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Abstract: The skin, the largest organ in the human body, mainly plays a protective role. Once
damaged, it can lead to acute or chronic wounds. Wound healing involves a series of complex
physiological processes that require ideal wound dressings to promote it. The current wound
dressings have characteristics such as high porosity and moderate water vapor permeability, but they
are limited in antibacterial properties and cannot protect wounds from microbial infections, which can
delay wound healing. In addition, several dressings contain antibiotics, which may have bad impacts
on patients. Natural active substances have good biocompatibility; for example, ginsenoside Rg3 has
anti-inflammatory, antibacterial, antioxidant, and other biological activities, which can effectively
promote wound healing. Some researchers have developed various polymer wound dressings loaded
with ginsenoside Rg3 that have good biocompatibility and can effectively promote wound healing
and reduce scar formation. This article will focus on the application and mechanism of ginsenoside
Rg3-loaded dressings in wounds.

Keywords: wound dressing; ginsenoside Rg3; hydrogel; nanofiber

1. Introduction

The skin, the largest organ of the human body [1,2], is mainly divided into three parts:
epidermis, dermis, and subcutaneous tissue, which can effectively protect the internal
environment and prevent microbial invasion [3–8]. Once damaged, there will be many
local or systemic problems, and the body will begin the process of wound healing. If acute
injury is not properly treated, it can form a chronic, non-healing wound or proliferative
scar tissue [9–11].

Wound healing involves a series of complex biological processes [12]. At this point,
good wound management measures are crucial for wound healing. Currently, wound man-
agement measures include debridement, infection control, and wound dressings [12–15].
An ideal wound dressing should not only maintain the moist environment required for
wound healing [16–18], but also have good breathability [19,20]. In addition, it should
also have good antibacterial ability and biocompatibility [21–24]. The common drawbacks
of wound dressings include poor antibacterial activity, weak antioxidant capacity, poor
biodegradability, poor mechanical properties, and the need for frequent replacement [25].

Wound dressings can be composed of biopolymers and synthetic polymers to achieve
complementary effects. Some biopolymers used for dressings contain cellulose, chitosan,
gelatin, etc. [26–28], which have good biocompatibility and biodegradability. The artificial
polymers used for dressings mainly contain polyvinyl alcohol (PVA), ε-Caprolactone (PCL),
polylactic acid (PLA), polyvinylpyrrolidone (PVP), and other compounds [29–32], which
have excellent mechanical properties.

The polymer wound dressing mentioned above can enhance its effectiveness by
loading natural bioactive substances. Ginsenoside Rg3 (Rg3) is a steroidal glycoside
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obtained from ginseng roots [33], which has rich pharmacological activities, such as anti-
inflammatory, antibacterial, antioxidant, anti-tumor, and hypoglycemic [34–39]. Due to its
biocompatibility, it has attracted widespread attention from many researchers. However, its
poor water solubility limits its application in biomedicine. Therefore, it can be loaded into
various polymer materials to promote its application. This article reports the applications
and mechanism of Rg3 polymer-based dressings in wounds.

2. Classification of Wounds

Wounds are skin structural damage caused by injury [40,41] and could be classified
into acute and chronic wounds according to their duration and the nature of the healing
process [42]. Acute wounds can recover in a short period of time because the acute wound
micro-environment builds a well-organized ECM and a substrate synthesis rate that exceeds
its degradation. However, the imbalance in this phase will result in a chronic, non-healing
wound [43–45]. Some examples of chronic wounds include diabetes wounds, burn wounds,
ulcer wounds, etc. [46,47], which exhibited the failure to heal in time through the normal
wound-healing process [48–50].

3. Wound-Healing Process

Wound healing involves complex physiological processes that require the participa-
tion of many different types of cells and various growth factors [51–53]. The process of
wound healing is mainly divided into the following four stages: hemostasis, inflammation,
proliferation, and remodeling [54–56]. These stages are not independent and coordinate to
restore tissue integrity and homeostasis in a harmonious manner [57–60].

3.1. Hemostasis Phase

The hemostasis stage occurs immediately after injury and is mainly divided into
three stages: vasoconstriction, primary hemostasis, and secondary hemostasis, which are
achieved by mechanical means [61–63].

