94 (4H, t, 
J 7.2 Hz, H8), 2.53 (4H, t, J 7.2 Hz, H1′), 2.72 (4H, t, J 7.2 Hz, H2′), 3.97 (4H, t, J 10 Hz, H1), 
5.36 (2H, t, J 7.2 Hz, H9), 6.65 (4H, d, J 10 Hz, H5′, H7′), 6.90 (4H, d, J 10 Hz, H4′, H8′). 13C 
NMR (125 MHz; DMSO-d6, ppm) δ 28.9 (2 C5), 29.1 (2 C6), 29.2 (2 C4), 29.4 (2 C7), 29.4 (2 
C3), 30.0 (2 C8), 32.4 (2 C2), 32.4 (2 C2′), 36.0 (2 C1′), 64.2 (2 C1), 115.5 (2 C4′, 2 C8′), 129.5 
(2 C5′, 2 C7′), 130.1 (2 C3′), 130.5 (CH2CH(Z)=CH(Z)CH2), 130.9 (CH2CH(E)=CH(E)CH2), 
156.1 (C6′), 172.8 (C=O). Analysis (%): calculated for C36H52O6: C 74.45, H 9.02. Found: C 
74.07, H 8.78. 

1′,10′-bis-dec-5′-enyl-3-(4-hydroxyphenyl)prop-2-enoic (15b) 

The general procedure for the preparation of the fatty ester-based bolaamphiphiles 
with compound 4b (0.1 g, 4.06 mmol, 1eq.) under microwave activation with Grubbs II 
catalyst (0.35 g, 0.406 mmol; 0.1 eq.) dissolved in 10 mL CH2Cl2 is as follows. Compound 
14b is obtained as a brown paste with a yield of 42%. 

νmax (ATR) cm−1: 3374 (OH), 2923–2835 (C–H), 1732 (C=O), 1621 (C=C). 1H NMR (500 MHz;
CD3OD, ppm) δ 1.28–1.32 (12H, m, H3, H4, H5, H2), 2.53 (4H, t, J 7.2 Hz, H2′), 2.72 (4H,
t, J 7.2 Hz, H1′), 4.08 (4H, t, J 7.2 Hz, H1), 5.84 (2H, d, J 7.2 Hz, H6), 6.73 (4H, d, J 10 Hz,
H4′, H8′), 6.92 (4H, d, J 10 Hz, H5′, H7′). 13C NMR (125 MHz; DMSO-d6, ppm) δ 25.9
(2C3), 28.3 (2 C4), 28.6 (2 C5), 32.2 (2 C2), 33.58 (2 C2′), 36.04 (2 C1′), 64.25 (2 C1),115.18
(2 C4′, 2 C8′), 129.4 (2 C5′, 2 C7′), 130.2 (2C3′), 130.5 (CH2CH(Z)=CH(Z)CH2), 130.9
(CH2CH(E)=CH(E)CH2), 156.2 (2 C6′), 173.0 (C=O). Analysis (%): calculated for C30H40O6:
C 72.55, H 8.12. Found: C 72.06, H 7.93.

1′,18′-bis-octadec-9′-enyl-3-(4-hydroxyphenyl)propionic ester (14b)

The general procedure for the preparation of the fatty ester-based bolaamphiphiles
with compound 3b (1 g, 3.29 mmol, 1 eq.) under microwave activation with Grubbs II
catalyst (0.28 g, 0.329 mmol; 0.1 eq.) dissolved in 10 mL CH2Cl2 is as follows. Compound
14b is obtained as a brown paste with a yield of 60%.
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13b is obtained as a brown paste with a yield of 48%. 

 
νmax (ATR) cm−1: 3374 (OH), 2923–2835 (C–H), 1732 (C=O), 1621 (C=C). 1H NMR (500 MHz; 
CD3OD, ppm) δ 1.28–1.32 (12H, m, H3, H4, H5, H2), 2.53 (4H, t, J 7.2 Hz, H2′), 2.72 (4H, t, 
J 7.2 Hz, H1′), 4.08 (4H, t, J 7.2 Hz, H1), 5.84 (2H, d, J 7.2 Hz, H6), 6.73 (4H, d, J 10 Hz, H4′, 
H8′), 6.92 (4H, d, J 10 Hz, H5′, H7′). 13C NMR (125 MHz; DMSO-d6, ppm) δ 25.9 (2C3), 28.3 
(2 C4), 28.6 (2 C5), 32.2 (2 C2), 33.58 (2 C2′), 36.04 (2 C1′), 64.25 (2 C1),115.18 (2 C4′, 2 C8′), 
129.4 (2 C5′, 2 C7′), 130.2 (2C3′), 130.5 (CH2CH(Z)=CH(Z)CH2), 130.9 
(CH2CH(E)=CH(E)CH2), 156.2 (2 C6′), 173.0 (C=O). Analysis (%): calculated for C30H40O6: 
C 72.55, H 8.12. Found: C 72.06, H 7.93. 

