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Abstract: Despite the high proportion of maize grain in animal diets, the contribution made by maize
phytochemicals is neglected. Tocols and their contribution to the vitamin E content of animal diets are
one example, exacerbated by sparse information on the tocol bioaccessibility of commercial hybrids.
In this study, the contents of individual and total tocols and their bioaccessibility were determined in
the grain samples of 103 commercial hybrids using a standardized INFOGEST digestion procedure.
In the studied hybrids, total tocol content ranged from 19.24 to 54.44 ug/g of dry matter. The
contents of micellar «-, y-, 5-tocopherols, y-tocotrienol, and total tocols correlated positively with
the corresponding contents in the grain samples of the studied hybrids. In contrast, a negative
correlation was observed between the bioaccessibility of y- tocopherol, - and y-tocotrienol, and
total tocols, along with the corresponding contents in the grain of studied hybrids. The highest
bioaccessibility was exhibited by y-tocotrienol (532.77 g/kg), followed by &-tocopherol (529.88 g/kg),
y-tocopherol (461.76 g/kg), a-tocopherol (406.49 g/kg), and «-tocotrienol (359.07 g/kg). Overall,
there are significant differences in the content and bioaccessibility of total and individual tocols
among commercial maize hybrids, allowing the selection of hybrids for animal production based not
only on crude chemical composition but also on the content of phytochemicals.

Keywords: maize; commercial hybrids; tocols; bioaccessibility; in vitro digestion

1. Introduction

The term vitamin E refers to a group of naturally occurring compounds (tocols) that
can occur in 8 different forms, specifically, -, 3-, y-, and é-tocopherols and «-, 3-, y-, and
d-tocotrienols [1,2], all of which act as antioxidants in membranes and plasma lipoproteins.
Within the tocols, a-tocopherol is primarily found in green leafy plants and conserved for-
age, while y-tocopherol is the main tocol in many seeds and their products [3]. Due to their
strong antioxidant properties, tocols can prevent oxidative damage to cells [4]. Vitamin E
also has an anti-inflammatory effect and influences the expression of the so-called vitamin
E-related genes [5]. These biological activities may prevent cancer, cardiovascular diseases,
neurological disorders, inflammatory diseases, and several age-related degenerative dis-
eases [4,6]. In animal plasma, x-tocopherol is the predominant and most active form of
vitamin E [7], reversing the symptoms of hypovitaminosis E [8].

Humans and animals cannot synthesize vitamin E; therefore, they rely on dietary
sources for these compounds [9]. In addition to being used for their biological functions,
tocols can be deposited in animal tissues such as muscles, fats, and egg yolks. Recently,
eggs have been studied as a functional food and were found to be an ideal vehicle for the
biofortification of vitamins, folic acid, selenium, polyunsaturated fatty acids, w-3 fatty acids,
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and carotenoids [10-12]. Nowadays, consumers are concerned about the use of synthetic
additives and there is a growing tendency to replace them with natural alternatives. Maize
could be one such alternative for use as an ingredient in complete feeds for poultry.

Maize is the most widely used cereal in complete feeds for poultry [13,14] and is
recognized as one of the most important cereals [4]. It contains numerous micronutrients,
among which tocopherols and tocotrienols are relatively abundant maize antioxidants [15].
Large differences in tocol content have been demonstrated in different genotypes [4,16]:
however, information on their potential biological utilization is scarce.

Both the bioaccessibility and bioavailability of a bioactive compound that is incorpo-
rated in food /feed are of great importance since they allow a phytochemical to exert its
bioactivity after ingestion. The digestion efficiency of highly lipophilic food micronutrients
such as tocols depends on numerous factors and varies greatly between food matrices [17].
After ingestion, tocols are released from the food and are then incorporated into micelles,
which makes them bioaccessible. The micelles transport them to the epithelial cells, where
their absorption occurs [6]. Bioaccessibility is defined as the ratio of the compound found
in the mixed micelles formed during digestion, relative to the initial content of the com-
pound in the matrix [18]. Thus, the bioaccessibility of a compound implies more about its
bioactivity than its content in the matrix alone.

