
Citation: Liu, S.; Li, L.; Ren, D.

Anti-Cancer Potential of

Phytochemicals: The Regulation of

the Epithelial-Mesenchymal

Transition. Molecules 2023, 28, 5069.

https://doi.org/10.3390/

molecules28135069

Academic Editors: Manuela Pintado,

Ezequiel Coscueta and María Emilia

Brassesco

Received: 5 June 2023

Revised: 25 June 2023

Accepted: 27 June 2023

Published: 28 June 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

molecules

Review

Anti-Cancer Potential of Phytochemicals: The Regulation of the
Epithelial-Mesenchymal Transition
Shuangyu Liu , Lingyu Li and Dongmei Ren *

Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences,
Shandong University, 44 West Wenhua Road, Jinan 250012, China; liusy00219@163.com (S.L.);
202121044@mail.sdu.edu.cn (L.L.)
* Correspondence: rendom@sdu.edu.cn; Tel.: +86-531-88382012

Abstract: A biological process called epithelial-mesenchymal transition (EMT) allows epithelial cells
to change into mesenchymal cells and acquire some cancer stem cell properties. EMT contributes
significantly to the metastasis, invasion, and development of treatment resistance in cancer cells.
Current research has demonstrated that phytochemicals are emerging as a potential source of safe
and efficient anti-cancer medications. Phytochemicals could disrupt signaling pathways related to
malignant cell metastasis and drug resistance by suppressing or reversing the EMT process. In this
review, we briefly describe the pathophysiological properties and the molecular mechanisms of EMT
in the progression of cancers, then summarize phytochemicals with diverse structures that could
block the EMT process in different types of cancer. Hopefully, these will provide some guidance for
future research on phytochemicals targeting EMT.
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1. Introduction

Cancer has become a significant global public health problem with the continuous
aging of the population. Although advancements in the treatment of cancer have been
achieved due to the discovery of new targets and technologies, tumor metastasis remains
the primary cause of mortality for cancer patients, and more than 90% of cancer-related
deaths occur as a result of cancer metastasis [1]. Even if early detection and intervention
can greatly increase the survival rate of patients with metastatic cancers, the development
of treatments targeting metastatic cancers is still urgent [2].

Epithelial-mesenchymal transition (EMT) is a well-defined, reversible process in which
epithelial cells lose their epithelial phenotype and acquire mesenchymal-like features [3].
The origin of EMT is associated with the loss of apical-basal polarity in epithelial cells.
During the EMT program, epithelial cells gradually lose their cell-cell contacts due to the
disassembly and deconstruction of cell junctions, and then they gain certain characteristics
of mesenchymal cells [4]. These mesenchymal cells display enhanced migratory ability
and resistance to cell death signals. EMT is a necessary physiological process in embryonic
development, tissue repair, and cellular stemness maintenance. However, in a pathological
process, improperly regulated EMT is hijacked by cancer cells and plays an important
role in carcinogenesis and fibrosis [5,6]. Cancer cells undergoing EMT change in both
morphology and motion, accompanied by increased invasion and metastasis potential as
well as therapy resistance [7]. Therefore, EMT has emerged as a prospective target for the
treatment of cancer in recent years. Preventing the EMT process of cancer cells has become
an attractive strategy in cancer therapy.

Some phytochemicals, especially those that originate from plants, have been demon-
strated as EMT modulators targeting multiple stages of the process. As a consequence,
these phytochemicals provide advantages for controlling cancer cells spreading throughout
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the body and overcoming treatment resistance. This makes phytochemicals valuable candi-
dates for novel anti-cancer drugs. There have been several review articles published about
phytochemicals exerting anticancer effects through inhibiting EMT [8–10]. Considering
the continuous attractiveness of this topic for researchers, we provide an updated review
article here. In this review, we summarize EMT in cancer progression and highlight the
implications of phytochemicals in cancer treatment through EMT regulation.

2. The Regulation of the EMT Process and Its Roles in Cancer Progression
2.1. The Regulation of the EMT Process

EMT is a dynamic process in which epithelial cells go through multiple biochemical
changes leading to their conversion into a mesenchymal phenotype [11]. During this
process, cells undergo morphological changes associated with the repression of epithelial
markers and the acquirement of mesenchymal marker proteins. The most notable marker
of epithelial cells is E-cadherin, while N-cadherin is the most representative marker of
mesenchymal-type cells [12]. The switch from E-cadherin to N-cadherin is often used for
the identification of EMT processes. Downregulation of E-cadherin destabilizes adherens
junctions, resulting in a loss of affinity for epithelial cells; upregulation of N-cadherin
mediates a greater affinity for mesenchymal cells. Other epithelial markers, including
claudins and occludins, and mesenchymal markers, including vimentin and fibronectin,
participate in altering cell-cell affinity together [13]. These markers can also be used for the
identification of EMT processes.

The exchange of gene expression from epithelial to mesenchymal phenotypes is initi-
ated by at least four layers of regulation: transcriptional control, small non-coding RNAs,
differential splicing, translational control, and post-translational control [14]. Undoubtedly,
transcriptional control is the most extensively studied network. EMT-inducing transcrip-
tion factors (EMT-TFs) are the core of the transcriptional control network of EMT, and
multiple signaling pathways lead to the regulation of EMT-TFs.

EMT-TFs directly or indirectly contribute to the regulatory network of the EMT process.
Some TFs, including SNAIL1, SNAIL2, ZEB1, ZEB2, E47 (also known as transcription factor-
3, TCF-3), kruppel-like factor 8 (KLF8), and Brachyury, repress the expression of E-cadherin
through direct binding to the CDH1 promoter, which encodes E-cadherin. Simultaneously,
these TFs also repress other junctional proteins, such as claudins. Some other TFs, including
TWIST1, hepatocyte nuclear factor 3 (FOXC2), gooseciod, E2-2, SIX1, and paired mesoderm
homeobox protein 1 (PRRX1), regulate the EMT process without direct binding to the
CDH1 promoter. Among these TFs, some are very common in most studies about EMT,
particularly the nuclear factors of the SNAIL, ZEB, and TWIST families. This collection of
TFs seems to be enough for the regulation of EMT [15]. Most of the other TFs, which have
only been mentioned in a few studies, may just have an assisting role [16].

