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Abstract: Astragalus membranaceus (A. membranaceus), a well-known traditional herbal medicine, has
been widely used in ailments for more than 2000 years. The main bioactive compounds including
flavonoids, triterpene saponins and polysaccharides obtained from A. membranaceus have shown a
wide range of biological activities and pharmacological effects. These bioactive compounds have a
significant role in protecting the liver, immunomodulation, anticancer, antidiabetic, antiviral, antiin-
flammatory, antioxidant and anti-cardiovascular activities. The flavonoids are initially synthesized
through the phenylpropanoid pathway, followed by catalysis with corresponding enzymes, while
the triterpenoid saponins, especially astragalosides, are synthesized through the universal upstream
pathways of mevalonate (MVA) and methylerythritol phosphate (MEP), and the downstream path-
way of triterpenoid skeleton formation and modification. Moreover, the Astragalus polysaccharide
(APS) possesses multiple pharmacological activities. In this review, we comprehensively discussed
the biosynthesis pathway of flavonoids and triterpenoid saponins, and the structural features of
polysaccharides in A. membranaceus. We further systematically summarized the pharmacological
effects of bioactive ingredients in A. membranaceus, which laid the foundation for the development
of clinical candidate agents. Finally, we proposed potential strategies of heterologous biosynthesis
to improve the industrialized production and sustainable supply of natural products with phar-
macological activities from A. membranaceus, thereby providing an important guide for their future
development trend.

Keywords: Astragalus membranaceus; flavonoids; triterpene saponins; polysaccharides; biosynthesis;
pharmacological activity

1. Introduction

Astragalus membranaceus (A. membranaceus) mainly consists of Astragalus membranaceus
(Fisch.) Bge. and Astragalus membranaceus (Fisch.) Bge. var. mongholicus (Bge.) Hsiao is a
perennial herbaceous plant of the legume family [1]. The dried root of A. membranaceus,
known as Radix Astragali or “Huangqi” in Chinese, has been one of the most commonly
used traditional herbal medicines for more than 2000 years in China and other Asian
countries, with hepatoprotective, tonic and expectorant properties and as a diuretic [2,3].
The medicinal efficacy of A. membranaceus was firstly documented in the Divine Farmer’s
Materia Medica (Shennong Bencao Jing), the earliest extant pharmaceutical monograph in
China. Furthermore, modern pharmacological studies have found that A. membranaceus
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is clinically beneficial for the treatment of respiratory, immunological, cardiovascular and
hepatic diseases [4–6]. In addition, A. membranaceus has also commonly been used as a
dietary supplement and additive in European and American countries; in particular, the
United States has classified A. membranaceus as an over-the-counter dietary supplement
that can be sold at health food markets [7,8].

A. membranaceus can widely synthesize a variety of bioactive components as secondary
metabolites, such as flavonoids, triterpene saponins and polysaccharides, which determine
the quality of the medicinal materials to a large extent [9]. Among them, flavonoids are
the most abundant and ubiquitous secondary metabolites distributed in A. membranaceus
tissues, mainly in the roots, stems, leaves, flowers, fruits and seeds. Although flavonoids
have various chemical structures, they share the same structural skeleton in the early stages
of biosynthesis, which mainly contains three rings (C6-C3-C6) [10,11]. To date, more than
52 flavonoid components, including flavones, isoflavones, flavanones, flavonols, chalcones
and anthocyanidins, have been identified in A. membranaceus [1]. In nature, triterpenes
and their saponins are the second largest secondary metabolites with a total of more than
20,000, which are widely distributed in higher plants, dicotyledons, monocotyledons, fungi,
pteridophytes and marine organisms [12], while the tetracyclic and pentacyclic triterpenoids
are common triterpene saponins compounds in A. membranaceus. The astragalosides,
important tetracyclic triterpenoids compounds, have a wide range of biological activities
and important pharmacological effects [13]. Astragaloside and calycosin-7-O-β-D-glucoside
(CG) are considered to be the most important bioactive ingredients that belong to the
triterpene saponins and flavonoids in A. membranaceus, respectively, and are often used
as “marker components” in the Chinese Pharmacopoeia [14], and astragaloside is also
recorded in the European Pharmacopoeia and British Pharmacopoeia [15,16].

Currently, the interest of numerous scholars around the world has been attracted to A.
membranaceus due to its potential pharmacological activities and therapeutic effects. Thus,
it is imperative to solve the challenges of the resources and production of A. membranaceus.
In particular, the demand for A. membranaceus is rapidly growing in the pharmaceutical,
nutraceutical, food and cosmetics industries. Nevertheless, with the recklessly exten-
sive excavation of medicinal resources, wild A. membranaceus has become an endangered
species [17]. Therefore, we have to comprehensively understand the biosynthetic pathways
and corresponding key genes involved in flavonoids’, triterpene saponins’ and polysac-
charides’ biosynthesis in A. membranaceus, which have provided great guidance for the
medicinal plant breeding and novelty drug exploration derived from A. membranaceus.

In this review, we systematically summarized the biosynthetic pathways and involved
key enzymes, and the bioactivity of flavonoids, triterpene saponins and polysaccharides in
A. membranaceus. In addition, we proposed potential strategies of heterologous biosynthesis
to improve the industrialized production and sustainable supply of active components
with pharmacological activities in A. membranaceus, aiming to offer new insights into the
exploration and biomanufacturing of natural products.

2. Biosynthesis of Flavonoids

Flavonoids are ubiquitous in Astragalus tissues, including the roots, stems, leaves,
flowers, fruits and seeds. The biosynthetic pathway of flavonoids, especially its subclass
isoflavonoids, has been widely studied in A. membranaceus and partially elucidated [18,19].
The upstream pathway of flavonoids biosynthesis starts from the L-phenylalanine involved
in the phenylpropanoid pathway (Figure 1), which is necessary for the growth of plants and
the result of the long-term adaptation of plants to natural conditions [20]. Furthermore, the
phenylpropane pathway is one of the main universal routes used to synthesize secondary
metabolites in plants [21].
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The first committed step is regulated by the phenylalanine ammonia lyase (PAL),
which catalyzes the deamination of L-phenylalanine and produces the cinnamic acid
(Figure 1). PAL is an important rate-limiting enzyme in phenylpropane metabolism, which
is largely expanded and experienced in tandem duplication events in A. membranaceus [22].
Liu et al. isolated an AmPAL1 (GenBank No. AY986506) gene from the A. membranaceus,
which was significantly induced by mechanical wounding, UV irradiation and white light
irradiation, and expressed universally in various organs [23]. In addition, they found that
the contents of flavonoids and quercetin in A. membranaceus of different ages were closely
related with the PAL enzymatic activity.