Due to the scarcity of studies reporting tocol content in commercial maize hybrids and
tocol bioaccessibility from maize in general, the main objective of this study was to evaluate
the bioaccessibility of individual and total tocols in 103 maize hybrids that were available
on the Croatian market, sowing these hybrids at the test field. The bioaccessibility of tocols
was evaluated in an in vitro model using a standardized INFOGEST digestion procedure.
Due to the aforementioned significance of eggs as functional foods, the in vitro model
used to study the bioaccessibility of maize tocols was adapted to mimic their ingestion
by poultry.

2. Results
2.1. Tocol Content in Studied Maize Hybrids

Among all the studied maize hybrids, total tocol content ranged from 19.24 to 54.44 ug/g
of dry matter (DM), demonstrating a wide variability in tocol content among hybrids and
allowing their classification into six hybrid groups (G1-G6). The percentage of hybrids
present in each specific group is shown in Table 1. The contents of individual and total
tocols for each maize hybrid that was studied are given in the Supplementary Materials of
this paper.

Table 1. The proportion of hybrids found in the different groups (G), categorized based on the total
tocol content.

Group Total Tocol Content (ug/g) Proportion (%)
Gl <25 6.67
G2 25-30 30.48
G3 30-35 25.71
G4 35-40 25.71
G5 40-45 7.62
G6 >45 3.81

The predominant vitamin E derivative in all the studied maize hybrids was y-tocopherol;
its average proportion was 75.28% of the total tocols. y-tocopherol was followed by o-
tocopherol (12.84% of total tocols), y-tocotrienol (6.72% of total tocols), «-tocotrienol (2.97%
of total tocols), and d-tocopherol (2.19% of total tocols). The content ranges (nug/g DM) were
from 1.77 to 8.66 for x-tocopherol, from 12.10 to 45.24 for y-tocopherol, from 0.16 to 1.74
for 6-tocopherol, from 0.25 to 1.40 for «-tocotrienol, and from 0.82 to 3.68 for y'-tocotrienol.
The contents of the individual tocols between hybrid groups varied significantly for all
tocols except a-tocotrienol (p < 0.05; Figure 1). Furthermore, the contents of y-tocopherol,
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d-tocopherol (p < 0.0001), and y-tocotrienol (p < 0.05) in the hybrid groups increased linearly
with the increasing total tocol content. The remaining tocols showed no linear relationship
with the total tocol content.
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Figure 1. Contents of x-tocopherol (A), y-tocopherol (B), d-tocopherol (C), a-tocotrienol (D), y-
tocotrienol (E), and total tocols (F) in the different maize hybrids, which have been categorized into
six groups (G) based on their total tocol content (G1 < 25, G2 25-30, G3 30-35, G4 35-40, G5 40-45,
and G6 > 45 ug/g DM). Results are expressed as average values + SD. Statistically different data
(p < 0.05) are indicated by lower-case letters (a—f).

2.2. Bioaccessibility of Tocols in the Studied Maize Hybrids

The contents of digestible y-tocopherol, 5-tocopherol, and total tocols increased lin-
early with the increase in the hybrid group of tested samples (p < 0.0001). Therefore, a
positive correlation was found between the contents of y-tocopherol, 6-tocopherol, and
total tocols in the grain and in the digesta after performing an in vitro digestion procedure
(Table 2). A positive correlation between the contents in the grain and the digesta was also
found for é-tocopherol and y-tocotrienol.

The contents of tocols in the digesta (ug/g DM) ranged from 0 to 4.68 for a-tocopherol,
from 6.41 to 24.26 for y-tocopherol, from 0 to 1.08 for 5-tocopherol, from 0 to 0.71 for
a-tocotrienol, and from 0.49 to 2.56 for y-tocotrienol (Figure 2). The digestibility, i.e., the
ratio between the contents of digestible tocols and tocols in maize grain, decreased in the
following order: 5-tocopherol (682.52 g/kg) > y-tocotrienol (620.04 g/kg) > y-tocopherol
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(524.09 g/kg) > x-tocopherol (523.50 g/kg) > a-tocotrienol (465.39 g/kg). The average

digestibility of total tocols was 526.78 g/kg.