A variety of signaling pathways collaboratively regulate EMT progression, mainly
including the transforming growth factor β (TGF-β), wingless-type MMTV integration site
family (Wnt), Hedgehog, and epidermal growth factor receptor (EGFR) pathways. Some
other signaling pathways, such as Notch, Hippo, and nuclear factor kappa-B (NF-κB), also
regulate EMT in certain kinds of cancer. All of these pathways eventually converge at
the level of transcription factors such as ZEB, SNAIL, and TWIST to regulate the EMT
process [11].

TGF-β, a multifunctional cytokine, is the best-known EMT inducer. When TGF-β
ligands bind to TGF-β receptors, signals are transmitted into cells through its intracellular
transducers, Smads, or factors other than Smads, such as phosphoinositide 3-kinase (PI3K),
mitogen-activated protein kinases (MAPKs), and c-Jun N-terminal kinase (JNK). Both the
Smads-dependent and Smads-independent pathways are involved in the regulation of
EMT [17,18]. The Wnt signaling pathway is another multifunctional pathway to induce
EMT. β-Catenin is the downstream factor of the Wnt receptor. The Wnt signaling pathway
induces EMT through the interaction of β-catenin with some transcription factors [19].
The hedgehog signaling pathway exerts its role by terminating at a transcription factor,
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glioma-associated oncogenes (GLI), and aberrant activation of Hedgehog/GLI induces
EMT [20,21]. EGF is also a well-known EMT inducer. Through binding to its receptor
EGFR, EGF-induced signals are transmitted by PI3K, focal adhesion kinase (FAK), or rat
sarcoma (RAS) pathways [22,23] (Figure 1).
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2.2. EMT Modulates Cancer Progression

Because abnormal activation of EMT gets involved in many stages of cancer progres-
sion, it is easy to conclude that the pathways and molecular targets of EMT are related to
the poor prognosis of cancers. Generally, metastasis and chemotherapeutic resistance in
cancer are major consequences of EMT activation.

At the initial stage of EMT, malignant epithelial cells in the primary tumor obtain the
ability to lose their cell-cell connections and detach from the primary tumor. The detached
cells or cell clusters acquire characteristics of mesenchymal-like cells, break through the
basement membrane, invade surrounding tissue, and gain access to blood vessels to achieve
spread and dissemination [24]. The acquired mesenchymal properties assist the survival
of cancer cells in the circulation and, in addition, provide resistance to cell death signals.
When the circulating tumor cells arrive in a distant position of the body with a suitable
micro-environment, the spreading cells pass through the blood vessels again and colonize
to form metastases [25] (Figure 2). As a consequence, suppressing EMT in cancer cells or
developing anti-EMT adjuvants emerge as attractive strategies for cancer treatment.
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Figure 2. Role of EMT in the metastasis of cancer progression.

3. Phytochemicals with the Effects of Interfering EMT

As mentioned above, the complex EMT process is mediated by diverse cell signal-
ing pathways, and whichever molecules can interfere with elements of these signaling
pathways that are involved in the progression of EMT will be a good choice for develop-
ing anti-EMT candidates. Anti-EMT will provide advantages for the inhibition of cancer
metastasis or treatment resistance. Phytochemicals have long been recognized as a resource
for anti-cancer drugs. In recent years, some phytochemicals have been found to exert
anti-cancer effects by inhibiting or reversing the EMT process. The diverse structures allow
phytochemicals to interfere with multifaceted EMT-related targets. Here we list some major
EMT-modulating phytochemicals according to their structural classification and summarize
their functions in cancer treatment.

3.1. Phenylpropanoid

Phenylpropanoid is a class of naturally occurring compounds with a C6-C3 skele-
ton. Based on the number of C6-C3 units and the structure, phenylpropanoids can be
divided into three categories: simple phenylpropanoids, coumarins, and lignans. Phenyl-
propanoids are reported to possess a wide range of bioactivities, including anti-tumor,
anti-inflammation, neuroprotection, osteogenic effects, cardiovascular protection, anti-
bacterial, and anti-parasitic effects [26]. Three phytochemicals in this type of compound,
osthole (1), chlorogenic acid (2), and ferulic acid (3), have been proven to have anti-cancer
effects by regulating the EMT process (Figure 3).
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3.1.1. Osthole (1)

Osthole (1) is a coumarin that is mainly isolated from Cnidium monnieric [27]. This
compound has been shown to induce a range of beneficial bioactivities, including anti-
cancer, anti-epileptic, and anti-inflammatory properties [28]. In terms of the anti-cancer
effects of osthole, it could inhibit proliferation, induce apoptosis, avoid invasion and
migration, prevent angiogenesis, and increase chemosensitivity [29]. The current research
on osthole indicates that its anti-cancer effects in renal carcinoma cells, brain cancer cells,
and liver cancer cells are involved with EMT suppression. In renal cancer 786-O and ACHN
cells, osthole pre-treatment decreased the migration and invasion of renal cancer cells dose-
dependently. Further exploration indicated that epithelial biomarkers (E-cadherin and
β-catenin) increased while mesenchymal biomarkers (N-cadherin and vimentin) decreased.
Meanwhile, the downregulation of Smad-3, SNAIL1, and TWIST-1 suggested that osthole
suppressed EMT through the inhibition of EMT transcription factors [30].

Insulin-like growth factor-1 (IGF-1) was able to induce EMT in brain cancer cells,
which contributes to the proliferation and migration of glioblastoma multiforme, a kind
of aggressive brain tumor. In an IGF-1-treated GBM8401 cell model, osthole reversed
IGF-1-induced cell morphological changes, increased the level of epithelial biomarkers, and
decreased the level of mesenchymal biomarkers, demonstrating that osthole could inhibit
the IGF-1-induced EMT process. Further investigation indicated that osthole suppressed
IGF-1-induced EMT at the transcriptional level. The inhibition of the PI3K/pAKT signaling
pathway is involved in osthole-inhibited IGF-1-mediated EMT [31]. In four kinds of liver
cancer cell lines, osthole inhibited cell proliferation and migration and also inhibited EMT,
as evidenced by the enhanced expression of epithelial biomarkers and reduced expression
of mesenchymal biomarkers [32].