1′,18′-bis-octadec-9′-enyl-3-(4-hydroxyphenyl)propionic ester (14b) 
The general procedure for the preparation of the fatty ester-based bolaamphiphiles 

with compound 3b (1 g, 3.29 mmol, 1 eq.) under microwave activation with Grubbs II 
catalyst (0.28 g, 0.329 mmol; 0.1 eq.) dissolved in 10 mL CH2Cl2 is as follows. Compound 
14b is obtained as a brown paste with a yield of 60%. 

 
νmax (ATR) cm−1: 3383 (OH), 2927–2854 (C–H), 1731 (C=O), 1614 (C=C). 1H NMR (500 MHz; 
CD3OD, ppm) δ 1.29 (20H, m, H3, H4, H5, H6, H7), 1.51 (4H, m, J 7.2 Hz, H2), 1.94 (4H, t, 
J 7.2 Hz, H8), 2.53 (4H, t, J 7.2 Hz, H1′), 2.72 (4H, t, J 7.2 Hz, H2′), 3.97 (4H, t, J 10 Hz, H1), 
5.36 (2H, t, J 7.2 Hz, H9), 6.65 (4H, d, J 10 Hz, H5′, H7′), 6.90 (4H, d, J 10 Hz, H4′, H8′). 13C 
NMR (125 MHz; DMSO-d6, ppm) δ 28.9 (2 C5), 29.1 (2 C6), 29.2 (2 C4), 29.4 (2 C7), 29.4 (2 
C3), 30.0 (2 C8), 32.4 (2 C2), 32.4 (2 C2′), 36.0 (2 C1′), 64.2 (2 C1), 115.5 (2 C4′, 2 C8′), 129.5 
(2 C5′, 2 C7′), 130.1 (2 C3′), 130.5 (CH2CH(Z)=CH(Z)CH2), 130.9 (CH2CH(E)=CH(E)CH2), 
156.1 (C6′), 172.8 (C=O). Analysis (%): calculated for C36H52O6: C 74.45, H 9.02. Found: C 
74.07, H 8.78. 

1′,10′-bis-dec-5′-enyl-3-(4-hydroxyphenyl)prop-2-enoic (15b) 

The general procedure for the preparation of the fatty ester-based bolaamphiphiles 
with compound 4b (0.1 g, 4.06 mmol, 1eq.) under microwave activation with Grubbs II 
catalyst (0.35 g, 0.406 mmol; 0.1 eq.) dissolved in 10 mL CH2Cl2 is as follows. Compound 
14b is obtained as a brown paste with a yield of 42%. 

νmax (ATR) cm−1: 3383 (OH), 2927–2854 (C–H), 1731 (C=O), 1614 (C=C). 1H NMR (500 MHz;
CD3OD, ppm) δ 1.29 (20H, m, H3, H4, H5, H6, H7), 1.51 (4H, m, J 7.2 Hz, H2), 1.94 (4H, t, J
7.2 Hz, H8), 2.53 (4H, t, J 7.2 Hz, H1′), 2.72 (4H, t, J 7.2 Hz, H2′), 3.97 (4H, t, J 10 Hz, H1),
5.36 (2H, t, J 7.2 Hz, H9), 6.65 (4H, d, J 10 Hz, H5′, H7′), 6.90 (4H, d, J 10 Hz, H4′, H8′). 13C
NMR (125 MHz; DMSO-d6, ppm) δ 28.9 (2 C5), 29.1 (2 C6), 29.2 (2 C4), 29.4 (2 C7), 29.4 (2
C3), 30.0 (2 C8), 32.4 (2 C2), 32.4 (2 C2′), 36.0 (2 C1′), 64.2 (2 C1), 115.5 (2 C4′, 2 C8′), 129.5
(2 C5′, 2 C7′), 130.1 (2 C3′), 130.5 (CH2CH(Z)=CH(Z)CH2), 130.9 (CH2CH(E)=CH(E)CH2),
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156.1 (C6′), 172.8 (C=O). Analysis (%): calculated for C36H52O6: C 74.45, H 9.02. Found: C
74.07, H 8.78.