3.2. Inflammation Phase

The inflammatory stage occurs immediately after injury, usually lasting for 3 days.
At this stage, basophils and mast cells excrete histamine, serotonin, and other products,
leading to vasodilation and increased vascular permeability, which develops into inflamma-
tion [64,65]. Dendritic cells (DCs) are involved in antigen presentation that triggers T-cell
responses [66]. B lymphocytes secrete antibodies, produce various cytokines and growth
factors, antigen presentation, regulate T-cell activation and differentiation, and regulate
lymphoid tissue to affect the immune response [67]. Platelet-derived growth factor (PDGF),
transforming growth factor-β (TGF-β) with fibroblast growth factor (FGF), and neutrophils
begin to aggregate at the site of injury [68]. Neutrophils act as the first line of defense to
prevent microbial invasion. After 3–4 days, macrophages clear depleted neutrophils to
avoid non-specific tissue damage and sustained inflammation [54].

3.3. Proliferation Phase

On the 4th day of wound healing, the proliferation stage begins, which lasts for a
long time and is mainly divided into tissue granulation formation, angiogenesis, and
wound contraction [69]. Collagen and fibronectin deposit to form granulation tissue [70].
Macrophages and endothelial cells initiate angiogenesis in response to pro-angiogenic
signals and activate tissue growth [71–73]. In granulation tissue, keratinocytes migrate,
proliferate, differentiate, and start the re-epithelialization process [74,75]. Fibroblast differ-
entiation into myofibroblasts promotes wound healing [47].

3.4. Remodeling Phase

After three weeks of wound formation, the remodeling stage begins, which is the final
stage of wound healing, also regarded as the mature stage. During this stage, different
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types of wounds have different durations [76,77]. The wound is covered by fibroblasts,
which promote collagen rearrangement and enhance the tensile strength of the tissue [78].
Finally, a fully mature scar is formed [79,80].

4. Wound Dressings

The wound dressings used for wound management are mainly divided into traditional
dressings, modern dressings, and bioactive dressings [81,82]. Traditional dressings are
the most commonly used dressings because of their low cost and simple preparation
process [60]. They are responsible for isolating the wound from the outside world, and they
mainly include gauze, bandages, and plaster [83]. However, some drawbacks limit their
application, such as difficulty in maintaining a humid environment, poor biodegradability,
and the dressing needing to be frequently replaced, which can cause inconvenience to
patients and may even cause further skin damage [84–88].

In contrast, a wide range of modern dressings not only maintain a moist environment
for wounds, but also have good biocompatibility, biodegradability, and water vapor perme-
ability [89–91]. These dressings are usually prepared from natural or synthetic polymers,
such as hydrogels, nanofibers, films, and foam. Yet, their biological activity is limited.

Bioactive dressings are used to deliver bioactive molecules, such as antibiotics and
growth factors [92]. Antibiotics can prevent wound infections, and growth factors can
restore vitality to damaged tissues. Examples of biologically active dressings include foam,
hydrogel, and nanofiber, which are usually prepared with natural or artificial polymers,
such as gelatin, PVA, and PVP [25]. Rg3 can be loaded into these dressings because it
has some effective pharmacological properties, such as anti-inflammation and promoting
wound healing.

5. Biological Activity of Rg3

Ginseng, the root of Panax ginseng C.A. Meyer, has been widely used in East Asia
countries for thousands of years as a natural supplement [93]. Pharmacognostic research
on ginseng, the root of Panax ginseng Meyer, has shown that ginsenosides, triterpenoid
saponins, are the bioactive components of ginseng [94,95]. More than 100 types of ginseno-
sides have been isolated and determined from ginseng [96]. Ginsenoside is one of the main
secondary metabolites in ginseng and has various pharmacological effects [97–100]. Gin-
senoside Rg3 accounts for 4.7% of all saponins, which have been proven to have multiple
pharmacological effects, such as anti-inflammatory, analgesic, anti-tumor, anti-diabetes,
anti-obesity, anti-depression, anti-melanogenesis, liver protection, cardiovascular protec-
tion, immune promotion, anti-fatigue, etc. [101–112].

Rg3 can promote wound healing, possibly due to its anti-inflammatory [101], antibac-
terial [102], and antioxidant activities [103]. Oxidative stress is one of the factors that delay
wound healing, and some antioxidant therapies promote chronic wound healing by loading
antioxidants into dressings to eliminate reactive oxygen species (ROS). NRF2 can activate
antioxidant responses and is a major participant in the antioxidant and anti-inflammatory
signaling pathways [113,114]. NRF2 has also been shown to increase the expression of
heme oxygenase (HO-1) [115]. A recent study suggests that Rg3 can inhibit oxidative stress
damage to human skin fibroblasts by reducing the production of ROS, increasing the level
of NRF2, and promoting the expression of HO-1. In addition, it is reported that Rg3 can play
a protective role in its antioxidant capacity by increasing the level of cellular antioxidant
enzymes and acting as a free radical scavenger [116,117]. The antioxidant capacity of Rg3
may be related to its steroid structure, as it has been reported that steroid drugs have good
antioxidant activity.