3.1.2. Chlorogenic Acid (2)

Chlorogenic acid (CGA, 2) is an ester of caffeic acid and quinic acid and is the major
constituent of the Chinese herbal medicine Lonicerae japonicae [33]. Usually, CGA is con-
sidered a nutraceutical with low cytotoxicity; most studies are mainly concerned with its
beneficial effects for health, such as anti-oxidant, anti-hypertension, anti-obesity, and anti-
diabetic effects [34–36]. There is only a small amount of research focused on the anti-cancer
effects of CGA and its metabolites or derivatives. There is a study reporting that CGA
induced apoptosis in four kinds of breast cancer cells and retarded tumor growth in mice
bearing 4T1 cell xenografts. The results of a wound-healing assay and a transwell assay
proved that CGA inhibited metastasis and invasion of breast cancer cells. The western blot-
ting and immunohistochemistry results indicated a change in E-cadherin and N-cadherin,
suggesting that an EMT suppression occurred [37]. In another study, more evidence was
provided to demonstrate that CGA reversed the EMT process by binding directly to lipopro-
tein receptor-related protein 6 (LRP6) in breast cancer cells [38]. In triple-negative breast
cancer MDA-MB-231 cells, a derivative of CGA, isochlorogenic acid C (ICAC), did not affect
cell growth but reduced invasion and migration significantly. These roles were further
demonstrated to be mediated by the inhibition of the EGFR-induced EMT process [39].

3.1.3. Ferulic Acid (3)

Ferulic acid (FA, 3) is a simple phenylpropanoid contained in several commonly used
Chinese herbal medicines, such as Ferula sinkiangensis, Angelica sinensis, and Ligusticum
chuanxiong. Similar to CGA, FA was usually regarded as a low-toxic anti-oxidant, and
most of its beneficial effects, including anti-inflammation, anti-cancer, and anti-fibrotic
effects, were considered to be related to its anti-oxidant properties [40]. FA was revealed
to induce apoptosis and inhibit migration using a mesenchymal-like breast cancer cell
line, MDA-MB-231. Flow cytometry, wound healing, and transwell assays were used for
the detection of the effects exerted by FA in MDA-MB-231 cells, and a xenograft model
was used for the in vivo assay. Moreover, EMT was shown to be suppressed in FA-treated
MDA-MB-231 cells, as evidenced by the changes in protein and mRNA levels of EMT
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biomarkers; this was considered to be related to the anti-metastasis effect of FA [41]. In
terms of EMT inhibition induced by FA, another study reported its protective effect. In an
animal model of silica-induced pulmonary fibrosis, FA halted the progression of pulmonary
fibrosis, ameliorated the expression of fibrotic proteins, and prevented EMT. TGF-β/Smad
signaling, which is a significant contributor to EMT, was found to be inhibited by FA [42].

3.2. Flavonoids

Flavonoids are compounds with a skeletal structure of C6-C3-C6, that is, two aro-
matic rings connected by a three-carbon bridge. Due to the different patterns of the three
carbon bridges, flavonoids can be divided into several categories, including flavones,
flavonols, flavanones, flavanonols, anthocyanins, flavan-3-ols, isoflavones, chalcones, and
xanthones [43]. Flavonoids have a variety of positive health effects, such as anti-bacterial,
anti-cancer, anti-osteoporosis, and anti-viral functions [44]. In this type of compound,
quercetin (4), silybin (5), baicalein (6), genistein (10), hesperidin (11), and naringenin (12)
have been reported to have EMT inhibitory effects (Figure 4).
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3.2.1. Quercetin (4)

A dietary flavonoid called quercetin (4) can be found in a variety of fruits, vegetables,
and grains. It possesses anti-inflammatory, anti-cancer, and anti-oxidant properties and
could inhibit the growth of several kinds of cancer cells [45,46]. There is a certain amount
of research about quercetin-induced EMT reversion. In two glioblastoma cell lines, U87
MG and CHG5, quercetin markedly decreased cell growth, migration, and invasion, as
demonstrated by the results of MTT, wound healing, and transwell assays. In a U87 MG
cell xenograft mouse model, quercetin also suppressed tumor growth and mesenchymal
transition. Because EMT is closely related to the high invasion ability of glioblastoma, the
expression of EMT-related biomarkers was detected, and the results indicated that quercetin
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affected the EMT process in glioblastoma cells. Further investigations revealed that the
glycogen synthase kinase 3β (GSK-3β)/β-catenin/ZEB1 signaling pathway, a negative
regulator of EMT, was suppressed by quercetin in U87MG and CHG5 cells [47]. In triple-
negative breast cancer cells, quercetin reversed the EMT process by blocking the signal
transduction of insulin-like growth factors (IGF1)/IGF1 receptor (IGF1R) or modulating β-
catenin target genes [48,49]. In the study of prostate cancer, two distinct regulatory systems
involved in EMT have been revealed. One is the EGFR/PI3K/AKT pathway [50]; the
other one is a long non-coding RNA, MALAT1. This was the first time that MALAT1 was
verified to play an important role in quercetin-induced EMT suppression [51]. Additionally,
in pancreatic cancer cells, quercetin prevented EMT by obstructing the signal transducer
and activator of transcription 3 (STAT3) signaling pathway, reversed interleukin-6 (IL-6)-
induced EMT, and consequently decreased cancer cell invasion [45].

Except for its roles in treating cancer, quercetin-induced EMT also played important
roles in the treatment of fibrosis diseases such as renal fibrosis and pulmonary fibrosis.
In TGF-β1 treated renal epithelial cells NRK-52E, quercetin inhibited the activation of
Hedgehog signaling, ameliorated EMT, and improved renal fibrosis. These effects were
also verified in rats with unilateral ureter obstruction [52]. One of the typical toxic effects of
bleomycin is the induction of pulmonary fibrosis, and the major cause is EMT of alveolar
type II epithelial cells. Quercetin cotreatment with bleomycin in RLE/Abca3 cells, which
have an alveolar type II cell-like phenotype, suppressed all of the EMT-related changes
induced by bleomycin [53].

Quercetin can also be used for chemotherapy medications as an adjuvant due to its
EMT reversal effect. It has been reported that quercetin could combat the acquired chemore-
sistance of erlotinib and cisplatin. Using two established erlotinib-resistant oral squamous
cell lines, ERL-R5 and ERL-R10, quercetin was proven to effectively inhibit cell growth by
MTT and colony formation assays. This anti-cancer effect was further confirmed in mice
bearing ERL-R5 cells. Lowering the expression of PKM2 contributed to the sensitivity of
quercetin to erlotinib. Further, PKM2 siRNA cotreatment with erlotinib resulted in further
reduction of EMT, suggesting that PKW2 seemed to be crucial in acquiring resistance to
erlotinib [54]. In nasopharyngeal carcinoma 5-8F and C-666-1 cells, quercetin induced cell
death and inhibited migration and the EMT process. Quercetin also restored the sensitivity
of cisplatin-resistant cells. In vivo studies with cisplatin-resistant 5-8F and C-666-1 cells
transplanted into mice gave further proof of the effects of quercetin. Changes in EMT
markers detected by western blotting indicated that quercetin treatment induced EMT
suppression. The yes-associated protein (YAP) downregulation, which led to the recovery
of the Hippo pathway, was supposed to be the mechanism of quercetin in nasopharyngeal
carcinoma [55].