1′,10′-bis-dec-5′-enyl-3-(4-hydroxyphenyl)prop-2-enoic (15b)

The general procedure for the preparation of the fatty ester-based bolaamphiphiles
with compound 4b (0.1 g, 4.06 mmol, 1 eq.) under microwave activation with Grubbs II
catalyst (0.35 g, 0.406 mmol; 0.1 eq.) dissolved in 10 mL CH2Cl2 is as follows. Compound
14b is obtained as a brown paste with a yield of 42%.
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COO). 1H NMR (500 MHz; CD3OD, ppm) δ 1.25–1.51 (12H, m, H3, H4, H2), 4.25 (4H, t, J 
7.2 Hz, H1), 5.48 (2H, t, J 7.2 Hz, H5), 6.30 (2H, d, J 7.2 Hz, H2′), 6.81 (4H, d, J 10 Hz, H5′, 
H7′), 7.30 (2H, d, J 7.2 Hz, H1′), 7.74 (4, d, 10 Hz, H4′, H8′). 13C NMR (125 MHz; DMSO-
d6, ppm) δ 24.1 (2 C3), 25.1 (2 C4), 31.3 (2 C2), 32.2 (2 C2′), 65.3 (2 C1), 114.1 (2 C2′), 1115.0 
(2 C5′, 2 C7′), 127.2 (2 C3′), 129.6 (2 C4′, 2 C8′), 130.1 (CH2CH(Z)=CH(Z)CH2), 130.3 
(CH2CH(E)=CH(E)CH2), 145.4 (2 C6′), 158.2 (2 C1′), 170.5 (C=O). Analysis (%): calculated 
for C28H32O6: C 72.39, H 6.94. Found: C 72.82, H 7.21. 

3.8. General Procedure for the Preparation of the Unsymmetrical Fatty Ester- and Rhamnoside-
Based Bolaamphiphiles by Classic Heating 

The rhamnoside-based bolaamphiphile and the fatty ester were dissolved in CH2Cl2 
(35 mL)/MeOH (5 mL) in a Schlenk tube under argon and the Grubbs II catalyst was added 
in three portions over the whole reaction time. The mixture was irradiated at a 
temperature of 45 °C. After 24 h of reaction, the reaction medium was treated with 
activated charcoal to remove the Grubbs catalyst and filtered through celite. After 
evaporation, the residue was purified by a flash chromatography system coupled with a 
UV detector with elution mixture CH2Cl2/MeOH (9/1) over 45 min. 

1′,10′-bis-dec-5′-enyl-3-(4-hydroxyphenyl)propionicacid–α–L-rhamnopyranoside (1ab) 

The general procedure for the preparation of the unsymmetrical fatty ester- and 
rhamnoside-based bolaamphiphiles with compound 6a (1 g, 2.15 mmol, 2 eq.) and 
compound 1b (0.267 g, 1.080 mmol) under argon with Grubbs II catalyst (0.09 g, 0.108 
mmol; 0.05 eq.) dissolved in 40 mL CH2Cl2/MeOH (35/5) is as follows. Compound 1ab is 
obtained as a brown paste with a yield of 65%. 

 
νmax (ATR) cm−1: 3353 (OH), 2928 (C–H), 1732 (C=O), 1615 (C=C). [α]20D (589 nm, MeOH) = 
−26.601. 1H NMR (500 MHz; DMSO-d6, ppm) δ 1.27 (3H, d, J 7.5 Hz, H6′-ose), 1.41 (4H, m, 
H3), 1.83 (4H, m, H2), 2.15 (4H, m, H4), 2.53 (2H, t, J 7.2 Hz, H2′-acid), 2.72 (2H, t, J 7.2 Hz, 
H1′-acid), 3.12–3.54 (5H, m, H1′-ose, C2′-ose, C3′-ose, C4′-ose, C5′-ose), 4.01 (2H, t, J 7.2 Hz, H1-acid), 
4.52–4.72 (3H, s, 3 OH-ose), 5.76 (2H, t, J 7.2 Hz, 2 H5-C=C-), 6.71 (2H, d, J 10 Hz, H4′, H8′), 
6.98 (2H, d, J 10 Hz, H5′, H7′). 13C NMR (125 MHz; DMSO-d6, ppm) δ 17.7 (C6′-ose), 25.8 (2 
C3), 28.6, 31.7 (2 C2, 2 C4), 32.9 (C2′-acid), 36.1 (C1′-acid), 63.9 (C1-acid), 66.3 (C1-ose), 68.7–74.1 
(C2′-ose, C3′-ose, C4′-ose, C5′-ose), 100.4 (C1′-ose), 115.4 (C4′-acid, C8′-acid), 115.5 (C5′-acid, C7′-acid), 
131.0 (CH2CH(Z)=CH(Z)CH2), 131.5 (CH2CH(E)=CH(E)CH2), 136.3 (C3′), 156.1 (C6′), 172.8 
(C=O). Analysis (%): calculated for C25H38O8: C 64.36, H 8.21. Found: C 64.09, H 8.57. 