Rg3 also interacts with many molecular targets involved in inflammatory responses.
A recent study has shown that Rg3 can reduce the production of histamine and pro-
inflammatory cytokines, such as IL-1β and TNF-α, and alleviate allergic reactions in mice
by inhibiting the MAPK/NF-κB signaling pathway. The mitogen-activated protein kinase
(MAPK) signaling pathway regulates the whole cellular process, containing the activa-
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tion and differentiation of immune cells [118]. In allergic responses, MAPK signaling
is related to nuclear factor kappa B (NF-κB) activation, and NF-κB can control the tran-
scription of pro-inflammatory cytokines [119]. The anti-inflammatory effect of Rg3 can be
attributed to its steroid structure, and it has been reported that steroid drugs have excellent
anti-inflammatory activity [120,121], and they have been widely used in inflammatory
diseases because they can inhibit the expression of pro-inflammatory cytokines IL-1, IL-6,
and TNF-α.

6. Application of Ginsenoside Rg3 in Wound-Healing Course

In previous animal experiments, we found that Rg3 can restore the structure and
function of damaged skin and promote fibroblast proliferation and angiogenesis [122,123],
while hypertrophic scars (HSs) are the development result of burns, wound infections,
and various skin injuries [124–127]. Abnormal tissue and cellular structures and increased
inflammation and angiogenesis are the main characteristics of HS formation [128–131].
Several studies [132–135] have confirmed that Rg3 is a promising new method for treating
HS, which can significantly improve the thickness of the dermis and epidermis and promote
scar-free wound healing, and its main mechanism is regulating the TGF-β/smads signaling
pathway and the expression of angiogenic factors, such as VEGF and CD31, during the
remodeling stage of the wound-healing process.

7. Rg3-Loaded Wound Dressing

The structure of Rg3 leads to its hydrophobicity, and its solubility is extremely low
under physiological conditions [136,137]. Therefore, finding a suitable drug delivery system
is very important. The application of Rg3-loaded dressings in promoting wound healing
and inhibiting scar formation are now shown in Table 1.

Table 1. Application of Rg3-loaded dressings in promoting wound healing and inhibiting scar
formation.

Serial
Number Dressing Type Composition Animal Model Molecular Mechanism Reference

1 hydrogel
Methoxy poly(ethylene glycol)
(PEG); D,L-lactide (D,L-LA);

glycolide (GA)

perianal ulcer in
rats

Decrease the level of NF-κB, TNF-α,
IL-1, and IL-6; Increase the expression

of VEGF and CD31; Activate ERK
signaling pathway;

[122]

2 hydrogel
Xanthan gum; hyaluronic acid
sodium (HA); carboxymethyl

chitosan(CMCS)

rabbit ear
infected wounds

Increase the expression of α-SMA and
CD31; Reduce the levels of
pro-inflammatory factors

[138]

3 hydrogel
Poloxamer 407(P407);
Hyaluronic Acid(HA);

chitosan(CS)

back wound in
mice

Increase the expression of HIF-1α,
VEGF, CD31, and KRT; Inhibit the

MAPK and NF-κB signal pathways;
Increase the expression of LC3

[123]

4 fibrous
membrane Poly(L-lactide) (PLA) rabbit ear

wounds
Decrease the level of COL-1 and

VEGF; Inhibit inflammation [133]

5 fibrous
membrane

Poly(D,L-lactide-co-glycolide)
(PLGA); Poly (dopamine)

rabbit ear
wounds

Decrease the level of COL-1, CD31,
and VEGF [139]

6 fibrous
membrane

Poly(D,L-lactide-co-glycolide)
(PLGA); Chitosan (CS)

rabbit ear
wounds

Decrease the expression of COL-1 and
VEGF [140]

7 fibrous
membrane

Poly(γ-glutamic
acid) (γ-PGA); Polyethylene

oxide(PEO)

back wound in
rats Decrease the level of CD31 and VEGF [141]

8 fibrous
membrane

Poly(D,L-lactide-co-glycolide)
(PLGA); Hyaluronic Acid(HA)

rabbit ear
wounds Decrease the expression of COL-1 [132]