Table 2. Correlation between the contents of «-tocopherol («TP), y"-tocopherol (y TP), 5-tocopherol
(8TP), a-tocotrienol («TT), y'-tocotrienol (y'TT), and total tocols in maize grain and their content in

the digesta after the in vitro digestion procedure.

Content of Tocols in Maize Hybrids

Content of Digestible Tocols

TP YTP oTT yIT Total Tocols
«TP 0.54 *** NS 0.23* NS 0.26 **
YTP NS 0.54 *** 0.58 *** NS NS 0.48 ***
STP NS NS 0.75 *** NS NS NS
oTT NS NS NS NS —0.20*
vIT —0.24* —0.20* NS 0.68 *** NS
Total tocols NS 0.52 *** 0.59 *** NS NS 0.49 ***

*p <0.05; ** p < 0.01; ** p < 0.0001; NS—not significant.
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Figure 2. Contents of digestible x-tocopherol (A), y-tocopherol (B), 6-tocopherol (C), c-tocotrienol
(D), y-tocotrienol (E), and total tocols (F) in the different maize hybrids, which have been categorized
into six groups (G) based on their total vitamin E contents (G1 < 25, G2 25-30, G3 30-35, G4 3540,
G5 4045, and G6 > 45 pg/g DM). The presented values that are followed by different lower-case
letters (a—d) are significantly different from each other (p < 0.05).
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The contents of micellar, i.e., bioaccessible, -, y-, d-tocopherol, y-tocotrienol, and total
tocols correlated positively with the contents of these compounds in the grain (Table 3).

Table 3. Correlation between the contents of «-tocopherol («TP), y"-tocopherol (y TP), 5-tocopherol
(8TP), a-tocotrienol («TT), y'-tocotrienol (y'TT), and total tocols in maize grain and their contents in
the micelles after the in vitro digestion procedure.

Content of Tocols in Maize Hybrids

Content of Bioaccessible Tocols

«TP YTP STP «TT YIT Total Tocols
«TP 0.52 *** NS NS NS NS 0.24*
yTP NS 0.54 *** 0.50 *** NS NS 0.46 ***
5TP NS NS 0.71 *** NS NS NS
«TT NS —0.27 ** NS NS NS —0.20°*
yIT —0.21* NS 0.20* NS 0.72 *** NS
Total tocols NS 0.53 *** 0.51 *** NS NS 0.48 ***

*p <0.05; ** p < 0.01; ** p < 0.0001; NS—not significant.

The range of bioaccessible tocols (ug/g DM) was between 0 and 3.87 for «-tocopherol,
between 6.20 and 22.75 for y-tocopherol, between 0 and 1.08 for - tocopherol, between 0
and 0.66 for a-tocotrienol, between 0.41 and 2.12 for y-tocotrienol, and between 8.59 and
27.72 for total tocols. On average, 454.78 g/kg of the total vitamin E compounds were
bioaccessible in the grain of studied commercial maize hybrids. y-tocotrienol exhibited the
highest bioaccessibility (532.77 g/kg), followed by 6-tocopherol (529.88 g/kg), y-tocopherol
(461.76 g/kg), and a-tocopherol (406.49 g/kg). «-tocotrienol exhibited the lowest bioac-
cessibility, at 359.07 g/kg. Similar to the content in grain, differences were also observed
between the hybrid groups, except in the case of «-tocotrienol (Figure 3).

The bioaccessibility of y-tocopherol and total tocols decreased linearly with the in-
crease in total tocol content in maize grain (p < 0.05). This linear effect was confirmed with
a negative correlation between grain content and bioaccessibility for both y-tocopherol
and total tocols (Table 4). Negative correlations were also found for «-tocotrienol and
y-tocotrienol, while the bioaccessibility of 8-tocopherol increased linearly with the increase
in tocol content in the maize hybrids (p < 0.01).