1′,12′-bis-dodec-6′-enyl-3-(4-hydroxyphenyl)propionicacid–α–L-rhamnopyranoside (2ab) 

νmax (ATR) cm−1: 3395 (OH), 2937 (C–H), 1731 (C=O), 1614 (C=C), 1668 (Phenyl-CH=CH-
COO). 1H NMR (500 MHz; CD3OD, ppm) δ 1.25–1.51 (12H, m, H3, H4, H2), 4.25 (4H, t,
J 7.2 Hz, H1), 5.48 (2H, t, J 7.2 Hz, H5), 6.30 (2H, d, J 7.2 Hz, H2′), 6.81 (4H, d, J 10 Hz,
H5′, H7′), 7.30 (2H, d, J 7.2 Hz, H1′), 7.74 (4, d, 10 Hz, H4′, H8′). 13C NMR (125 MHz;
DMSO-d6, ppm) δ 24.1 (2 C3), 25.1 (2 C4), 31.3 (2 C2), 32.2 (2 C2′), 65.3 (2 C1), 114.1 (2 C2′),
1115.0 (2 C5′, 2 C7′), 127.2 (2 C3′), 129.6 (2 C4′, 2 C8′), 130.1 (CH2CH(Z)=CH(Z)CH2), 130.3
(CH2CH(E)=CH(E)CH2), 145.4 (2 C6′), 158.2 (2 C1′), 170.5 (C=O). Analysis (%): calculated
for C28H32O6: C 72.39, H 6.94. Found: C 72.82, H 7.21.

3.8. General Procedure for the Preparation of the Unsymmetrical Fatty Ester- and
Rhamnoside-Based Bolaamphiphiles by Classic Heating

The rhamnoside-based bolaamphiphile and the fatty ester were dissolved in CH2Cl2
(35 mL)/MeOH (5 mL) in a Schlenk tube under argon and the Grubbs II catalyst was added
in three portions over the whole reaction time. The mixture was irradiated at a temperature
of 45 ◦C. After 24 h of reaction, the reaction medium was treated with activated charcoal
to remove the Grubbs catalyst and filtered through celite. After evaporation, the residue
was purified by a flash chromatography system coupled with a UV detector with elution
mixture CH2Cl2/MeOH (9/1) over 45 min.

1′,10′-bis-dec-5′-enyl-3-(4-hydroxyphenyl)propionicacid–α–L-rhamnopyranoside (1ab)

The general procedure for the preparation of the unsymmetrical fatty ester- and
rhamnoside-based bolaamphiphiles with compound 6a (1 g, 2.15 mmol, 2 eq.) and com-
pound 1b (0.267 g, 1.080 mmol) under argon with Grubbs II catalyst (0.09 g, 0.108 mmol;
0.05 eq.) dissolved in 40 mL CH2Cl2/MeOH (35/5) is as follows. Compound 1ab is
obtained as a brown paste with a yield of 65%.
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(2 C5′, 2 C7′), 127.2 (2 C3′), 129.6 (2 C4′, 2 C8′), 130.1 (CH2CH(Z)=CH(Z)CH2), 130.3 
(CH2CH(E)=CH(E)CH2), 145.4 (2 C6′), 158.2 (2 C1′), 170.5 (C=O). Analysis (%): calculated 
for C28H32O6: C 72.39, H 6.94. Found: C 72.82, H 7.21. 

3.8. General Procedure for the Preparation of the Unsymmetrical Fatty Ester- and Rhamnoside-
Based Bolaamphiphiles by Classic Heating 

The rhamnoside-based bolaamphiphile and the fatty ester were dissolved in CH2Cl2 
(35 mL)/MeOH (5 mL) in a Schlenk tube under argon and the Grubbs II catalyst was added 
in three portions over the whole reaction time. The mixture was irradiated at a 
temperature of 45 °C. After 24 h of reaction, the reaction medium was treated with 
activated charcoal to remove the Grubbs catalyst and filtered through celite. After 
evaporation, the residue was purified by a flash chromatography system coupled with a 
UV detector with elution mixture CH2Cl2/MeOH (9/1) over 45 min. 