3.2.2. Silybin (5)

The phytochemical silybin (5), also known as silibinin, is isolated from the milk thistle
(Silybum marianum). Structurally, silybin is a hybrid of flavonoid and lignan, but usually it is
classified as a flavolignan. This phytochemical is well-known for its hepatoprotective effect
and normally exists in some health products [56]. Silybin also exhibited EMT-inhibiting
effects in different cancer cells by regulating multiple molecular targets or pathways. EMT
drives acquired resistance to ALK tyrosine kinase inhibitors (ALK-TKIs) in lung cancer
cells, while silybin co-exposure re-sensitizes lung cancer cells to ALK-TKIs by targeting the
TGF-β/Smad signaling axis [57]. In bladder cancer cells, silybin attenuated TGF-β-induced
migration and invasion through inhibiting EMT associated with downregulating COX2 [58].
One more study verified that silybin decreased metastasis in vitro and in vivo using the
highly metastatic cell line T24-L. Inactivation of β-catenin/ZEB-1 signaling was supposed
to be the mechanism of blocking EMT by silybin in this study [59].

In addition to being a potential therapeutic agent to inhibit EMT, silybin has value in
joint therapy to overcome the side effects of cancer therapies. STAT3 activation is a new
mechanism of crizotinib resistance that involves immune escape and the EMT pathway.
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Silybin-based cotreatment targeted STAT3 inhibition together with inhibition of the EMT
process in crizotinib-refractory cells, thus reversing acquired resistance and restoring
sensitivity [60]. Silybin is also synergistic in radiotherapy. Radiotherapy is frequently
utilized in prostate cancer treatment, but radiation increases the invasiveness of surviving
radioresistant cancer cells during treatment. Combining silybin with radiation not only
decreased proliferation but also strongly reduced prostate cancer cell invasion. Most of the
migratory and EMT-promoting actions induced by radiation were decreased by silybin [61].

Besides cancer therapy, silybin showed anti-fibrotic effects in a TGF-β induced in vitro
model of fibrosis and radiation-induced intestinal fibrosis. In these two anti-fibrotic pro-
cesses, EMT inhibition induced by silybin played a certain role [62,63].

3.2.3. Baicalein (6)

Baicalein (6) is the major constituent of a famous traditional Chinese medicine called
Scutellaria baicalensis. This phytochemical has a wide range of bioactivities, including anti-
cancer effects [64]. In breast cancer MDA-MB-231 cells, baicalein exposure significantly
inhibited cell migration and invasion. The EMT process was inhibited correspondingly.
Downregulation of Cyr61/AKT/GSK-3β pathway was clarified as the anti-EMT mech-
anism of baicalein in this study [65]. In cervical cancer HeLa cells, baicalein targeted
TGF-β inhibition and showed an EMT-suppressing effect [66]. In colorectal cancer H29
cells, baicalein affected cell mobility and reversed the EMT process; SNAIL expression was
thought to play an important role in this study [67].

Following discovery, a series of derivatives of baicalein have shown an EMT-suppressing
effect. In non-small cell lung carcinoma cells, the inhibition of EMT by baicalin (7) was clar-
ified through the PDK1/AKT signaling pathway [68]. There are two analogues of baicalein
from Scutellaria baicalensis, wogonin (8) and scutellaretin (9), which inhibit cell proliferation
and metastasis in colon cancer cells and liver cancer cells, respectively. In colon cancer
cells, wogonin relieves neoplastic behaviors and EMT through the IRF3-mediated Hippo
signaling pathway [69]. In liver cancer cells, scutellaretin regulates PI3K/AKT/NF-κB
signaling through PTEN upregulation [70].

There is one report that mentions that baicalein regulates the radiosensitivity of cervical
cancer cells. Combining baicalein with X-ray irradiation increased the death rate more
than irradiation alone. EMT inhibition was detected simultaneously. Upregulation of
miR-183 through the inactivation of the JAK2/STAT3 signaling pathway was considered
the mechanism of baicalein in cervical cancer cells [71].

3.2.4. Genistein (10)

Genistein (10) is a cancer-preventive phytochemical mainly found in soy and other
legumes; structurally, it is 4′,5,7-trihydroxy isoflavone [72]. Several studies focused on
the EMT inhibition effects of genistein. In hepatocellular carcinoma, genistein restricted
cell growth and metastasis by attenuating the EMT process, and upregulation of miR-
1275-mediated EIF5A2/PI3K/AKT pathway inhibition led to the suppression of EMT
and stemness of cells [73]. In papillary thyroid carcinoma cells, genistein significantly
decreased the invasion ability of cells and partially inhibited the EMT process. Knockdown
of β-catenin reversed the effect of genistein on EMT, indicating that β-catenin involved in
genistein-induced EMT modulation [74]. Genistein can be used in combination with other
chemotherapeutic compounds. Trichostatin A is a specific inhibitor of histone deacetylases.
In Hep-2 laryngeal cancer cells, genistein treatment alone mildly inhibited cell growth and
invasion and, in addition, reversed EMT. By joint use of trichostatin A, the effect of EMT
inhibition caused by genistein was further increased [75].

3.2.5. Hesperetin (11)

Hesperetin (11) is an abundant flavanone in citrus fruits. It has been reported that this
phytochemical possesses cellular protective effects against multiple cell damage factors.
EMT reversion is usually involved in the regulation mechanism of hesperetin. Because of
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the relationship between EMT and cancer cell migration, hesperetin has been reported to
be used in cancer cells to block invasion and metastasis. In cervical cancer cells, hesperetin
inhibited EMT-mediated cell invasion and migration by decreasing abnormal activation of
the TGF-β/Smads pathway [76]. Typically, the protective roles of hesperetin were given
more attention, such as its anti-fibrosis effects. The potential mechanism study in renal
fibrosis indicated that hesperetin inhibited EMT and renal fibrosis in UUO mice and TGF-
β1-treated NRK-52E cells through suppression of the Hedgehog signaling pathway [77].