Table 4. Correlation between the contents of «-tocopherol («TP), y"-tocopherol (y TP), 5-tocopherol
(8TP), a-tocotrienol (xTT), ¥ -tocotrienol (Y TT), and total tocols in maize grain and their bioaccessi-
bility, determined using the in vitro digestion procedure.

. . . Bioaccessibility
Content of Tocols in Maize Hybrids
TP YTP STP oTT YyIT Total Tocols

«TP NS 0.24* NS NS NS NS
yIP NS —0.32 ** 0.28 ** NS NS —0.27 **
oTP NS —0.35 ** 0.27 ** -0.21* —-0.22* —0.30 **
«TT NS —0.21* NS —0.47 *** —0.36 ** —0.24*
yIT NS —0.32 ** NS —0.29 ** —0.42 *#** —0.31 **

Total tocols NS —0.31 ** 0.26 ** NS NS —0.28 **

*p <0.05; ** p < 0.01; ** p < 0.0001; NS—not significant.
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Figure 3. Bioaccessibility of «-tocopherol (A), y-tocopherol (B), -tocopherol (C), a-tocotrienol (D),
y-tocotrienol (E), and total tocols (F) in different maize hybrids, which have been categorized into six
groups (G) based on their total vitamin E contents (G1 < 25, G2 25-30, G3 30-35, G4 3540, G5 4045,
and G6 > 45 ug/g DM). The presented values that are followed by different lower-case letters (a—c)
are significantly different from each other (p < 0.05).

3. Discussion

Determination of the tocol profile in maize grain is mainly focused on breeding efforts,
while numerous commercial maize hybrids are on the market without information on
their tocol content. Therefore, to obtain comprehensive information on tocopherols and
tocotrienols, this study analyzed commercially available maize hybrids, which are mainly
used as an energy source in animal production in Croatia. In addition, a bioaccessibility
analysis should generally be performed to fully evaluate the potential biological activity
of maize tocols. However, studies focusing on maize tocols, especially in terms of their
bioaccessibility, are still lacking. Therefore, the grain of 103 commercial hybrids from ten
breeding companies was analyzed to ascertain the content and bioaccessibility of tocols.

3.1. Content of Tocols in Tested Maize Hybrids

The content of tocols differs among maize hybrids due to genetic variations and
environmental and other agricultural factors [1]. The commercial hybrids analyzed in the
present study had a lower range of tocols than the four inbred lines used in the study by
Weber [19] (36.9 to 62.3 pug/g), or in the eight varieties grown at three different locations in
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Germany for the study by Lux et al. [20] (568.9 to 88.5 ug/g DM), but with a similar range to
that of the four genotypes of pigmented maize used in the study by Suriano et al. [21] (16.5
to 42.5 ug/g DM).

Generally, a-tocopherol and y-tocopherol are the predominant tocol compounds in
maize grain, while 6-tocopherol is detected in lower amounts. As for tocotrienols, - and
v-tocotrienols were found, but they were in much lower amounts than their tocopherol
counterparts [15]. In the present study, y-tocopherol was the predominant vitamin E
form found in maize grain, accounting for 75.28% of the total tocols, on average. Other
studies reported similar results [16,19,22]. y-tocopherol has been reported to exhibit several
health-promoting effects, such as antioxidant, natriuretic, anti-inflammatory, and chemo-
preventive activity [23]. In addition, y-tocopherol has the ability to scavenge the reactive
nitrogen forms [24]. In this study, a-tocopherol was the second most abundant tocopherol,
with 12.84% of total tocols being found in this form. Nevertheless, «-tocopherol is reported
to be the most active form of vitamin E [7]. In contrast, other forms have lower vitamin
E activity: the 3-, y-, and 6-forms of tocopherol have only about 8.1%, 3.4%, and 0.4%
of the activity of a-tocopherol, respectively [25]. The genotypes of pigmented maize in
the study presented by Suriano et al. [21] differed significantly in tocol profile from the
commercial hybrids of yellow maize used in the present study; the most abundant tocol in
red maize was a-tocotrienol (75% of total tocols), whereas yellow and purple maize each
contained one-third of the total tocols found in x-tocotrienol and y-tocopherol, respectively.
Furthermore, the lower ratio of y-tocopherol to a-tocopherol is generally expected in
genetically modified maize hybrids, as efforts are being made to increase o-tocopherol due
to its particularly high bioactivity [26].