1′,10′-bis-dec-5′-enyl-3-(4-hydroxyphenyl)propionicacid–α–L-rhamnopyranoside (1ab) 

The general procedure for the preparation of the unsymmetrical fatty ester- and 
rhamnoside-based bolaamphiphiles with compound 6a (1 g, 2.15 mmol, 2 eq.) and 
compound 1b (0.267 g, 1.080 mmol) under argon with Grubbs II catalyst (0.09 g, 0.108 
mmol; 0.05 eq.) dissolved in 40 mL CH2Cl2/MeOH (35/5) is as follows. Compound 1ab is 
obtained as a brown paste with a yield of 65%. 

 
νmax (ATR) cm−1: 3353 (OH), 2928 (C–H), 1732 (C=O), 1615 (C=C). [α]20D (589 nm, MeOH) = 
−26.601. 1H NMR (500 MHz; DMSO-d6, ppm) δ 1.27 (3H, d, J 7.5 Hz, H6′-ose), 1.41 (4H, m, 
H3), 1.83 (4H, m, H2), 2.15 (4H, m, H4), 2.53 (2H, t, J 7.2 Hz, H2′-acid), 2.72 (2H, t, J 7.2 Hz, 
H1′-acid), 3.12–3.54 (5H, m, H1′-ose, C2′-ose, C3′-ose, C4′-ose, C5′-ose), 4.01 (2H, t, J 7.2 Hz, H1-acid), 
4.52–4.72 (3H, s, 3 OH-ose), 5.76 (2H, t, J 7.2 Hz, 2 H5-C=C-), 6.71 (2H, d, J 10 Hz, H4′, H8′), 
6.98 (2H, d, J 10 Hz, H5′, H7′). 13C NMR (125 MHz; DMSO-d6, ppm) δ 17.7 (C6′-ose), 25.8 (2 
C3), 28.6, 31.7 (2 C2, 2 C4), 32.9 (C2′-acid), 36.1 (C1′-acid), 63.9 (C1-acid), 66.3 (C1-ose), 68.7–74.1 
(C2′-ose, C3′-ose, C4′-ose, C5′-ose), 100.4 (C1′-ose), 115.4 (C4′-acid, C8′-acid), 115.5 (C5′-acid, C7′-acid), 
131.0 (CH2CH(Z)=CH(Z)CH2), 131.5 (CH2CH(E)=CH(E)CH2), 136.3 (C3′), 156.1 (C6′), 172.8 
(C=O). Analysis (%): calculated for C25H38O8: C 64.36, H 8.21. Found: C 64.09, H 8.57. 

1′,12′-bis-dodec-6′-enyl-3-(4-hydroxyphenyl)propionicacid–α–L-rhamnopyranoside (2ab) 

νmax (ATR) cm−1: 3353 (OH), 2928 (C–H), 1732 (C=O), 1615 (C=C). [α]20
D (589 nm, MeOH)

=−26.601. 1H NMR (500 MHz; DMSO-d6, ppm) δ 1.27 (3H, d, J 7.5 Hz, H6′-ose), 1.41 (4H, m,
H3), 1.83 (4H, m, H2), 2.15 (4H, m, H4), 2.53 (2H, t, J 7.2 Hz, H2′-acid), 2.72 (2H, t, J 7.2 Hz,
H1′-acid), 3.12–3.54 (5H, m, H1′-ose, C2′-ose, C3′-ose, C4′-ose, C5′-ose), 4.01 (2H, t, J 7.2 Hz,
H1-acid), 4.52–4.72 (3H, s, 3 OH-ose), 5.76 (2H, t, J 7.2 Hz, 2 H5-C=C-), 6.71 (2H, d, J 10 Hz, H4′,
H8′), 6.98 (2H, d, J 10 Hz, H5′, H7′). 13C NMR (125 MHz; DMSO-d6, ppm) δ 17.7 (C6′-ose),
25.8 (2 C3), 28.6, 31.7 (2 C2, 2 C4), 32.9 (C2′-acid), 36.1 (C1′-acid), 63.9 (C1-acid), 66.3 (C1-ose),
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68.7–74.1 (C2′-ose, C3′-ose, C4′-ose, C5′-ose), 100.4 (C1′-ose), 115.4 (C4′-acid, C8′-acid), 115.5
(C5′-acid, C7′-acid), 131.0 (CH2CH(Z)=CH(Z)CH2), 131.5 (CH2CH(E)=CH(E)CH2), 136.3
(C3′), 156.1 (C6′), 172.8 (C=O). Analysis (%): calculated for C25H38O8: C 64.36, H 8.21.
Found: C 64.09, H 8.57.