Subsequently, p-coumaric acid is generated through hydroxylation at the C-4 positions
by a cytochrome P450 monooxygenase of cinnamate 4-hydroxylase (C4H) [24]. Next, the 4-
coumarate-CoA ligase (4CL) catalyzes the conversion of p-coumaric acid into p-coumaroyl-
CoA (Figure 1), which acts as an important precursor for various synthetic derivatives
involved in the phenylpropanoid pathway, including lignans and flavonoids [25].

The biosynthesis of all flavonoids in Astragalus starts from the p-coumaroyl-CoA and
is catalyzed by chalcone synthase/chalcone reductase (CHS/CHR), which catalyzes the
condensation of p-coumaroyl-CoA and three molecules of malonyl-CoA to form a chalcone
intermediate, such as isoliquiritigenin or naringenin chalcone [26]. In the flavanones biosyn-
thetic pathway, the chalcone isomerase (CHI) catalyzes chalcone substrates to produce
flavanones (Figure 1), which are transformed to various isoflavones, flavones, flavonols
and dihydorflavonols by the respective enzymes [27]. For isoflavones synthesis, the CHI
catalyzes the cyclization of isoliquiritigenin and generates liquiritigenin involved in down-
stream enzymatic reactions for ultimate isoflavone compounds’ formation in Astragalus [28].
Subsequently, the daidzein is synthesized under the catalyzation of isoflavone synthase
(IFS), which converts the flavanones to their corresponding isoflavones through a 2, 3 aryl
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ring migration. Isoflavones are synthesized almost exclusively in leguminous plants under
the catalysis of IFS, which is deficient in most other plant species [29].

Finally, isoflavone 3′-hydroxylase (I3′H) catalyzes the hydroxylation reaction at the
3′-position of formononetin to produce calycosin (Figure 1), which is continuously trans-
formed into the CG under calycosin 7-O-glucosyltransferase (UCGT) [30]. The final step
of UGT-catalyzed glycosylation in the isoflavones’ biosynthesis pathway promotes the
stability, solubility and specific bioactivity of isoflavones’ secondary metabolites and adap-
tation to the harsh environment of A. membranaceus plants [31–33]. In a recent study, two
7-O-glycosyltransferases of AmUCGT (c303354, GenBank No. MN241498) and AmUFGT
(c778119, GenBank No. ON375915), which catalyze calycosin and formononetin, respec-
tively, were predicted by phylogenetic analysis [21]. Kim et al. found that the transcript
levels of the main genes (AmPAL, AmC4H, Am4CL, AmCHR, AmCHS, AmCHI, AmIFS,
AmI3′H and AmUCGT) related to the biosynthesis of calycosin-7-O-β-D-glucoside and
calycosin were higher in the flower than those of other organs (leaf, stem and root) in A.
membranaceus; thus, they speculated that the accumulation of calycosin-7-O-β-D-glucoside
in roots might originate from the calycosin in the stem and leaf [25]. In addition, most
of the UGTs’ genes family were distributed on chromosomes as gene clusters in A. mem-
branaceus [22]. The key enzymes of C4H, IFS and I3′H involved in isoflavone biosynthesis
belong to the CYP450 superfamily, which are located on the nine chromosomes and have
the largest enrichment (46, 19%) on chromosome 5 in A. membranaceus [22].

3. Biosynthesis of Triterpenoid Saponins

Triterpenoid saponins are a group of commonly natural products with a diverse
structure and important bioactivities [34]. Triterpenoids are formed by the condensa-
tion of triterpenoid saponins coupled with sugar or other chemical groups, while the
tetracyclic triterpenoids (Astragalosides) and pentacyclic triterpenoids (Oleanolic acid)
are common compounds in A. membranaceus. Biosynthesis of triterpenoid saponins is
a complex multi-step process, mainly including precursors synthesis, chain elongation,
isomerization, cyclization, chain coupling, epoxide protonation and glycosylation [35]. In
general, the biosynthesis of triterpenoid can be divided into three stages: (1) the synthesis of
upstream precursors, such as isopentenyl diphosphate (IPP) and dimethylallyl diphosphate
(DMAPP); (2) the synthesis of the carbocyclic skeleton; and (3) the formation of different
kinds of triterpenoid saponins [34]. Triterpenoid saponins are synthesized in plants through
the universal upstream pathways of the mevalonate (MVA) and methylerythritol phosphate
(MEP) pathways and the downstream pathway of triterpenoid skeleton formation and
modification (Figure 2).

3.1. Upstream Biosynthesis Pathway

Firstly, the upstream precursor of IPP is synthesized from the initial substrate of acetyl
CoA via a six-step condensation reaction in the MVA pathway [12,36]. The MEP pathway
also synthesizes the IPP by utilizing the glyceraldehydes 3-phosphate and pyruvate as
starting substrates through a seven-step reaction. In addition, the MEP pathway produces
polyterpenes along with the chloroplast-bound isoprenoids (b-carotene, prenyl chains
of plastoquinone and chlorophylls) in the plastid [37]. Nevertheless, the MVA pathway
is well-clarified and plays a dominant role in the biosynthesis of triterpenoid saponins,
which mainly synthesizes the isoprenoids, sterols, ubiquinones and sesquiterpenes in
the cytoplasm and mitochondria [38]. The upstream precursor of IPP and DMAPP are
interconverted under the catalyzation of isopentenyl diphosphate isomerase (IDI).
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3.2. Downstream Biosynthesis Pathway

Subsequently, the geranyl diphosphate (GPP, C10) is synthesized from the substrate of
IPP and DMAPP through the condensation reaction by geranyl pyrophosphate synthase
(GPS), and then converted to farnesyl diphosphate (FPP, C15) by adding the second IPP
unit under the action of the farnesyl diphosphate synthase (FPS) [39]. In the stage of
triterpenoid skeleton formation, the downstream precursor of squalene is formed from the
condensation of two FPPs by squalene synthase (SS), which is considered a rate-limiting
enzyme in the triterpenoids’ biosynthesis [40,41]. Next, the squalene is oxidized into
2,3-oxidosqualene under the catalyzation of squalene epoxidase (SE), serving as the key
precursor of triterpenoids saponins [12].