3.2.6. Naringenin (12)

With a similar structure to hesperetin, naringenin (12) is also a flavanone in citrus fruits.
Generally, naringenin is a safe supplement that exerts beneficial roles for human health [78].
Emerging studies have shown the anti-cancer potential of naringenin. In glioblastoma cells,
naringenin inhibited invasion and metastasis through multiple mechanisms, including
EMT modulation, as evidenced by the alteration of EMT biomarkers [79]. In pancreatic
cancer cells, naringenin downregulated EMT markers by inhibiting the TGF-β/Smad3
pathway; consequently, invasiveness and metastasis of cells were decreased [80].

3.2.7. Other Flavonoids

Some flavonoids were reported to modulate the EMT process, but they mainly focused
on protective effects other than anti-cancer effects, such as epigallocatechin-3-gallate (EGCG,
13). This phytochemical is the main component of green tea. There is no doubt that EGCG
is good for health. Some toxicants exert toxic effects by promoting the EMT process, while
EGCG counteracts this process to provide beneficial effects. A study used cigarette smoke
exposure to stimulate prostatic EMT and fibrosis, and then EGCG exerted a strongly anti-
fibrosis effect by modulating EMT and downregulating the hedgehog pathway [81]. Some
flavonoids were reported for their EMT modulation and anti-cancer effects, but only a
small number of such studies were conducted, for example, the EGCG derivative (EGCGD)
from dark tea and isorhamnetin. EGCGD synergized with gefitinib through suppression
of EMT, and isorhamnetin (14) blocked AKT/ERK-mediated EMT in A549 cells, which
in turn prevented migration and invasion [82]. Two amino-substituted chalcones (15, 16)
were discovered with the roles of suppressing migration and invasion of osteosarcoma cells
mediated by p53-regulated EMT-related genes [83].

3.3. Non-Flavonoid Polyphenolic Compounds

Polyphenolic compounds refer to a diverse group of phytochemicals containing
multiple phenolic functionalities. Flavonoids are the major category of polyphenols.
Resveratrol (17) and curcumin (18) are two well-known compounds that do not belong to
flavonoids, so they were listed here as non-flavonoid polyphenolic compounds (Figure 5)
to describe their roles in EMT regulation.
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3.3.1. Resveratrol (17)

Resveratrol (RSV, 17) is a naturally occurring polyphenol with a range of biological
effects good for health [84]. RSV is well recognized as a bioactive substance in red wine and
has therefore attracted lots of interest in conducting various studies [85]. Because of the
high popularity of RSV, even in such a small research field as EMT, many studies are also
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emerging. Regarding EMT inhibition, RSV could act on almost all common cancer types,
such as colorectal [86], pancreatic [87], gastric [88], prostate [89], lung [90], liver cancer [91],
and glioblastoma [92]. The consequences of suppressing EMT in these cancer cells inhibited
cell invasion and migration without exception, repeatedly proving the EMT process is
crucial for cancer metastasis; moreover, resveratrol provided a strategy to overcome tumor
metastasis through EMT impeding.

Different regulation mechanisms were revealed in different cancer cell lines under RSV
treatment. The family of microRNAs miR-200 plays an important role in the regulation of
the EMT process during metastasis and cancer progression. In RSV-treated colorectal cancer
HCT-116 cells, miR-200c expression was upregulated and switched from an EMT to a MET
phenotype [93]. In the TNF-β induced colorectal cancer cell EMT model, RSV blocked
EMT through suppression of NF-κB and FAK [94]. Another study in colon cancer cells
revealed that RSV reversed the EMT process through AKT/GSK-3β/SNAIL signaling [86].
In prostate cancer cells, TNF receptor-related factor 6 (TRAF6) was considered a target
of RSV to regulate the EMT process. RSV inhibits EMT progression by repressing the
TRAF6/NF-κB/SLUG axis [89]. A study was conducted on glioma stem cells, which were
believed to be the driving force of cancer progression. RSV exposure strongly decreased
glioma stem cell motility through modulating Wnt signaling [92]. However, in a TGF-β
induced glioblastoma EMT model, RSV was shown to suppress EMT through a Smad-
dependent pathway [95]. In the TGF-β induced gastric cancer cell EMT model, RSV
suppressed EMT through inactivation of Hippo-YAP signaling [96], while in the gastric
cancer cell EMT model, but induced by hypoxia, RSV regulated the EMT process via
Hedgehog pathway suppression [97]. Nutrition deprivation autophagy factor-1 (NAF-1) is
overexpressed in pancreatic cancer cells and tissue and is correlated with cancer invasion.
RSV was proven to downregulate the expression of NAF-1 and thus effectively inhibit EMT
to exert anti-metastasis roles [84].

RSV also plays a role in some non-tumor diseases by inhibiting the EMT process.
EMT is involved in the pathogenesis of endometriosis, a kind of benign disease with some
malignant features. Metastasis-associated protein 1 (MTA1) promotes endometriosis by
inducing EMT through ZEB2. RSV is effective for the treatment of endometriosis. MTA1
was supposed to be the target of RSV, as evidenced by the decreased expression of MTA1
and suppressed EMT in RSV-treated endometrial cells [98]. Pretreatment with RSV played
a protective role in gentamicin-induced nephrotoxicity. Further study revealed that RSV
suppressed the EMT process involving TGF-β/Smad pathway to counteract the side effects
of gentamicin [99].

3.3.2. Curcumin (18)

Curcumin (18) is a well-known natural polyphenol derived from the rhizome of
Curcuma longa. The structure of this compound belongs to diarylheptanoids. Due to
its broad bioactivities, including chemoprevention, anti-cancer, and anti-inflammation,
curcumin has attracted much interest and has been proven as an EMT suppressor in many
kinds of cancer [12]. The benefits of inhibiting the EMT process by curcumin in malignant
tumors lie mainly in preventing tumor metastasis.

In different cancer cells, curcumin acts on different potential targets or signaling
pathways to regulate the EMT process. Hepatocyte growth factor (HGF) promoted EMT in
meningioma, lung cancer, and oral cancer cells. Curcumin treatment blocked the activation
of cellular-mesenchymal epithelial transition factor (c-MET), a specific receptor of HGF,
and resulted in the inhibition of EMT. In meningioma and lung cancer cells, the c-MET-
dependent PI3K/AKT/mTOR signaling pathway has been involved in the mechanism
of EMT suppression of curcumin [100–102]. In colorectal cancer cells, the upregulated
expression of miR-200c and downregulation of its direct target gene, EPM5, were necessary
for curcumin-inhibited EMT [103]. TAp63α is a transcription factor that acts as a cancer
suppressor gene and, upon overexpression, transcriptionally decreases the expression of
miR-19, which consequently inhibits lung cancer EMT. In a tobacco smoke-stimulated
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lung cancer EMT model, curcumin inhibited EMT by increasing TAp63α expression and
decreasing miR-19 levels [104]. In pancreatic stellate cells, curcumin treatment inhibited
their migration and secretion of IL-6 under hypoxia. In addition, pancreatic stellate cells
in conditioned media modulated pancreatic cancer cells EMT, which was suppressed by
curcumin. These indicated that curcumin played an important role in tumor-stromal
crosstalk and thus inhibited EMT. IL-6/ERK/NF-κB pathway inhibition was involved in
the regulation effect of curcumin [105].