As mentioned in Section 2, the contents of y- and 8-tocopherol and y-tocotrienol
increased linearly with the increase in the content of total tocols (p < 0.05) (Figure 1). y-
tocopherol is the predominant form of vitamin E; thus, its linear increase along with the
increase in the content of total tocols was expected. A high positive correlation between the
contents of y'-tocopherols and total tocols in maize was also demonstrated in the study by
Goffman and Bohme [16], who reported the highest contribution of this tocol to the total
tocol content. Moreover, y- and -tocopherol are formed by the same biosynthetic pathway
that proceeds via the common cyclase enzyme, explaining the linearity observed for these
two tocols. In contrast, x-tocopherol, which did not show significant linearity with the
increase in total tocol content, requires an additional methylation reaction; therefore, it
exhibits a different behavior [27]. Likewise, the opposite trends of «- and y-tocotrienol
could also be due to the required methylation of the y form to obtain x-tocotrienol in the
biosynthetic pathway [28].

3.2. Bioaccessibility of Tocols in Studied Maize Hybrids

The utilization of tocols in biological functions and their possible deposition in egg
yolks depend on their release from the feed matrix. Tocol metabolism in the upper gastroin-
testinal tract consists of emulsification, micellarization, transport through the mucus layer,
and, finally, adsorption by enterocytes [2,29]. Theoretically, the incorporation of tocols
into micelles is crucial for its absorption by enterocytes, as it has been demonstrated that
the bioaccessibility of lipophilic nutraceuticals generally increases with the increase in the
number of mixed micelles [2,18]. Reboul et al. [17] reported extreme variability in terms of
vitamin E bioaccessibility, depending on the matrix.

In this study, the standardized INFOGEST procedure was used to determine the
bioaccessibility of tocols originating from different maize hybrids. This in vitro digestion
method directly reflects the quantity of bioaccessible tocols available for uptake by epithelial
cells [30]. After the procedure, the contents of individual and total tocols in the digesta
(digestible tocols) and in the micellar fraction (bioaccessible tocols) of the digesta was
determined.

The contents of digestible «-, y-, and 6-tocopherols, y-tocotrienol, and total tocols in-
creased linearly with the increasing contents of these compounds in the grain. x-tocotrienol
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was the only tocol that showed no correlation between its content in the grain and the
digesta. The content of total digestible tocols was also positively correlated with the content
of y-tocopherol in maize grain. This finding was to be expected since y-tocopherol is the
predominant form of vitamin E in the studied hybrids. Furthermore, tocol compounds with
the same biosynthetic pathways demonstrate the same behavior during the digestion phase.
High solubilization, i.e., the digestibility of a lipophilic compound, is of great importance
since it allows the compound to be further incorporated into micelles and, thus, be bioac-
cessible [31]. 6-tocopherol exhibited the highest digestibility, while the predominant tocol,
y-tocopherol, was ranked third. The average digestibility of total tocols was 526.78 g/kg,
which equals approximately 53%. In the study by Mandalari et al. [32], the digestibility
of almond tocols averaged 55%, which is consistent with the results obtained for maize
in the present study, even though almonds are extremely rich in a-tocopherol rather than
y -tocopherol.