Moreover, the most important step of tetracyclic triterpenoids skeletons’ formation
is the cyclization of 2,3-oxidosqualene and generation of cycloartenol, which is catalyzed
by the cycloartenol synthase (CAS) that belongs to the oxidosqualene cyclase (OSCs)
family [42]. Duan et al. (2023) identified a cycloartenol synthase of AmCAS1 from A.
membranaceus through the in vivo (in yeast) and in vitro functional identification based
on the guidance of transcriptome and phylogenetic analysis [43]. They found that this
enzyme catalyzes the cyclization of 2,3-oxidosqualene into cycloartenol A. membranaceus.
The cycloartenol is derived from the C-20 protosteryl cation, which is generated from the
chair-boat-chair (CBC) conformation of 2,3-Oxidosqualene after folding. In the process
of cyclization, the epoxide group of 2,3-Oxidosqualene is initially protonated, which trig-
gers a carbocationic cyclization and rearrangement cascade, and forms diverse triterpene
skeletons after deprotonation reactions [44].

On the other hand, the 2,3-Oxidosqualene substrate is cyclized to the chair-chair-
chair (CCC) conformation and gives the tetracyclic dammarenyl cation. This cation may
undergo further conversion to the pentacyclic triterpenoids by β-amyrin synthases (β-AS)
and lupeol synthases (LUS), including lupeol, α-amyrin and β-amyrin [45]. Thus, the
OSCs is an important enzyme and branch point to synthesize tetracyclic triterpenoids and
pentacyclic triterpenoids. The OSCs mainly includes CAS, α-amyrin synthase (α-AS), β-AS
and LUS in plants, which catalyze the cyclization of 2,3-Oxidosqualene and generate more
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than 100 variations of the triterpenoid and sterol skeleton [45,46]. In addition, the flexible
and changeable core site of OSCs maybe causes the various structures of triterpenoid
saponins in that the catalytic properties of OSCs mainly rely on its amino acid sequence [47].
Two OSC genes, AmOSC2 and AmOSC3, were identified from A. membranaceus, and their
functions were studied by heterologous expression in tobacco and yeast [48]. AmOSC2 is
a β-amyrin synthase that is associated with the synthesis of β-amyrin and soyasaponins
in vivo and shows higher expression activity in underground parts, while AmOSC3 is
a cycloartenol synthase, which is closely related to the production of cycloartane-type
astragalosides and cycloartenol.

Then the triterpenoid backbone undergoes diverse structural modifications (such as
oxidation, glycosylation and substitution), mainly performed by the cytochrome P450-
dependent monooxygenases, glycosyltransferases (UGTs) and other enzymes [49]. Chen
et al. found that the key genes involved in triterpenoids biosynthesis, such as OSCs,
CYP450 and UGT, were closely linked and clustered in the genome of A. membranaceus,
which implied that there was collaborative expression of genes during the triterpenoids’
synthesis [22]. Finally, the diverse triterpenoid saponin compounds are synthesized under
the structural modifications by OSCs, CYP450, UGT and other enzymes in A. membranaceus.

3.3. Biosynthesis Pathway of Astragalosides

Astragalosides, important tetracyclic triterpenoid compounds, are considered to be
the main active constituents in A. membranaceus, of which cycloastragenol-type glyco-
sides are the most typically bioactive compounds with pharmacological activities. In
nature, cycloastragenol-type glycosides are a rare kind of triterpenoid glycoside, which
were derived from the cyclization of 2,3-oxidosqualene to cycloartenol with a typical
9,19-cyclopropane moiety. The biosynthesis of cycloastragenol involved a series of ox-
idations and furan ring formation under the action of oxidases and epoxide hydrolase
(Figure 3). There may be an epoxidation reaction in the terminal olefinic bond of cy-
cloartenol, and then the hydroxyl group at the C20 position attacks the epoxide via an
epoxide hydrolase, which forms the 20,24-tetrahydrofuran furan ring in the 5-exo-tet mech-
anism [50]. Thus, this 5-member cyclic ether in the side chain is a more common representa-
tive structure of astragaloside that belongings to the cycloartane-type saponins. Meanwhile,
the cycloastragenol was generated from the cycloartenol by forming hydroxyl groups at
the C6, C16 and C25 positions under the action of oxidations [43].

The glycosylation of cycloastragenol catalyzed by a series of UGTs is commonly
considered to be the last step in the biosynthesis of astragalosides and its derivatives,
resulting in the vast structural diversity and important bioactivity of astragalosides [34].
The different sugar units (glucose or xylose) and numbers of glycosyl moieties (mono-, di-,
tri-, or branched sugar chains) are mainly transferred to the 3-OH, 6-OH, 25-OH and 2′-OH
position of cycloastragenol by UGTs.

To date, only four glycosyltransferases (AmUGT7, AmUGT8, AmUGT13 and AmUGT15)
responsible for cycloastragenol glycosides have been identified in A. membranaceus [43,51].
AmUGT15 could catalyze the 3-O-xylosylation of cycloastragenol and cycloastragenol-6-O-β-
D-glucoside to form the cycloastragenol-3-O-β-D-xyloside and astragalosides IV, respectively,
while astragalosides IV was assigned as the most important triterpenoid saponin in A. mem-
branaceus, which could also be synthesized from the cycloastragenol-3-O-β-D-xyloside by the
variants A394F of AmUGT8. AmUGT7, a 2′-O-glucosyltransferase with regioselectivity to-
wards 2-OH of xylosyl moiety at C3 positions, was able to synthesize astragaloside III. During
the biosynthesis of astragalosides, AmUGT13 is mainly responsible for the 25-O-glucosylation
of astragaloside III and forms astragaloside V [52]. This glycosyltransferase exhibits high
regio-specificity and flexibility towards both acceptors and sugar donors. In addition, the
other diverse modifications of astragalosides’ structure, including oxygenation, glycosylation
and acylation, remain unclear and require further elaboration.
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4. Structural Features of Polysaccharides

The astragalus polysaccharide (APS) is one of the major bioactive components in A.
membranaceus with a complex and diverse structure, and possesses multiple pharmacolog-
ical activities [53]. Although the APS is mainly linked by the glycosidic bonds between
different monosaccharides, the deep understanding on accurate components is very limited.
Moreover, the types of glycosidic bond and corresponding pharmacological activities of
the APS in A. membranaceus are also different depending on the basic sources, medicinal
part, planting method, place of production and growth year [54]. The polysaccharide com-
ponents of A. membranaceus mainly include heteropolysaccharide, neutral polysaccharide,
dextran and acidic polysaccharide, which were linked by the main glycosidic bond types
of 1,4-glucose linkage [55].