1′,12′-bis-dodec-6′-enyl-3-(4-hydroxyphenyl)propionicacid–α–L-rhamnopyranoside (2ab)

The general procedure for the preparation of the unsymmetrical fatty ester- and
rhamnoside-based bolaamphiphiles with compound 6a ((0,20 g, 0,4 mmol, 2 éq.)) and
compound 2b (0.053 g, 0.2 mmol, 1 eq.) under argon with Grubbs II catalyst (0.017 g,
0.02 mmol; 0.05 eq.) dissolved in 40 mL CH2Cl2/MeOH (35/5) is as follows. Compound
1ab is obtained as a brown paste with a yield of 42%.
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H4) 1.43 (4H, m, H3), 1.80 (4H, m, H2), 2.12 (4H, m, H4), 2.56 (2H, t, J 7.2 Hz, H2′-acid), 2.70 
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Hz, H4′, H8′), 7.08 (2H, d, J 10 Hz, H5′, H7′). 13C NMR (125 MHz; DMSO-d6, ppm) δ 17.3 
(C6′-ose), 25.4 (2 C4), 25.7 (2 C3), 28.6, 31.7 (2 C2, 2 C4), 32.8 (C2′-acid), 36.2 (C1′-acid), 63.9 (C1-

acid), 66.1 (C1-ose), 68.5–74.1 (C2′-ose, C3′-ose, C4′-ose, C5′-ose), 100.6 (C1′-ose), 115.1 (C4′-acid, C8′-
acid), 114.3 (C5′-acid, C7′-acid), 130.9 (CH2CH(Z)=CH(Z)CH2), 131.6 (CH2CH(E)=CH(E)CH2), 
136.3 (C3′), 156.4 (C6′), 172.8 (C=O). Analysis (%): calculated for C27H42O8: C 65.56, H 8.56. 
Found: C 65.80, H 8.74. 

1′,18′-bis-dodec-9′-enyl-3-(4-hydroxyphenyl)propionicacid–α–L-rhamnopyranoside (3ab) 

The general procedure for the preparation of the unsymmetrical fatty ester- and 
rhamnoside-based bolaamphiphiles with compound 8a (1 g, 1.73 mmol, 2 eq.) and 
compound 3b (0.264 g, 0.867 mmol) under argon with Grubbs II catalyst (0.074 g, 0.086 
mmol; 0.05 eq.) dissolved in 40 mL CH2Cl2/MeOH (35/5) is as follows. Compound 3ab is 
obtained as a brown paste with a yield of 68%. 

 
νmax (ATR) cm−1: 3353 (OH), 2925 (C–H), 1732 (C=O), 1614 (C=C). [α]20 

D  (589 nm, MeOH) = 
−32.601. 1H NMR (500 MHz; DMSO-d6, ppm) δ 1.12 (3H, d, J 7.5 Hz, H6′-ose), 1.34 (20H, m, 
H3, H4, H5, H6, H7), 1.52 (4H, m, H2), 2.03 (4H, m, H8), 2.51 (2H, t, J 7.2 Hz, H2′-acid), 2.74 
(2H, t, J 7.2 Hz, H1′-acid), 3.18–3.47 (5H, m, H1-ose, H2′-ose, H3′-ose, H4′-ose, H5′-ose), 4.06 (2H, t, 
J 7.2 Hz, H1-acide), 4.13–4.51 (3H, s, 3 OH-ose), 5.81 (2H, t, J 7.2 Hz, H9-C=C-), 6.72 (2H, d, J 10 
Hz, H4′, H8′), 7.02 (2H, d, J 10 Hz, H5′, H7′). 13C NMR (125 MHz; DMSO-d6, ppm) δ 18.3 
(C6′-ose), 26.1, 28.7, 28.9, 29.2, 29.4 (2 C3, 2 C4, 2 C5, 2 C6, 2 C7), 29.4 (2 C2), 31.8 (2 C8), 33.4 
(C2′-acid), 36.2 (C1′-acid), 64.2 (C1-acid), 66.8 (C1-ose), 68.8–73.5 (C2′-ose, C3′-ose, C4′-ose, C5′-ose), 
100.7 (C1′-ose), 115.5 (C4′-acid, C8′-acid), 128.3 (C5′-acid, C7′-acid), 130.7 (CH2CH(Z)=CH(Z)CH2), 
131.1 (CH2CH(E)=CH(E)CH2), 138.5 (C3′-acid),156.2 (C6′), 171.8 (C=O). Analysis (%): 
calculated for: C33 H54O8: C 68.48, H 9.40. Found: C 67.98, H 9.78. 