The contents of micellar total tocols, «-, -, and &-tocopherols, and y-tocotrienol in-
creased with the increasing contents of these compounds in the maize grain (Table 3). These
positive correlations suggest that the higher the contents of these tocol compounds in the
grain, the more of them will be incorporated into the micelles during digestion. In the
available literature, only the study by Hossain and Jayadeep [30] evaluated the levels of
bioaccessible tocols found in maize. The aforementioned authors found higher levels of
bioaccessible tocols in Indian flint-type maize genotypes, in which the y-tocopherol content
(12.57 pg/g DM) was within the range obtained in the present study, while the quantity
of bioaccessible tocols decreased in the following order: y-tocopherol > o-tocopherol >
d-tocopherol > y-tocotrienol > a-tocotrienol. Among the 103 maize hybrids analyzed in the
present study, y-tocotrienol demonstrated the highest bioaccessibility, while 8-tocopherol
demonstrated a similar result (Figure 3). y-tocopherol had the lowest range of bioacces-
sibility among the tested hybrids compared to other vitamin E forms. In comparison,
Werner and Bohm [33] studied the bioaccessibility of tocols from various types of pasta,
and «-tocopherol showed higher bioaccessibility than y-tocopherol. Therefore, the bioac-
cessibility of individual tocols varies greatly depending on the matrix used. This was to be
expected as large variations in the bioaccessibility of tocols from different matrices have
been reported [17]. A similar average result was obtained in the analysis of egg pasta,
where the bioaccessibility of total tocols was 49.4% [33]. Hossain and Jayadeep [1] analyzed
the tocols found in three maize hybrids; the bioaccessibility of tocopherols and tocotrienols
ranged from 42 to 78% and from 50 to 78%, respectively.

Even though an increase in tocol content in maize leads to higher micellarization,
which, in turn, results in a higher content of bioaccessible tocols, the results of this study
have demonstrated a negative correlation between the bioaccessibility of total tocols,
v-tocopherol, and «- and y-tocotrienol and the content of these compounds in maize
grain (Table 4). The abovementioned inverse relationship suggests that the bioaccessibility
of these compounds decreases with increasing content in the grain due to competition for
incorporation into micelles, as suggested by Zurak et al. [34] regarding the decrease in the
bioaccessibility of carotenoids at higher contents in maize grain.

Numerous factors, such as the lipid phase type and the concentration in the micelles,
the surface area and dimensions of micelles, emulsifier type, interfacial properties, and the
physical state of micelles, may affect the bioaccessibility of lipid-soluble compounds [35].
Yang and McClements [2] studied the bioaccessibility of x-tocopherol and «-tocopherol
acetate in oil-in-water emulsions, using either medium-chain triacylglycerols (MCT) or
long-chain triacylglycerols (LCT) as the carrier oil. The LCT system enabled higher bioac-
cessibility than the MCT emulsion for both a-tocopherol and o-tocopherol acetate. This is
probably due to the ability of the long-chain fatty acids in LCT emulsions to accommodate
large lipophilic molecules such as vitamin E compounds, as has already been reported
in the literature for different lipophilic nutraceuticals [36]. Therefore, the composition of
triacylglycerols and fatty acids in the maize hybrids studied should be investigated to
better understand their effect on the bioaccessibility of tocols from maize.
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4. Materials and Methods
4.1. Sample Preparation

The present research was conducted on 103 commercial maize hybrids (Table 5). The
studied maize hybrids were cultivated in a test field in central Croatia in 2019. Each hybrid
was planted on a plot that was 6 m wide and 50 m long. A representative sample weighing
2 kg was taken at harvest for every hybrid. The sample was obtained by combining
5 subsamples that were taken immediately after harvest using a maize harvester. The maize
samples were dried at 40 °C to a moisture content below 12%. Afterward, the samples
were packed in vacuum-sealed bags and stored at —4 °C. Before analysis, the samples were
brought to room temperature, and a portion of the sample was ground in a laboratory mill
with a 1 mm sieve (Cyclotec 1093, Foss Tecator, Sweden) for in vitro digestibility, whereas
the other fraction was ground in a ball grinder (MM200, Retsch, Haan, Germany) for tocol
analysis. The moisture content of the samples was determined by drying at 103 & 2 °C
for 4 h.