Most of the APSs isolated and purified from A. membranaceus are heteropolysaccha-
rides whose molecular weight ranges from 8.7 to 4800 kDa (Table 1). In addition, the het-
eropolysaccharides are in water-soluble forms and composed of various monosaccharides,
including D-glucose, D-galactose, D-mannose, D-ribose, D-xylose, L-rhamnose, L-rabinose,
L-xylose, L-ribose, glucuronic acid (GlcA) and galacturonic acid (GalA) [56], while the dex-
tran extracted from A. membranaceus includes α-(1→4) dextran and α-(1→4)(1→6) dextran
with water-insoluble and water-soluble forms, respectively [57].

A pure polysaccharide of AX-I-3b (Mw: 7.9 kDa) was extracted with hot water and
purified through DEAE-cellulose 52 column and Sephacryl S-400 HR gel column chromatog-
raphy, which consisted of Ara, Xyl and Glu at the ratio of 10.4, 79.3 and 1.1, respectively, and
were linked as follows: →2,3,4)-β-D-Xyl-(1→,→4)-β-D-Ara-(1→,→4)-β-D-Glc-(1→[58].
Jiang et al. obtained a heteropolysaccharide (linked as α and β indicant bonds) of the APS
extracted with microwave, which was purified by using ultrafiltration and resin absorbing
(DEAE Sepharose FF) [59]. They found that the monosaccharide compositions of the APS
were Man, Gal, Fru, Fuc and Xyl. In addition, a cold-water-soluble polysaccharide (Mw:
12.3 kDa) of cAMPs-1A was purified through a DEAE-cellulose 52 anion-exchange column
and a Sephadex G-100 column, which consisted of Fuc, Ara, Gal, Glu and Xyl with a molar
ratio of 0.01, 0.1, 0.2, 1.0 and 0.1, respectively [60].
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Table 1. The chemical composition, structural properties and pharmacological activities of polysaccharides derived from the A. membranaceus.

Components Extraction/Purification Monosaccharide
Composition Structural Information Molecular Weight (kDa) Pharmacological Activities References

AERP1 Hot-water/Sephacryl®

S-400 column

Man:Rha:GalA:Glu:Gal:Ara
with a molar ratio of
1.00:2.59:12.15:2.60:3.07:4.54

3/5-α-araf-(1→,T-α-araf,→4,6-β-
manp-(1→,→3/3,6-β-galp-
(1→,→2/2,4-α-rha-(1→,→-4/4,6-α-
glcp-(1→,→4-α-galpA-
(1→and→4)-6-OMe-α-galpA-(1→

2.01 × 103 Improved diabetes-related
cognitive dysfunction [61]

AERP2 Hot-water/Sephacryl®

S-400 column
Glucan →4/6-α-glcp-(1→ linkage) 2.11 Improved diabetes-related

cognitive dysfunction [61]

APSID3

Hot-water/DEAE
Sepharose Fast Flow and
Sephacryl S-300
chromatography

Ara:Rha:Gal:Glc with a
molar ratio of 2:2:5:6

The minimal repeat unit: one
terminal Ara, one 1,5-linked Ara,
one 1,3-linked Rha, one 1,3,4-linked
Rha, five 1,4-linked GalA and six
1,4-linked GluA

5.8 × 102 [56]

RAP

Boiling water/Buchi
Purifier system coupled
with a Hiload 26/60
Superdex-200 column

Rha:Ara:Glc:Gal:GalA with
a molar ratio of
0.03:1.0:0.3:0.4:0.3

The backbone:1,2,4-linked Rha,
α-1,4-linked Glc, α-1,4-linked
GalA6Me, β-1,3,6-linked Gal; The
side chains: α-T-Ara and
α-1,5-linked Ara; The terminal
residues: T-linked Ara, T-linked Glc
and T-linked Gal.

1.3 × 103 Immunomodulation [62]

APS-I Sephadex G-100 column
Glu:Gal:Ara:Rha:GalA with
a molar ratio of
1.5:1:5.4:0.08:0.1

1,4-linked D-Glc, 1,2-linked D-Glc,
L-Rha, 1,5-linked D-Ara,
1,2,5-linked D-Ara, 1,4-linked
D-Ara, D-Gal

5 × 102 Immunomodulation [63]

APS-II Sephadex G-100 column
Glu:Gal:Ara:Rha:GalA with
a molar ratio of
9:1:1.4:0.04:0.001

1,4-linked α-D-Glc, 1,6-linked
α-D-Glc, 1,4,6-linked α-D-Glc,
1,3,4,6-linked α-D-Glc, 1,2-linked
α-D-Glc, α-L-Rha, 1,5-linked
α-D-Ara, 1,4-linked α-D-Ara,
β-D-Gal

10 Immunomodulation [63]
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Table 1. Cont.

Components Extraction/Purification Monosaccharide
Composition Structural Information Molecular Weight (kDa) Pharmacological Activities References

AX-I-3b

Hot-water/DEAE-
cellulose 52 column
chromatography and
Sephacryl S-400 HR
gel column

Ara:Xyl:Glu with a molar
ratio of 10.4:79.3:1.1

1,4-linked β-D-Xyl, 1,4-linked
β-D-Ara, β-D-Glc 7.9 Immunomodulation and

antitumor [58]

APS - Glu:Ara:Xyl:Man:Gal with a
molar ratio 95:2.9:0.7:0.7:0.6 - 17.4 Antitumor [64]

AMA-1-b-PS2

Ara:Fuc:Gal:Glu:Man:Rha:
Xyl:GalA:GluA with a molar
ratio of 12.8:4.5:25.6:23.6:
24.8:5.1:0.7:1.5:1.4.