The EMT inhibition of curcumin played a certain role in reversing drug resistance in
colon cancer cells. In 5-fluorouracil-resistant HCT116 colon cancer cells, curcumin reversed
the resistance by regulating the TET1-NKD-Wnt signaling pathway to inhibit the EMT
process [106], while in oxaliplatin-resistant HCT116 colon cancer cells, curcumin overcame
the resistance by regulating the TGF-β/Smad2/3 signaling pathway to inhibit the EMT
process [107].

3.4. Quinones

Quinones are compounds that contain intramolecular unsaturated cyclic diketones
in their structures. Quinones can be further divided into benzoquinone, naphthoquinone,
phenanthraquinone, and anthraquinone. Two well-known phytochemicals, anthraquinone
emodin (19) and naphthoquinone shikonin (20), were demonstrated to regulate the EMT
process in several kinds of cancer cells [108] (Figure 6).
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3.4.1. Emodin

Emodin is a naturally produced anthraquinone, mainly isolated from Rheum palmatum
and Polygonum cuspidatum [109]. There have been some studies about the regulation of EMT
by emodin, mainly focused on two aspects: anti-cancer and anti-fibrosis. Emodin exerts
anti-invasion and anti-migration effects by regulating EMT in various kinds of cancer cells
through different mechanisms. An EMT regulator, TWIST1, was ectopicly expressed in
head and neck carcinoma FaDu cells to trigger EMT and acquire a mesenchymal phenotype.
Emodin successfully reversed this process and inhibited TWIST1-induced invasion. The
in vivo effect was investigated by the detection of pulmonary colonization by intravenously
injected tumor cells. Mechanically, emodin inhibited TWIST1 binding to the E-cadherin
promoter and repressed E-cadherin transcription [110]. In ovarian cancer cells, emodin
inhibited the EMT process through the ILK/GSK-3β/Slug signaling pathway [111], while
in colon cancer cells, emodin inhibited cell invasion and migration by suppressing EMT
via the Wnt/β-catenin pathway [112]. In pancreatic cancers, the decreased expression
of miR-1271 promoted the occurrence of EMT and metastasis; emodin boosted the ex-
pression of miR-1271 and substantially suppressed the EMT process and invasion [113].
In hepatocellular carcinoma cells, emodin treatment activated autophagy and promoted
autophagic flux, simultaneously reversed EMT, and indicated the correlation between EMT
and autophagy. Both EMT and autophagy regulation were revealed to be attributed to the
PI3K/AKT/mTOR pathway [114]. By regulating EMT, emodin could reduce cancer cell
resistance to chemotherapeutic drugs, such as gemcitabine resistance in pancreatic cancer
cells and doxorubicin resistance in small-cell lung cancer cells [115,116].
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3.4.2. Shikonin

Shikonin is a phytochemical with a naphthoquinone skeleton; it is the major con-
stituent of Chinese herbal medicine, Lithospermum erythrorhizon [117,118]. Reports on the
EMT inhibition of shikonin focused on triple-negative breast cancer cells. According to
several reports, shikonin depressed invasion and migration in breast cancer MCF-7, MDA-
MB-231, BT549 [119], and 4T1 cells. EMT inhibition was attributed to the anti-metastasis
effects of shikonin. Different signaling pathways were getting involved in the regulation of
the EMT process, such as NF-κB-Snail signaling in LPS-pretreated MCF-7 and MDA-MB-
231 cells [118], the miR-17-5p/PTEN/AKT pathway, and GSK-3β/β-catenin signaling in
MDA-MB-231 cells [119,120]. A series of semi-synthesized shikonin derivatives showed
anti-proliferation effects in MDA-MB-231 cells; two of them inhibited the EMT process by
regulating the PDK1/PDHC pathway [121]. In hepatocellular carcinoma cells, shikonin sup-
pressed the progression and EMT by regulating the miR-106b/SMAD7/TGF-β signaling
pathway [122].

3.5. Terpenoids

Terpenoids represent the most numerous and diverse phytochemicals. Structurally,
the skeleton of terpenoids contains C-5 isoprenoid units and can be categorized according
to the number of isoprenoid units [123]. Terpenoids show a range of bioactivities, such as
anti-tumor, anti-inflammatory, anti-bacterial, anti-viral, anti-malarial, and hypoglycemic
properties [124]. Several terpenoids, including glycyrrhizic acid (21), artemisinin (23),
paeoniflorin (25), triptolide (26), and some others (Figure 7), have been proven to be able to
suppress tumor progression through regulating the EMT process.
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3.5.1. Glycyrrhizic Acid (21)

Glycyrrhizic acid (GA, 21) is the major constituent of Glycyrrhiza uralensis, Glycyrrhiza
glabra, or Glycyrrhiza inflata, three species listed under the item GANCAO in the Chinese
Pharmacopoeia. GA is used as the quality control indicator of GANCAO due to its abundant
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content and diverse bioactivities [125]. GA is a triterpenoid from a structural perspective,
and a number of studies have revealed the hepatoprotective, anti-inflammatory, immunos-
timulatory, anti-viral, and anti-cancer effects of this compound [126,127]. Here, several
studies about the inhibition of EMT by GA were described. High mobility cassette 1
(HMGB1) is upregulated in metastatic prostate cancer. Using an HMGB1 knockdown
DU145 cell model, HMGB1 was suggested to be directly involved in the EMT process
by the CDC42/GSK-3β/SNAIL/E-cadherin signaling pathway. As an HMGB1 inhibitor,
GA treatment of DU145 cells showed restrained EMT processes and disrupted cell migra-
tion [128]. In hepatocellular carcinoma cells, the aglycone of GA, 18β-glycyrrhetinic acid
(22) reduced TGF-β-induced EMT and metastasis but not proliferation. The potential mech-
anism was supposed to be that GA reduced STAT3 phosphorylation [129]. A stereoisomer
of GA, magnesium isoglycyrrhizinate, which is the magnesium salt of 18-α-GA, showed an
inhibitory effect on EMT through the NF-κB/TWIST signaling pathway [130].