1′,20′-bis-eicosa-10′-enyl-3-(4-hydroxyphenyl)propionicacid–α–L-rhamnopyranoside 
(4ab) 

νmax (ATR) cm−1: 3351 (OH), 2923 (C–H), 1731 (C=O), 1614 (C=C). [α]20
D (589 nm, MeOH)

= −16.900. 1H NMR (500 MHz; DMSO-d6, ppm) δ 1.16 (3H, d, J 7.5 Hz, H6′-ose), 1.28
(4H, m, H4) 1.43 (4H, m, H3), 1.80 (4H, m, H2), 2.12 (4H, m, H4), 2.56 (2H, t, J 7.2 Hz,
H2′-acid), 2.70 (2H, t, J 7.2 Hz, H1′-acid), 3.14–3.52 (5H, m, H1-ose, H2′-ose, H3′-ose, H4′-ose,
H5′-ose), 4.13 (2H, t, J 7.2 Hz, H1-acid), 4.42–4.82 (3H, s, 3 OH-ose), 5.74 (2H, t, J 7.2 Hz,
H5-C=C-), 6.67 (2H, d, J 10 Hz, H4′, H8′), 7.08 (2H, d, J 10 Hz, H5′, H7′). 13C NMR
(125 MHz; DMSO-d6, ppm) δ 17.3 (C6′-ose), 25.4 (2 C4), 25.7 (2 C3), 28.6, 31.7 (2 C2, 2
C4), 32.8 (C2′-acid), 36.2 (C1′-acid), 63.9 (C1-acid), 66.1 (C1-ose), 68.5–74.1 (C2′-ose, C3′-ose,
C4′-ose, C5′-ose), 100.6 (C1′-ose), 115.1 (C4′-acid, C8′-acid), 114.3 (C5′-acid, C7′-acid), 130.9
(CH2CH(Z)=CH(Z)CH2), 131.6 (CH2CH(E)=CH(E)CH2), 136.3 (C3′), 156.4 (C6′), 172.8
(C=O). Analysis (%): calculated for C27H42O8: C 65.56, H 8.56. Found: C 65.80, H 8.74.

1′,18′-bis-dodec-9′-enyl-3-(4-hydroxyphenyl)propionicacid–α–L-rhamnopyranoside (3ab)

The general procedure for the preparation of the unsymmetrical fatty ester- and
rhamnoside-based bolaamphiphiles with compound 8a (1 g, 1.73 mmol, 2 eq.) and com-
pound 3b (0.264 g, 0.867 mmol) under argon with Grubbs II catalyst (0.074 g, 0.086 mmol;
0.05 eq.) dissolved in 40 mL CH2Cl2/MeOH (35/5) is as follows. Compound 3ab is
obtained as a brown paste with a yield of 68%.
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1′,20′-bis-eicosa-10′-enyl-3-(4-hydroxyphenyl)propionicacid–α–L-rhamnopyranoside 
(4ab) 

νmax (ATR) cm−1: 3353 (OH), 2925 (C–H), 1732 (C=O), 1614 (C=C). [α]20
D (589 nm, MeOH)

= −32.601. 1H NMR (500 MHz; DMSO-d6, ppm) δ 1.12 (3H, d, J 7.5 Hz, H6′-ose), 1.34 (20H,
m, H3, H4, H5, H6, H7), 1.52 (4H, m, H2), 2.03 (4H, m, H8), 2.51 (2H, t, J 7.2 Hz, H2′-acid),
2.74 (2H, t, J 7.2 Hz, H1′-acid), 3.18–3.47 (5H, m, H1-ose, H2′-ose, H3′-ose, H4′-ose, H5′-ose),
4.06 (2H, t, J 7.2 Hz, H1-acide), 4.13–4.51 (3H, s, 3 OH-ose), 5.81 (2H, t, J 7.2 Hz, H9-C=C-), 6.72
(2H, d, J 10 Hz, H4′, H8′), 7.02 (2H, d, J 10 Hz, H5′, H7′). 13C NMR (125 MHz; DMSO-d6,
ppm) δ 18.3 (C6′-ose), 26.1, 28.7, 28.9, 29.2, 29.4 (2 C3, 2 C4, 2 C5, 2 C6, 2 C7), 29.4 (2 C2),
31.8 (2 C8), 33.4 (C2′-acid), 36.2 (C1′-acid), 64.2 (C1-acid), 66.8 (C1-ose), 68.8–73.5 (C2′-ose,
C3′-ose, C4′-ose, C5′-ose), 100.7 (C1′-ose), 115.5 (C4′-acid, C8′-acid), 128.3 (C5′-acid, C7′-acid),
130.7 (CH2CH(Z)=CH(Z)CH2), 131.1 (CH2CH(E)=CH(E)CH2), 138.5 (C3′-acid),156.2 (C6′),
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171.8 (C=O). Analysis (%): calculated for: C33 H54O8: C 68.48, H 9.40. Found: C 67.98, H
9.78.