The backbone: β-D-(1→3) linked
galactans Immunomodulation [65]

APS-II

DEAE-32
anion-exchange
chromatography and
Sephacryl S-300 high
resolution column
chromatography

Xyl:Glu:Ara:Rha:Man:Gal
with a molar ratio of
9.2:77.9:1:5.2:4.5:2.2

11.4 Immunomodulation [66]

AMP
Hot-water/cationic
exchange column
(Dowex 50 W-x8)

Glu:Ara:Gal with a molar
ratio of 91:6.2:2.8 6.9–9.2 × 102 Immunomodulation [67]

AMon-S

Hot-water/DEAE
Sephadex A-25, Con
A-Sepharose
chromatography,
Toyopearl HW60F

Ara:Gal:GalA:Glc with a
molar ratio of 18:18:1:1

Structural units:
α-Arabino-β-3,6-galactan type 76 Reticuloendothelial

system-potentiating activity [68]

APS
Hot-water/DEAE-
Sepharose
CL-6B

Glu:Gal:Ara with a molar
ratio of 1.75:1.63:1 36 Hepatoprotection [69]

APS
Hot-water/DEAE-
cellulose column and
Sephacryl-S400 column

Glc
The repeat units: a (1→4)-linked
backbone with a (1→6)-linked
branch every 10 residues

20.1 Antioxidant and
immunomodulation [53]
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Table 1. Cont.

Components Extraction/Purification Monosaccharide
Composition Structural Information Molecular Weight (kDa) Pharmacological Activities References

APS2
Boiling
water/precipitation with
40% ethanol

Ara 40 Immunomodulation [70]

APS3
Boiling
water/precipitation with
60% ethanol

Rha:Glu:Gal:Ara with a
molar ratio of 1:10.8:6.6:12 15.3 Immunomodulation [70]

APS
Microwave/ultrafiltration
and resin absorbing
(DEAE Sepharose FF)

Man, Gal, Fru, Fuc, Xyl Heteropolysaccharide with α and
β indicant bonds

Immunomodulation and
antiviral [59]

APS Boiling water/Sephadex
G-100 column

Rha:Xyl:Glc:Gal with a
molar ratio of 1:4:5:1.5

linear backbone:1,3-linked β-D-Gal
residues with insertion of β-Glc,
1,6-linked α-Gal, 1,5-linked β-Xyl,
1,4-linked β-Gal, β-D-Gal,
1,2-linked α-Rha, 1,2,4-linked
α-Rha residues

3.01 × 102 Immunomodulation [71]

APS Hot water
Man:Glu:Xyl:Ara:GluA:Rha
with a molar ratio of
0.3:12.8:1.6:0.7:1.0:0.6

2.04 × 103 Antiinflammatory [72]

cAMPs-1A

Cold-water/DEAE-
cellulose 52
anion-exchange column
and a Sephadex G-100
column

Fuc:Ara:Gal:Glu:Xyl with a
molar ratio of
0.01:0.1:0.2:1.0:0.1

12.3 Antitumor [60]

APS

Hot-water/anion-
exchange and gel
permeation
chromatography

Glc

α-(1→4)-D-glucan, with a single
α-D-glucose at the C-6 position
every nine residue, on average,
along the main chain.

36 Renal protection [73]

APS Hot-water/Sephadex
G-50 and lyophilized

Ara:Gal:Glu:Man with a
molar ratio of
1.00:0.98:3.01:1.52

pyranose ring and α-type
glycosidic linkages 2.1 Antitumor [74]
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5. Pharmacological Activities of Bioactive Ingredients

A. membranaceus has a long history (more than 2000 years) in Chinese herbal medicine
for medicinal usage due to its significant bioactivities and pharmacological effects. When
compared to other Astragalus genus plants (Table 2), A. membranaceus exhibited the widest
range of pharmacological activities, including anticancer, antidiabetic, antiviral, hepato-
protective, immunomodulatory, antiinflammatory, antioxidant and anti-cardiovascular
activities (Figure 4).

Table 2. Comparison of pharmacological potentials between A. membranaceus and other Astragalus
genus plants.

Species Resource Main Bioactive Compounds Potential Pharmacological Activities References

A. membranaceus Flavonoids, triterpene saponins,
polysaccharides

Anticancer, antidiabetic, antiviral,
hepatoprotective, immunomodulatory,
antiinflammatory, antioxidant,
anti-cardiovascular activities.

[75]

A. abyssinicus Flavonoids Antioxidant [76]
A. monspessulanus Flavonoids Antioxidant [77]
A. hoantchy Flavonoids Antibacterial [78]
A. adsurgens Flavonoids Antiinflammatory [79]
A. brachycalyx Triterpene saponins Immunomodulatory [80]
A. plumosus Triterpene saponins Antioxidant [81]
A. boeticus Triterpene saponins Anticancer [82]
A. pennatulus Triterpene saponins - [83]
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5.1. Immunomodulatory Effects

Modern pharmacological studies have proven that A. membranaceus has immunomod-
ulatory effects by improving the immune system and alleviating the adverse effects of con-
ventional drug treatments [84]. Several studies have proven that the APS (40–400 µg/mL)
can efficiently protect the bone marrow mesenchymal stem cells from radiation-induced
apoptosis, formaldehyde-induced cytotoxicity and genotoxicity by regulating the relative
genes expression, such as B-cell lymphoma-2 (Bcl-2), Bcl-2-associated X (Bax) and xero-
derma pigmentosum group A [85,86]. Bao et al. reported that the APS (150 mg/kg) was able
to protect the hematopoietic stem cells by improving the bone marrow and hematopoietic
stem cell, and increasing the number of CD34+ cells, Lin–c-Kit+cells and Lin–Sca1+c-Kit+

cells [87].
In addition, the APS is a regulator for the secretion and production of cytokines, which

could improve splenocytes to induce interferon (IFN), produce interleukin 2 (IL2), enhance
the secretion of IL3, IL4 and IL6 [9,88,89], and induce the production of IL8, IL10 and
IL12 [90,91]. As for the macrophages, the APS of 12.5–100 µg/mL is able to increase the
expression and production of NO, IL-1β, TNF-α and IL-6 by activating the MAPK and
NF-κB signal pathways [67]. Similarly, Wei et al. found that the APS is able to activate TLR4-
related MAPKs signal pathways, including phosphorylated JNK (p-JNK), phosphorylated
ERK (p-ERK) and phosphorylated p38 (p-p38), and induce NF-κB translocation and IκB-α
degradation [92]. In short, the APS may induce the production of cytokines in RAW264.7
cells by activating the MAPKs and NF-κB signal pathways mediated with TLR4. In addition,
Li et al. proved that the APS and deproteinated APS (DP) stimulated the production of NO
and the up-regulation of cytokines’ mRNA expression by activating the NF-κB and MAPKs
pathways in RAW264.7 cells, while the desulfated AMP (DS) significantly decreased the
activation of RAW264.7 and NK cells [67].