Table 5. List of the studied commercial maize hybrids.

Company Hybrid Company Hybrid Company Hybrid
Bc Institut Agram LG LG 30.3115 PIO Os 3150
Bc Institut Alibi LG LG 30.315 PIO Os 3450
Bc Institut Bc 323 LG LG 31.322 PIO Os 378
Be Institut Bc 344 LG LG 31.377 PIO Os 398
Bc Institut Bc 415 LG LG 31.545 PIO Os 4014
Bc Institut Bc 418 LG LG 368/08 PIO Os 4015
Bc Institut Bc 424 LG Shannon PIO Os 403
Bc Institut Bc 525 MAS seeds MAS 34B PIO Os 522
Bc Institut Bc 572 MAS seeds MAS 48L PIO Os 3850
Bc Institut Instruktor MAS seeds MAS 56A PIO Posavac 36
Be Institut Kekec NS seme NS 3022 PIO Velimir
Bc Institut Majstor NS seme NS 4015 RWA ES Inventive
Bc Institut Pajdas NS seme NS 4051 RWA Ajowan
Bc Institut Tesla NS seme NS 6102 RWA Inclusiv
Bc Institut Thriler NS seme NS Haris RWA Persic
Dekalb DKC 4670 Pioneer P0023 RWA Gladiator
Dekalb DKC 4920 Pioneer P0164 RWA Glumanda
Dekalb DKC 4943 Pioneer P0200 RWA Ulyxxe
Dekalb DKC 5031 Pioneer P0216 RWA Hexagon
Dekalb DKC 5068 Pioneer P0217 RWA Tweetor
Dekalb DKC 5075 Pioneer P0412 RWA Urbanix
. Sy
Dekalb DKC 5093 Pioneer P0725 Syngenta Andromeda
Dekalb DKC 5182 Pioneer P9241 Syngenta Sy Atomic
Dekalb DKC 5685 Pioneer P9300 Syngenta Sy Bilbao
Dekalb DKC 5830 Pioneer P9363 Syngenta Sy Carioca
KWS Balasco Pioneer P9415 Syngenta Sy Chorintos
KWS Kapitolis Pioneer P9757 Syngenta Sy Kreon
KWS Kollegas Pioneer P9889 Syngenta Sy Lucius
KWS Kolumbaris Pioneer P9903 Syngenta Sy Photon
KWS Konfites Pioneer P9911 Syngenta Sy Premeo
KWS Kashmir Pioneer P9978 Syngenta Sy Sandro
KWS Orlando PIO Tomasov Syngenta Sy Senko
KWS KxB 8386 PIO Jablan Syngenta Sy Zoan
KWS KxB 8453 PIO Kulak
KWS Smaragd PIO Os 3114

Bc Institut—DBc Institute for breeding and seed production of field crops, Zagreb, Croatia; Dekalb—Group Bayer,
Leverkusen, Germany; LG—LG seeds, Westfield, CA, USA; KWS—KWS SAAT SE & Co. KGaA, Einbeck,
Germany; MAS seeds—Maisadour Cooperative Group, Haut-Mauco, France; NS seme—Institute of Field and
Vegetable Crops, Novi Sad, Serbia; Pioneer—Corteva Agriscience, Johnston, IA, USA; PIO—Agricultural Institute
Osijek—Osijek, Croatia; RWA—Group Bayer, Leverkusen, Germany; Syngenta—Basel, Switzerland.
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4.2. In Vitro Digestion

INFOGEST procedure [37] was carried out to evaluate the tocol bioaccessibility in the
collected maize hybrids. INFOGEST is a standardized procedure that has already been
used to evaluate vitamin E bioaccessibility [38] and the bioaccessibility of other highly
lipophilic food micronutrients, such as vitamins D and K and carotenoids [34,38-40]. The
procedure used in this paper follows that described by Zurak et al. [34]. Even though
the aforementioned paper focused on the evaluation of carotenoid bioaccessibility, the
procedure could be implemented to determine tocol digestion since it has previously been
reported that these two phytochemicals are digested in a highly comparable manner [17].
The method was adapted to mimic the digestion process in the stomach and small intestine
of poultry, as described by Weurding et al. [41]; the investigated samples were ground
and passed through a 1 mm sieve to mimic the grinding action of the gizzard. Addition-
ally, amyloglucosidase and invertase were used to adapt the procedure to the starch-rich
matrix [42].