9 fibrous
membrane Poly(L-lactide) (PLLA) rabbit ear

wounds
Improve the collagen fiber density

and micro vessels formation [142]

10 fibrous
membrane

polyurethane (PU); hydroxypropyl
trimethyl ammonium chloride

chitosan

third-degree
burn wound in

rats

Regulate the ratios of type I and III
collagens; Increase the expression of

α-SMA and CD31
[143]
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7.1. Hydrogels

Hydrogels are hydrophilic three-dimensional polymer wound dressings. They can
absorb a large amount of wound exudates to keep the wound moist [144] and have good
biocompatibility and biodegradability. They have been widely used to load various thera-
peutic agents to promote wound healing [144]. However, they also have some limitations,
such as poor mechanical properties in the swelling state, which can be improved by a combi-
nation of natural and synthetic polymers. Several researchers have reported polymer-based
hydrogels loaded with Rg3 as showed in Figure 1.
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Figure 1. Application of Rg3-loaded hydrogel on skin wound, the yellow point represent Rg3.

In order to improve the bioavailability of Rg3, Longhai Jin et al. [122] used Methoxy
poly(ethylene glycol) (PEG), D,L-lactide (D,L-LA), and glycolide (GA) as a matrix to load
Rg3 to treat perianal ulcers in rats. The encapsulation efficiency of Rg3 was 10%. The exper-
imental results showed that the prepared hydrogel had a uniform porous structure; Rg3
could be released slowly for 120 h continuously; and the biocompatibility of the hydrogel
was good, without obvious cytotoxicity to mouse skin fibroblasts. In addition, Rg3-loaded
hydrogel has good biodegradability, can inhibit local and systemic inflammatory reactions,
activates the ErK signaling pathway, and promotes the healing of perianal ulcers in rats.

Tao Zheng et al. [138] prepared Rg3-loaded sandwich hydrogel dressings with hy-
drophilic matrices, such as xanthan gum, hyaluronic acid sodium (HA), and carboxymethyl
chitosan (CMCS). The loading amount of Rg3 is 220 µg/mL. With the change of hydrogel
thickness, the release time of Rg3 can be adjusted to meet the needs of various wounds. The
research results of rabbit ear infected wounds showed that Rg3-loaded sandwich hydrogel
could reduce the inflammatory reaction caused by infection, promote the formation of
granulation tissue, and promote scar-free wound healing.

In addition, Xiaojuan Peng et al. [123] prepared a thermosensitive hydrogel loaded
with Rg3 with hydrophilic matrices, such as poloxamer 407(P407), HA, chitosan (CS), etc.,
wherein the loading amount of Rg3 is about 3 mg/mL, the hydrogel can continuously
release Rg3, and the results show that Rg3 can reach a 40% release rate in 120 h. They
also tested the antibacterial and antioxidant capacity of the temperature-sensitive hydrogel
loaded with Rg3, which proved that the hydrogel loaded with Rg3 has good antibacterial
and antioxidant activity and can significantly promote wound healing. Meanwhile, in vivo
research results showed that Rg3 can enhance the expression of autophagy proteins by
regulating the MAPK and NF-κB signaling pathways, and promote wound repair by
regulating the diversity of wound microbiota.

The above studies all used different hydrophilic matrices to load Rg3 to improve its
bioavailability, and the encapsulation efficiency reached a maximum of 10%. The results of
the above studies in vivo show that Rg3-loaded hydrogel has a good promoting effect on
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wound healing, and its effect is mainly achieved by regulating multiple signaling pathways,
such as the MAPK, NF-κB, and ErK signaling pathway, which can effectively reduce the
expression of IL-1, IL-6, TNF-α, and other inflammatory factors through these signal path-
ways. Therefore, Rg3-loaded hydrogel can be widely used in promoting wound healing.