Moreover, the important role of APS in Ig is to regulate immunity by secreting IgA, IgG
and IgM. In vivo studies indicated that the APS of 8 mg/kg could improve the immunity
by promoting the proliferation of T and B cells, and producing a variety of cytokines in
cyclophosphamide-induced immunosuppressive mice, such as IgG, IgA, IgM, TNF-α, IL-6,
IL-2 and IFN-γ [93]. In previous studies, the APS of 300–1200 mg/kg improved the percent-
ages of CD3+CD4+ T cells and CD3+, and decreased the ratio of CD3+CD8+/CD3+CD4+

and the expression of IL-10, IL-6 and TNF-α [94].
In an in vivo animal model of BALB/c mice and Wistar rats, the total flavonoids

extracted from A. membranaceus promoted the serum hemolysin level and delayed type
hypersensitivity, macrophage phagocytic and the immune organ index in mice, while they
alleviated mouse ear edema and vascular permeability, and rat paw edema granuloma
formation [95].

5.2. Anticancer Effects

To date, cancer remains the leading cause of death and significantly influences life
expectancy [96]. While A. membranaceus has exhibited potential antitumor activities
against various tumor types on the basis of inhibiting the tumor growth, migration and
invasion [97,98], in recent years, the APS has more commonly been used for the prevention
and treatment of various tumors, such as gastric cancer, liver cancer and colon cancer. It was
reported that tumor growth and migration were mainly caused by the rapid proliferative
capacity of tumor cells [56]. In a murine H22 hepatocarcinoma model, APS treatment
(100 and 400 mg/kg) effectively inhibited the growth of a solid tumor transplanted in
BALB/c mice, and promoted the expression of TNF-α, IL-2 and IL-12 and decreased the
concentration of IL-10 in serum [99]. Liu et al. reported that the oral administration of
APS at dosages of 75, 150 and 300 mg/kg significantly inhibited tumor growth and had
inhibitory rates of 20.53%, 36.50% and 44.49%, respectively [60]. They also found that the
APS protected the immune organs and promoted macrophage pinocytosis in tumor-bearing
mice (Figure 5).
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The effects of A. membranaceus on gastric-cancer-induced mesothelial cell apoptosis
were analyzed in a previous study, which reported that the Astragalus treatment could
partly suppress HMrSV5 cells’ apoptosis induced by the supernatant of MKN45 gastric
cancer cells, condensation of chromatin and nuclear fragmentations, and regulate the ex-
pressions of Bax and Bcl-2 in the HMrSV5 cells [100]. Flavonoids and isoflavonoids are
the most important secondary metabolites in a plant, with more than 8000 compounds
to date [29], which have been proven to impede the growth of cancer cells by the modu-
lation of apoptosis, and by inhibiting the DNA topoisomerase and tyrosine kinase activ-
ities [101]. In a study by Zhang et al., the calycosin inhibited the pancreatic cancer cell
growth through the induction of cell cycle arrest induced by p21Waf1/Cip1 and apoptosis in a
caspase-dependent manner, which also promoted the migration of MIA PaCa-2 cells via the
epithelial–mesenchymal transition and by activation of a matrix metalloproteinase [102].

In addition, astragaloside-IV (AS-IV) remarkably inhibited the growth of a tumor
in vivo based on immune enhancement activity by inducing the CTLs activity and inhibit-
ing the Tregs expression in an orthotopic lung cancer model of C57BL/6 mice [103]. It
was reported that AS-IV inhibited the migration and invasiveness of hepatocellular car-
cinoma cells by significantly down-regulating the expression of lncRNA-ATB in a time-
and dose-dependent manner by blocking the signaling pathway of IL-11/STAT3 [97]. As-
tragalus saponins (AST) promoted the apoptosis of HT-29 colon cancer cells in a caspase
3- and polymerase-dependent manner, and inhibited cell proliferation by regulating the
cell cycle of the S and G2/M phase, with concomitant inhibition of p21 expression and
cyclin-dependent kinase activity. In an in vivo study, the antitumorigenic effects of AST
were similar to the conventional chemotherapeutic drug 5-fluorouracil (5-FU), such as the
reduction in tumor volume and the pro-apoptotic and antiproliferative effects in a mice
xenograft [104]. Therefore, AST could be used for tumor therapy as an effective chemother-
apeutic agent, or combined with other orthodox chemical drugs in order to alleviate the
systemic side effects of toxic chemotherapeutic compounds.

5.3. Antiinflammatory and Antioxidant Effects

Numerous studies have proven that the most bioactive ingredients derived from A.
membranaceus have antiinflammatory and antioxidant effects, and thus have been widely
used in clinic. Adesso et al. proved that the extract derived from A. membranaceus reduces
the lipopolysaccharide (LPS, derived from E. coli) plus interferon-γ-induced inflammatory
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response, and decreases the expression of cycloxygenase-2 (COX-2), the formation of
nitrotyrosine and the release of TNF-α as well as the activation of NF-κB in the rat intestinal
epithelial cells [105]. In an oxidative stress model induced by hydrogen peroxide (H2O2)
in an intestinal epithelial cell line, the A. membranaceus extract decreases the ROS levels,
and increases the antioxidant cytoprotective factors expression and nuclear factor-like 2
(Nrf2) activation. In addition, AST showed antiinflammatory properties by suppressing
the lipopolysaccharide-induced NF-κB pathway, thereby decreasing the expression of
inducible nitric oxide synthase (iNOS) in the macrophage RAW264.7 [106]. Similarly,
the total flavonoids extracted from A. membranaceus effectively inhibited the production
of inflammatory mediators, such as NO and cytokine IL-1β, TNF-α, IL-6 and IFN-γ in
lipopolysaccharide-stimulated RAW 264.7 macrophages in a dose-dependent manner,
whereas they promoted the production of these inflammatory mediators in unstimulated
macrophages [95].