1′,20′-bis-eicosa-10′-enyl-3-(4-hydroxyphenyl)propionicacid–α–L-rhamnopyranoside (4ab)

The general procedure for the preparation of the unsymmetrical fatty ester- and
rhamnoside-based bolaamphiphiles with compound 10a (0.5 g, 0.872 mmol, 2 eq.) and
compound 4b (0.132 g, 0.437 mmol, 1 eq.) under argon with Grubbs II catalyst (0.017 g,
0.019 mmol; 0.05 eq.) dissolved in 40 mL CH2Cl2/MeOH (35/5) is as follows.

Compound 4ab is obtained as a brown paste with a yield of 46%.
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νmax (ATR) cm−1: 3350 (OH), 2921 (C–H), 1729 (C=O), 1612 (C=C). [α]20
D (589 nm, MeOH)

= −20,300. 1H NMR (500 MHz; DMSO-d6, ppm) δ 1.15 (3H, d, J 7.5 Hz, H6′-ose), 1.32
(24H, m, H3, H4, H5, H6, H7, H8), 1.50 (4H, m, H2), 2.31 (4H, m, H9), 2.58 (2H, t, J 7.2 Hz,
H2′-acid), 2.73 (2H, t, J 7.2 Hz, H1′-acid), 3.14–3.52 (5H, m, H1-ose, H2′-ose, H3′-ose, H4′-ose,
H5′-ose), 4.09 (2H, t, J 7.2 Hz, H1-acide), 4.15–4.73 (3H, s, 3 OH-ose), 5.95 (2H, t, J 7.2 Hz,
H10-C=C-), 6.74 (2H, d, J 10 Hz, H4′, H8′), 7.08 (2H, d, J 10 Hz, H5′, H7′). 13C NMR
(125 MHz; DMSO-d6, ppm) δ 17.5 (C6′-ose), 24.8, 27.6, 28.1, 28.9, 29.2, 29.3 (2 C3, 2 C4, 2 C5,
2 C6, 2 C7, 2 C8), 29.7 (2 C2), 32.1 (2 C9), 34.8 (C2′-acid), 36.1 (C1′-acid), 64.5 (C1-acid), 67.0
(C1-ose), 68.1–74.0 (C2′-ose, C3′-ose, C4′-ose, C5′-ose), 105.7 (C1′-ose), 115.0 (C4′-acid, C8′-acid),
129.2 (C5′-acid, C7′-acid), 130.6 (CH2CH(Z)=CH(Z)CH2), 131.1 (CH2CH(E)=CH(E)CH2),
137.7 (C3′-acid),154.5 (C6′), 171.8 (C=O). Analysis (%): calculated for: C35 H58O8: C 69.27,
H 9.63. Found: C 69.38, H 9.71.

4. Conclusions

In this study, we developed greener syntheses of six monocatenar and five bolaform
rhamnosides, respecting the fundamental principles of green chemistry, which, when
coupled with a CombiFlash purification technique, allowed the obtention of compounds
with good to very good yields. We have also prepared 10 phenolic acid esters by an
esterification reaction, as well as four corresponding bolaforms via a cross-metathesis
reaction with good yields. Four dissymmetric bolaforms derived from phloretic esters and
rhamnosides have been also easily prepared.

Two monocatenar rhamnosides, as well as a dissymmetrical bolaform (phloretic es-
ter/rhamnoside) trigger a plant defense response in Arabidopsis. Phenolic acid esters
have shown good antioxidant activities and we observed that the levels of cytotoxicity
depend on the carbon chains we used. The transformation into corresponding bolaforms
or into dissymmetric bolaforms associated with rhamnosides significantly decreases their
toxicity while retaining their antioxidant properties. These aspects can therefore augur a
potential use of some of these compounds in the field of cosmetics. An in-depth study of
the mechanisms involved in planta and protection assays will, however, be needed prior to
determining the potential use of these compounds in plant protection and pest management
strategies. Biophysical studies on their interaction with plant and skin biomimetic plasma
membranes would also help to better understand their mode of action at the cell level.
An in vitro study on dermal cells proved that L-rhamnose derivatives are less cytotoxic
than those from phloretic acid, and that the carbon chain length plays an important role.
Moreover, bolaform structures issued from rhamnosides and phloretic esters are less toxic.
Further tests on other cell models will be carried out in order to use these compounds in
different fields of application.
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