7.2. Nanofibers

Nanofiber dressing has high porosity and good water vapor permeability, which can
provide a favorable environment for cellular respiration and gas permeation, and supports
drug delivery, thus inhibiting microbial infection [145]. In addition, it has a high surface area
and volume ratio, excellent mechanical properties, and can simulate natural extracellular
matrix (ECM) [146–148]. Electrospinning is currently one of the most commonly used
and effective technologies for preparing nanofiber. There are various characteristics in
electrospinning technology containing its mild process, allowing drugs, proteins, and
even DNA to be uniformly embedded in fibers without causing drug denaturation or
deactivation [149,150]. Moreover, it can regulate drug release behavior by controlling the
composition of nanofibers [151]. However, according to the composition of the polymer,
the exudate absorption and other properties of the nanofibers also vary, and suitable
polymers need to be used according to different clinical environments. Some researchers
have reported on polymer nanofiber wound dressings loaded with Rg3 as showed in
the Figure 2.
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In order to control the long-term sustained release of Rg3 at the wound site and
improve the utilization rate of Rg3, Liying Cheng et al. [133] used PLA to load Rg3 through
electrospinning, which changed the crystalline state of Rg3, reaching an encapsulation rate
of 10%, and Rg3 slowly released in the scaffold for 3 months. In addition, the research
results indicate that the PLA fiber scaffold loaded with Rg3 is a transplantable controlled-
release drug system that can control the drug release concentration in rabbits by changing
the drug content added to the pre-spinning solution. From the potential mechanism of
Rg3-loaded PLA scaffolds on wound healing, it can be seen that Rg3-loaded PLA scaffolds
can significantly inhibit excessive inflammation, inhibit VEGF expression, and promote
scar-free wound healing.

Inspired by mussels, Liying Cheng et al. [139] used electrospinning technology to
prepare a polydopamine-coated PLGA cellulose scaffold, which was loaded with basic
fibroblast growth factor (bFGF) to immobilize the bioactive drug Rg3. The encapsulation
efficiency of Rg3 was about 6%, and it was slowly released in 40 days. This method
is conducive to the biological functionalization of drug-loaded scaffolds, and is a good
combination of drug therapy and biological signal stimulation. In vivo research results
show that the scaffold not only affects the early stage of wound healing, but also plays a
positive role in the later stage of wound healing.

In order to improve the hydrophobicity of electrospinning nanofibers, Xiaoming
Sun et al. [140] used chitosan to coat nanofibers and prepared a hydrophilic PLGA elec-
trospinning nanofiber membrane loaded with Rg3. The encapsulation efficiency of Rg3
reached 6%. Coating chitosan on the surface of electrospinning fiber can significantly
improve the hydrophilicity of the fiber membrane, maintain the release rate of the Rg3
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of the fiber membrane, and make it release slowly within 40 days. In addition, in vivo
research results indicate that fiber scaffolds loaded with Rg3 can significantly promote
scar-free wound healing. However, Xiaoming Sun et al. [132] used hyaluronic acid for
coating and designed a hyaluronic acid-coated PLGA electrospinning fiber scaffold loaded
with Rg3. The encapsulation efficiency of Rg3 also reached 6%, and the slow release of
Rg3 within 40 days enhanced the biological activity of the fiber scaffold. In this study,
the prepared hydrophilic fiber scaffold loaded with Rg3 has a stable fiber structure and
long-lasting mechanical properties, which not only effectively promotes wound healing
in the early stage, but also inhibits scar formation in the later stage, making it close to
healthy skin.

Inspired by the physical and chemical environment of ECM, Tingting Xu et al. [141]
developed a new photo-crosslinked nanofiber scaffold loaded with Rg3 using hydrophilic
matrices, such as PEO, to promote wound healing. The encapsulation efficiency of Rg3
was 1%, and it can be slowly released within 16 days. The research results show that
biomimetic fiber scaffolds modified with adhesive peptides can accelerate the proliferation
of fibroblasts and effectively promote wound healing. In addition, it can inhibit the
formation of HS by continuously releasing Rg3 in the later stage, reducing angiogenesis
and collagen accumulation.

Wenguo Cui et al. [142] designed a poly(L-lactide) PLLA electrospun fiber scaffold
loaded with Rg3 to cover the entire thickness of the skin resection site to restore the skin
structure and function and inhibit the formation of HS. In this study, Rg3 was loaded onto
the fiber scaffold in an amorphous state and easily dissolved from the scaffold, achieving a
10% encapsulation rate and sustained release for more than 30 days. In vivo experimental
results showed that the scaffold can reduce the thickness of the dermis and the number of
collagen fibers to inhibit the formation of HS.