According to the previous study, the flavonoids of A. membranaceus inhibit the PC12
neuronal cell injury induced by glutamate by increasing the antioxidant enzyme activities
of superoxide dismutase and glutathione peroxidase [107]. In addition, the flavonoids of
A. membranaceus also showed a high scavenging activity to 1,1-diphenyl-2-picrylhydrazyl
(DPPH) radicals in the cell-free system. Moreover, the APS possessed good antioxidant
properties in ferric-reducing antioxidant power (FRAP), hydroxyl radical (•OH), DPPH
and superoxide radical (•O2

−) scavenging capacity [108]. Therefore, A. membranaceus
and its bioactive components could be developed as a novel antioxidant agent against
inflammation in various diseases.

5.4. Antidiabetic Effects

Diabetes, characterized by elevated blood glucose, is a globally metabolic disorder dis-
ease, which could damage the kidneys, eyes, heart and gastric mucosa, and could also lead
to coma and death without proper treatment [109,110]. It was reported that formononetin
(7-hydroxy-4′-methoxyisoflavone) had potential to treat diabetic retinopathy by inhibiting
the secretion of vascular endothelial growth factor (VEGF) in the HIF-1α/VEGF signaling
pathway, and reducing the expressions of PHD, HIF-1α and VEGF proteins [111]. Liu et al.
recently found that an APS of AERP (Mw: 2.01 × 103 kDa) has hypoglycemic properties
in a db/db diabetic mice model by reducing hyperglycemia and tissue impairment, and
promoting cognitive function [61].

In a diabetic model of human umbilical vein endothelial cells (HUVEC), AS-IV effec-
tively protected the HUVEC injury induced by high glucose by promoting the cell prolif-
eration, and suppressing the apoptosis and inflammatory reactions in HUVEC, through
the inhibition of the c-Jun Nterminal kinase (JNK) signaling pathway [112]. Zhang et al.
studied the effect of the APS on diabetic nephropathy in streptozotocin-induced diabetic
male Sprague-Dawley rats, and found that the APS not only decreased the concentration
of blood glucose, microalbuminuria and plasma lipid, but improved renal function and
reduced the ratio of kidney weight to body weight. In addition, the APS decreased the
expression level of NF-κB in the renal cortex and raised the IκB mRNA level, which indi-
cated that the APS has the potential for prevention and treatment of the progress of diabetic
nephropathy [113].

5.5. Hepatoprotective Effects

As the largest solid organ in the human body, the liver plays important roles in drug
metabolism, detoxification and the production of chemicals, and is easily injured by viral
infection, metabolic disorder, overdose of toxin ingestion and immunological insult [114].
Modern pharmacological studies have proved that the bioactive ingredients derived from A.
membranaceus are clinically beneficial for hepatoprotection. In a previous study, the authors
found the AS-IV has the potential for the treatment of hepatic steatosis with activities in
reducing lipid accumulation and insulin resistance in HepG2 cells. In addition, the AS-IV
induces the phosphorylation of SREBP-1c at Ser372 in an AMPK-dependent manner in
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HepG2 cells [115]. Moreover, in an adipose dysfunction model induced by a high-fat diet
(HFD) feeding in male ICR mice, AS-IV significantly reduced the accumulation of adipose
cAMP by promoting Akt phosphorylation and combination with PDE3B. In addition, AS-IV
inhibits the overproduction of hepatic glucose by decreasing the ectopic fat deposition in
the liver [116].

Yan et al. investigated the hepatoprotective effect of APS on carbon tetrachloride
(CCl4)-induced chronic liver injury in Sprague-Dawley rat models, and found that the APS
reduced the serum levels of aspartate aminotransferase (AST), alanine aminotransferase
(ALT) and alkaline phosphatase (ALP), and significantly increased the activities of catalase
(CAT) and superoxide dismutase (SOD) in the liver [69]. Dang et al. evaluated the protective
effects of APS on chronic hepatic injury induced by CCl4 in male Sprague-Dawley rats
and found that APS treatment reduced the serum levels of total bilirubin (TBIL) and ALT,
and increased the albumin level and SOD activity in the liver [117]. Therefore, the APS
could effectively protect hepatocytes and prevent hepatic injury by limiting free radical
production, elevating antioxidant enzyme activities and reducing lipid peroxidation.

5.6. Antiviral Effects

Many studies have comprehensively proven that A. membranaceus has the important
property of antiviral activity. Influenza is an influenza-virus-caused acute respiratory
infection disease, while A. membranaceus exhibited the obvious activity of anti-influenza
virus in a previous study described by Liang et al. [118]. They found that A. membranaceus
could effectively increase the survival rate of influenza-virus-infected Raw264.7 cells, which
were mainly caused by the increase in SOD activity, the reduction in the malondialdehyde
level, and the regulation of the TLR3 signaling pathway and cell proliferating cycle.

In addition, hepatitis B virus (HBV) remains the leading cause of acute and chronic
hepatitis, cirrhosis and liver cancer, and the current treatment strategy of antivirus drugs
(such as lamivudine and interferon) is associated with various drawbacks, including low
antiviral potency, side effects and a long treatment period [119]. Therefore, Dang et al.
evaluated the inhibitory effects of the APS on HBV replication in HBV transgenic mice [120].
They reported that the administration of APS and emodin decreased the viral DNA levels in
the serum, and reduced the serum levels of the surface antigen of hepatitis B virus (HBsAg),
hepatitis B e antigen (HBeAg) and hepatitis B core antigen (HBcAg) in the mice, which
indicated that the APS and emodin had a persistent inhibitory effect on virus replication
in vivo. Du et al. reported that APS effectively increased the T cells’ proliferating activity
and improved the HBsAg-related antibody level, thus inhibiting the viral reproduction by
inducing the CD4+ and CD8+ T cells to produce cytokines and protecting the body against
viruses [121]. In a human liver cell line, HepG2 2.2.15 transfected by HBV, the bioactive
ingredient of AS-IV effectively inhibits the secretion of HBsAg and HBeAg, which suggests
that AS-IV has potent anti-HBV activity in vitro and deserves to be further developed as
an anti-HBV agent [13].