3.5.2. Artemisinin (23)

Artemisinin is a phytochemical with a sesquiterpene lactone structure isolated from
the herbal plant Artemisia annua by Chinese scientists that has been used as a powerful
anti-malarial drug in clinics [131]. Following its discovery and utilization in clinics, a
number of derivatives of artemisinin have been developed. Dihydroartemisinin (24) is one
of the derivatives with better activity and lower toxicity. In addition to the anti-malarial
effect, some other bioactivities of artemisinin and dihydroartemisinin have been developed;
anti-cancer metastasis by inhibiting EMT is one of them [132]. A study reported that
artemisinin reversed celecoxib-induced EMT in human ovarian epithelial adenocarcinoma
SKOV3 cells. Celecoxib is a commonly used anti-inflammatory drug, but in this study it
was claimed to exhibit opposite effects on the EMT process compared with artemisinin [133].
Dihydroartemisinin has been revealed to exhibit an inhibitory effect on EMT in esophageal,
laryngeal, oral squamous, and breast cancer cells with different regulatory pathways.
Autophagy activation associated with dihydroartemisinin exerts an anti-migration effect in
esophageal cancer cells [134]. In laryngeal squamous cancer cells, dihydroartemisinin alone
did not inhibit EMT and cell invasion but could block IL-6-triggered EMT and invasion by
increasing the expression of miR-I30b-3p and downregulating the IL-6/STAT3/β-catenin
signaling pathway [135]. In oral squamous cancer cells, dihydroartemisinin exerted a
suppressive role on the EMT process by inhibiting the expression of mitochondrial calcium
uniporter (MCU), which was elucidated as being upregulated in oral squamous cancer
cells [136]. Dihydroartemisinin-elicited EMT inhibition in breast cancers was clarified by
using canine mammary tumor cells, which are a suitable model for studies of human breast
cancer research [137,138].

3.5.3. Paeoniflorin (25)

Paeoniflorin (25) is a monoterpenoid glycoside isolated from the root bark of Paeonic
suffruticosa. It has been reported to possess anti-inflammatory, immunomodulatory, and
anti-cancer effects. Suppression of EMT in glioblastoma and breast cancers contributed to
the anti-metastasis effects of paeoniflorin. In glioblastoma cells, c-Met was identified as a
possible target of paeoniflorin for the first time. Paeoniflorin prevented EMT via K63-linked
c-Met polyubiquitination-dependent autophagic degradation [139,140]. In breast cancer
cells, paeoniflorin inhibited invasion and migration by suppressing hypoxia-induced EMT.
Further study revealed that the PI3K/AKT pathway mediated this EMT suppression of
paeoniflorin [141].

By modulating the EMT process, paeoniflorin plays a role in anti-fibrosis. In both the
bleomycin-induced pulmonary fibrosis mouse model and the in vitro EMT model estab-
lished in alveolar epithelial cells treated with TGF-β1, paeoniflorin effectively blocked the
progression of the EMT process. The possible mechanism has been revealed as regulating a
Smad-dependent pathway involving the up-regulation of Smad7 [142].
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3.5.4. Triptolide (26)

Triptolide (26), a tricyclic diterpenoid, is the major active component of the root of
Tripterygium wilfordii. This phytochemical has been reported to have anti-inflammatory,
proapoptotic, and tumor-repressing activities [143]. In some kinds of cancer, triptolide
exerts migration inhibition effects on cancer cells, mainly through EMT blocking. In pan-
creatic cancer stem cells, triptolide effectively inhibited hypoxia-induced migratory activity
and reversed stem-like cell features and the EMT process. Hypoxia-induced NF-κB activa-
tion was blocked concurrently and was considered the potential mechanism of triptolide
in this situation [144,145]. The invasion and migration of non-small cell lung cancer cells
were suppressed by restraining EMT by reducing β-catenin expression [146]. In glioma
cells, triptolide showed a significant inhibitory effect on migration and triptolide invasion
and reversed EMT progression [147]. Triptolide-induced autophagy was suggested as a
possible mechanism of EMT inhibition. EMT-repressing effects induced by triptolide were
also detected in lymphoma cells and colon stem cancer cells [143,148].

3.5.5. Other Terpenoids

Some terpenoids were reported to modulate the EMT process with only a few docu-
ments, such as β-carotene (27), lutein (28), and taraxasterol (29). β-Carotene is a tetrater-
penoid widely present in fruits and vegetables with some health-beneficial effects. One of
its effects is to suppress cancer progression. Tobacco smoke-triggered EMT has been found
to regulate early events of carcinogenesis. By using a mouse smoking model, β-carotene
was proven to inhibit tobacco smoke-induced EMT in the stomach of mice by the Notch
pathway, indicating the chemopreventive effect of β-carotene in tobacco smoke-associated
gastric pathological alterations [149]. Lutein is an analogue of β-carotene. It was reported
that lutein suppressed the EMT of breast cancer cells under hypoxic exposure. Downreg-
ulation of hairy and enhancer of split 1 (HES1) is involved in the effects of lutein [150].
Taraxasterol is one of the active components with a triterpenoid structure isolated from
Dandelion. In non-small-cell lung cancer cells, taraxasterol prevented migration by inter-
fering with EMT. Modulating the immune microenvironment might be one of the possible
mechanisms of the anti-cancer effects of taraxasterol [151].

3.6. Alkaloids

Alkaloids are a class of nitrogen-containing phytochemicals with one or more nitrogen
atoms in their structure. The diversity of structure and bioactivities is a characteristic of
alkaloids [152,153]. In terms of anti-cancer effects, some alkaloids, including berberine (30)
and its analogues and matrine (36) and its analogues (Figure 8), showed anti-metastasis
effects by inhibiting the EMT process in various cancers.

3.6.1. Berberine (30)

Berberine (30), an isquinoline alkaloid, is the main active component of the medicinal
plants Phellodendron amurense and Coptidis Rhizoma [154]. As a commercial drug in China,
the well-known pharmacological effect of berberine is as an antibacterial drug. Other-
wise, anti-cancer, cardiac protection, anti-diabetes, hypolipidemic, neuroprotective, and
liver-protective roles elicited by berberine have been reported [155]. Anti-metastasis is
an important aspect of the anti-cancer effect of berberine. Suppressing the EMT process
to block metastasis has been revealed in berberine-treated lung [156], gastric [157], cer-
vical [158], nasopharyngeal [159], and osteosarcoma cancer cells [160]. Similar to other
phytochemicals, the possible mechanisms of berberine in regulating EMT focused on some
common pathways, such as TGF-β/Smad.