Now, there are also wound dressings loaded with Rg3 applied to chronic wounds.
XiongGuo et al. [143] used hydrophilic matrices, such as polyurethane and chitosan quater-
nary ammonium cation, as raw materials for electrospinning to prepare wound dressings
loaded with Rg3. The encapsulation efficiency of Rg3 reached 2–4%, which can be slowly
released within 35 days. In addition, the research results show that nanofibers loaded with
Rg3 can promote the proliferation and migration of keratinocytes and fibroblasts and pro-
mote burn wound healing through potential mechanisms such as reducing inflammation
and promoting vascular maturation. In particular, during the remodeling stage of wound
healing, nanofibers loaded with Rg3 can prevent scar formation by regulating collagen
deposition. This study confirms that nanofibers loaded with Rg3 can not only effectively
promote burn wound repair, but also improve the aesthetics of wound healing, restoring
injured skin to a state similar to that of healthy skin.

The above studies have all adopted different means to solve the solubility problem
caused by the hydrophobicity of Rg3. Electrospinning can transform Rg3 from crystalline
to amorphous, greatly improving its solubility. In addition, the introduction of hydrophilic
matrices, such as PEO, HA, and CS, in electrospinning has also improved the bioavailability
of Rg3, and the encapsulation efficiency has reached 1–10%. From the potential mechanism
of action of Rg3-loaded nanofibers on wound healing, it can be seen that Rg3-loaded
nanofibers mainly play a positive role in the inflammatory and proliferative stages of
wound healing by regulating the expression of inflammatory factors and vascular growth
factors. In addition, they also significantly inhibit scar formation during the remodeling
stage of wound healing by regulating the levels of collagen deposition factors and vascular
growth factors. Therefore, nanofibers loaded with Rg3 can be widely used in the field of
wound repair, promoting scar-free wound healing.

8. Conclusions

In this review, we summarized the research on polymer dressings loaded with Rg3 and
their mechanisms for promoting wound healing. These polymer dressings not only provide
a new means to improve the bioavailability of Rg3, that is, by loading the hydrophobic
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drug Rg3 onto a hydrophilic matrix to achieve long-term controlled release. In addition,
after loading Rg3, the biological activity of the dressings is greatly improved, which
can promote wound healing and inhibit scar formation through the antioxidant, anti-
inflammatory potential mechanisms and other mechanisms, such as regulating collagen
deposition and angiogenesis. This provides new opportunities and ideas for high-activity
and low-utilization drugs similar to Rg3, and contributes to the design and development of
dressings suitable for wound healing.

Objectively speaking, the animal models used in most of the above studies are mice,
rats, and rabbits, which have different skin morphology and wound-healing processes
compared to humans. Moreover, the reported studies are mostly in the preclinical stage
and require clinical trials.

It should be mentioned that the application direction of wound dressings loaded with
Rg3 mentioned above is relatively single, mainly focusing on acute wound healing. There
are few reports on other wound healing, especially chronic wound healing. In addition,
due to its excellent biological activity, it can play a positive role in promoting bone repair,
anti-tumor, and other fields. Therefore, these wound dressings loaded with Rg3 can be
applied in other new fields.

In addition, the types of Rg3-loaded wound dressings described above also need to
be broadened. We found that there are few studies on Rg3-loaded wound dressings at
present, mainly focusing on hydrogels and electrospinning. At present, nanoparticles are
also widely used in the field of wound healing. The high specific surface area of nanopar-
ticles enables them to interact with the cell surface and enter the internal environment
of cells, so as to achieve large therapeutic effects. However, compared with hydrogels,
nanofibers, and other dressings, their drug loading may be a big test. Therefore, combining
nanoparticles with hydrogels or electrospinning to form composite carriers to load Rg3
may be a feasible solution.

In the future, it is important to investigate the correlation between the activities of
Rg3-loaded dressings and wound healing through a series of complete in vivo mechanism
validation methods. At present, the research on the mechanism of Rg3-loaded wound
dressings in the wound-healing process is simple, with a relatively single healing stage
and relatively simple validation methods. The wound-healing process is composed of
multiple stages, complex and intertwined, and high-flux technology is widely used in
various fields. However, there are few reports on the promoting effect of Rg3-loaded
polymer dressings on wound healing. At present, it can be found that some wound
dressing materials loaded with Rg3 are made perfectly, with rich chemical synthesis and
superior performance effects. However, subsequent mechanism research is not systematic.
Conversely, pharmacological researchers’ understanding of materials is generally limited,
and material selection and synthesis are relatively inefficient, which seems to form a
situation that one understand much materials but little pharmacological mechanisms,
and vice versa, as materials synthesis research and pharmacological mechanisms research
are relatively complex. Therefore, close collaboration between synthetic chemists and
pharmacological researchers is needed to better design and develop polymer dressings
suitable for Rg3 loading and to elucidate their potential mechanisms for wound healing at
the molecular level.
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