5.7. Anti-Cardiovascular Effects

Cardiovascular diseases are mainly caused by diabetes, hypertension, high cholesterol
and dyslipidemia syndrome, and the most notable symptoms are ischemic or hemorrhagic
lesions in the heart, brain and whole body [12]. Wang et al. investigated the effects of Astra-
galus flavonoids on cardiovascular disease in vivo [122]. In a diet-induced atherosclerotic
rabbit model, the flavonoids significantly decreased the total cholesterol levels in plasma,
reduced the aortic fatty streak area, and effectively scavenged the hydroxyl radicals and
superoxide in a concentration-dependent manner.

A study was carried out by Wu et al. to explore the vasorelaxation effects of for-
mononetin on an isolated rat aorta and underlying mechanisms [123]. Formononetin pos-
sesses vascular relaxation in a endothelium-independent and endothelium-/NO-dependent
manner by activating the adenosine triphosphate (ATP)-dependent K+ (KATP) and Ca2+-
activated K+ (BKCa) channels. Similarly, calycosin has proven to be an excellent endothelium-
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independent vasorelaxant on precontracted thoracic aortic rings in rats due to its function
of being a noncompetitive Ca2+ channel blocker [124]. In addition, Zhu et al. evaluated the
effects of formononetin derivative (sodium formononetin-3′-sulphonate) on angiogenesis
and neuroprotection in a cerebral ischemia and reperfusion injury rat model [125]. They
found that sodium formononetin-3′-sulphonate effectively protected the brain from the
ischemia and reperfusion injury in vivo, which caused the improvement in neurological
function, and an increase in the expression of the vascular endothelial growth factor and
platelet endothelial cell adhesion molecule, as well as the suppression of cell apoptosis.

5.8. Toxicity and Clinical Trials

A few studies on the preclinical toxicity of bioactive compounds in A. membranaceus
were carried out to verify the clinical safety. It was reported that the AS-IV has fetal toxicity
at a dose more than 0.5 mg/kg and maternal toxicity after intravenous administration of
1.0 mg/kg, while it has no teratogenic effects in rats and rabbits [126]. In addition, the
AS-IV delayed the fur development, liff parry reflex, and eye opening after birth under
1.0 mg/kg during a reproductive toxicity test in Sprague-Dawley rats, while there was no
effect on the memory and learning [127].

In addition, it is necessary to evaluate the therapeutic effects of A. membranaceus on
humans in clinical trials. A positive effect in patients with myocardial infarction was
reported following the administration of Tongguan Capsules (TGC, composed of: A. mem-
branaceus, Borneolum syntheticum, Salvia miltiorrhiza and Grasshopper), at a dose of 4.5 g/day
for 6 months, who demonstrated a reduced left ventricular end-systolic volume index as
well as decreased myocardial markers of fibrosis and apoptosis and reduced circulating
levels of inflammatory cytokines [128]. Lee et al. reported a study in children with growth
retardation syndrome who received HT042, containing a mixture of A. membranaceus roots,
Eleutherococcus senticosus stems and Phlomis umbrosa roots, twice a day for 24 weeks; the
HT042-receiving patients showed a significant increase in insulin-like growth factor bind-
ing protein-3 (IGFBP-3) and IGF-1, as well as an increase in the height and weight of
children [129].

6. Future Perspectives
6.1. Future Market Prospects of A. membranaceus

With the improvement in people’s living standards and emphasis on health, the
demand for A. membranaceus has increased due to its vital role in the prevention and
early interventional treatment of diseases. It is worth noting that HSBD (Huashibaidu
granules, A. membranaceus as a major component) was clinically proven to be effective for the
treatment of COVID-19 patients [130,131]. Thus, the therapeutic effect of A. membranaceus
on COVID-19 has promoted the sharp increase in its market price. There is expected to be
an increasing demand for A. membranaceus in the future market following the worldwide
spread of the epidemic. Nevertheless, the A. membranaceus industry has a long chain with
a wide range, including cultivation, processing, acquisition, storage, transportation, as
well as product research and development. Moreover, the A. membranaceus industry is
more oriented towards quality assurance than production yield. Therefore, it is imperative
to promote the establishment of price formation mechanisms oriented by the quality
and to alleviate the large fluctuation of market prices and the total output caused by
production dispersion, as well as strengthen the guidance practices on the development of
the A. membranaceus industry.

6.2. Development Trend of Biotechnology in A. membranaceus

At the current stage, the numerous studies on the biosynthesis of flavonoids and
triterpene saponins, and the structural analysis of polysaccharides in A. membranaceus have
mainly focused on the discovery of important structural and regulatory genes involved in
the biosynthetic pathway, while the key enzyme functions associated with the synthesis of
these bioactive ingredients in A. membranaceus are still unknown, especially those involved
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in structural modification, transcriptional regulation and the catalytic process, thereby
restricting the industrialized production and sustainable supply of natural products with
pharmacological activities.

Therefore, it is imperative to comprehensively understand the biosynthetic pathway
and regulatory mechanism of bioactive ingredients, and an effective way for further ad-
dressing these bottlenecks is heterologous biosynthesis by using heterologous plants or
microorganisms as the chassis of cell factories that have transformed the metabolic flux and
reconstructed the biosynthetic pathway of bioactive ingredients. Moreover, it is currently
still a challenge to improve the accumulation of target products and realize the efficient
and large-scale production by optimizing the chassis cell system, the regulatory factors and
the fermentation conditions on the basis of heterologous biosynthesis. At present, there has
not been much study on the synthetic biology in A. membranaceus, which still needs more
in-depth exploration and breakthroughs in the future.

7. Conclusions

With increasing demand for traditional Chinese medicine, the sustainable develop-
ment of the A. membranaceus industry has received more attention. Thus, this review focuses
primarily on the biosynthesis pathway of flavonoids and triterpenoid saponins, as well
as the structural features of polysaccharides derived from A. membranaceus. Nevertheless,
the biosynthetic processes of flavonoids and astragaloside in A. membranaceus have not
been completely resolved, and there is a lack of key steps in the synthesis pathways, which
thwarts the large-scale production of bioactive ingredients. In addition, the pharmacologi-
cal activities of these bioactive components were also summarized, which provided a more
comprehensive understanding for the traditional Chinese medicine development and clini-
cal applications. Finally, we also discussed the future market prospects and development
trend of the bioengineering technology of A. membranaceus, hoping to lay a foundation for
the in-depth study and utilization of A. membranaceus.
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