Some analogues of berberine also showed an EMT-suppressing effect; for example,
demethyleneberberine (31) inhibited migration and the EMT process in colon and lung
cancer cells [161,162]. Four berberine alkaloids, including berberine, epiberberine (32),
dihydroberberine (33), and berberrubine (34), showed inhibitory effects on the migration
and invasion of two kinds of breast cancer cell lines, MCF-7 and MDA-MB-231. The impact
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of the four berberine alkaloids on Wnt/β-catenin pathway and EMT process was different in
MCF-7 and MDA-MB-231 cells. Epiberberine and berberrubine potently suppressed Wnt/β-
catenin pathway and reversed EMT in MCF-7 cells. While dihydroberberine effectively
inhibited Wnt/β-catenin signaling and blocked EMT in MDA-MB-231 cells. Berberine
showed weak effects in both cell lines [163].

Jatrorrhizine (35) is another analogue of berberine; it is also derived from Rhizoma
Coptidis. Traf2 and Nck-interacting serine protein kinase (TNIK) are cancer target proteins
that are overexpressed in mammary cancer cells and contribute to the progression of cancer.
Jatrorrhizine was shown to restrain TNIK-regulated Wnt/β-catenin signaling and EMT
expression, which contributed to its anti-proliferation and anti-metastasis potential [164].

Blocking EMT provided an advantage for berberine to synergize with other chemother-
apeutic drugs to overcome resistance [156]. In combination with gefitinib, formononetin,
or even irradiation, all increased therapy sensitivity [160].
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3.6.2. Matrine (35)

Matrine, a tetracyclic quinolizidine alkaloid, is mainly extracted from Sophora plants,
such as Sophora flavescentis and Sophora alopecuroides [165]. Matrine has been shown to
have multiple pharmacological effects and has also been used as an anti-cancer agent [166].
Metastasis inhibition due to depression of the EMT process in cancer cells is one aspect of the
anti-cancer effects of matrine. In glioma and hepatocellular carcinoma cells, matrine inhib-
ited invasion and migration associated with the suppression of the EMT process. Reduced
phosphorylation of p38 MAPK and AKT was suggested to be involved in the suppression
of EMT in glioma cells [167]. While regulation of the miR-299-3p/phosphoglycerate mutase
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1 (PGAM1) axis related to the constrained EMT was elicited by matrine in hepatocellular
carcinoma cells [168,169].

Generally, oxymatrine (37) co-exists with matrine in the same plant. The two com-
pounds have extremely similar structures and could be transformed into each other. Oxy-
matrine also showed inhibition of EMT in some kinds of cancer cells, such as colorectal
and breast cancer cells. In colorectal cancer cells, oxymatrine inhibited EMT through
TGF-β1/Smad and NF-κB pathways [170,171], and in breast cancer cells, oxymatrine sup-
pressed the EMT process via the depressing αVβ3 integrin/FAK/PI3K/AKT signaling
pathway [172].

Sophocarpine (38) is another analogue of matrine with an extra double bond in the
structure. In hepatocellular carcinoma cells, sophocarpine not only reduced cell prolifera-
tion and reversed cell malignant phenotype but also reduced the ratio of cancer stem cells.
In this study, downregulation of g AKT/GSK-3β/β-catenin axis and inhibition of EMT
induced by TGF-β were clarified as the mechanisms of sophocarpine [173].

Normally, when matrine and oxymatrine were used in combination with chemothera-
peutic agents such as cisplatin, synergistic effects would occur due to the constrained EMT
effects, and the reversing resistance effect was given more attention in these studies [174].
However, there was a completely different study: chronic oxymatrine treatment induced
resistance in colon cancer cells. Resistant cells showed an EMT phenotype, and the LncRNA
MALAT1 was suggested as the stimulator of oxymatrine-induced resistance [175].

3.6.3. Other Alkaloids

In addition, some other alkaloids, including piperine, tetradrine, and evodiamine,
have been reported to have suppressing EMT effects. Piperine (39) is an active ingredient
in black pepper; it inhibits the EMT process in colorectal and lung cancer cells [176,177].
Tetrandrine (40) is a bisbenzylisoquinoline alkaloid isolated from the root of Stephania
tetrandra. It has been proven to reverse EMT in bladder cancer cells by downregulating
GLI-1 [178]. Evodiamine (41) is a quinazolinocarboline alkaloid that has been revealed to
possess anti-metastatic ability in liver cancer Hep3B and Huh-7 cells. Modulation of the
EMT process by reducing YAP levels was considered a possible mechanism for the anti-
metastasis effect of evodiamine [179]. β-Carboline alkaloids were revealed as the bioactive
constituents of Arenaria kansuensis, a plant used for the treatment of lung inflammation. A
total of twelve β-carboline alkaloids all showed NF-κB/p65 pathway inhibition and EMT
process reversal effects with different levels in the LPS-induced RAW264.7 inflammatory
cell model and the TGF-β1 induced A549 cell model; this might be the mechanism of the
antifibrogenic effect of β-carboline alkaloids [180].

4. Conclusions

The occurrence of EMT in cancer cells has been revealed to promote invasion, mi-
gration, and metastasis, enhance stem cell properties, and increase resistance to classical
chemotherapeutics. Targeting EMT has become an attractive approach for the development
of novel therapeutics to combat malignant tumors. Phytochemicals have always been the
source of anti-cancer drugs. In this review, we summarized phytochemicals with EMT
inhibitory effects and their modulatory mechanisms of the EMT process. There is a large
batch of studies about phytochemicals with anti-EMT effects. These studies showed the
value of phytochemicals as anti-EMT agents. On the other hand, the high degree of ho-
mogeneity in these studies caught our attention. A proportion of these studies even just
detected typical markers of EMT and then came to the conclusion that the phytochemicals
exerted their bioactivities through EMT. Under current circumstances, there is still a long
way to go before converting these phytochemicals into clinical anti-cancer drugs. In order
to find valuable phytochemicals with specific inhibitory effects on the EMT process, it is
necessary to carry out some in-depth research, including translational studies. Meanwhile,
the specific phytochemicals can be used as probes to explore novel regulatory mechanisms
of the EMT process.
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