All the enzymes used in this study were purchased from Sigma-Aldrich (St. Louis, MO,
USA). The used enzymes were of porcine origin: a-amylase (A3716, labeled activity > 10 U/mg;
experimentally determined at 10 U/mg), pepsin (P7000, labeled activity > 599 U/mg, exper-
imentally determined at 574 U/mg), pancreatin (P7545, labeled activity > 8 USP, experimen-
tally determined trypsin activity at 9 U/mg), invertase (14504, labeled activity > 300 U/mg),
amyloglucosidase (A7095, labeled activity > 260 U/mg), and bile salts (B8631). The content
of bile salt added to the reaction mixture containing the enzymes and sample was calculated
on the basis that the porcine bile extract contains 50% bile salts, with an average molecular
mass of 442 g/mol [43].

Oral (simulated salivary fluid, SSF), gastric (simulated gastric fluid, SGF), and intesti-
nal (simulated intestinal fluid, SIF) fluids used in the in vitro digestion procedure were
prepared as described by Brodkorb et al. [37]. SSF contained 15.1 mM KCl, 3.7 mM KH;,POy,
13.6 mM NaHCOs3, 0.15 mM MgCl,(H;0O)4, 0.06 mM (NH4),COj3, and 1.1 mM HCl. SGF was
prepared with 6.9 mM KCl, 0.9 mM KH;POy, 25 mM NaHCOs3, 47.2 mM NaCl, 0.12 mM
MgCly(Hz0)6, 0.5 mM (NH4)2COs3, and 15.6 mM HCI. SIF contained 6.8 mM KCl, 0.8 mM
KH;,POy, 85 mM NaHCO3, 38.4 mM NaCl, 0.33 mM MgCl,(H,0)6, and 8.4 mM HCl. To
simulate the oral phase, a maize sample (1.25 g) was mixed with 1.25 mL of ultrapure water,
2 mL of SSF with a pH of 7, 0.25 mL of x-amylase solution (1500 U/mL in ultrapure water),
12.5 pL of 0.3 M CaCly, and ultrapure water to reach 5 mL. After incubation for 2 min at
37 °C, with horizontal agitation, 4 mL of SGF (pH 3), 3 uL of 0.3 M CaCl,, and 0.5 mL of
pepsin solution (40,000 U/mL in ultrapure water) were added to the mixture to simulate
the gastric phase. The pH was adjusted to 3 with 6 M HCI, and ultrapure water was added
to 10 mL. The solution was incubated for 2 h at 37 °C with horizontal agitation. Aiming
to mimic the intestinal phase, 4.25 mL of SIF (pH 7), 20 uL of 0.3 M CaCl,, and 2.5 mL
of an enzyme mixture containing pancreatin (800 U/mL), amyloglucosidase (13 U/mL),
and invertase (0.6 U/mL) were added to the mixture. The pH was adjusted to 7 with 1 M
NaOH, and the volume was adjusted to 20 mL with ultrapure water. The prepared mixture
was incubated for 3 h at 37 °C, with horizontal agitation. After the incubation, the test
tubes were placed in an ice bath to stop the intestinal digestion process.

The bioaccessibility of individual and total tocols was calculated according to their
content recovered in the micellar fraction after the in vitro digestion procedure, with respect
to the content of the tocol in the grain of maize hybrids. The micellar fraction was taken as
the fraction obtained after centrifugation [44]. Each hybrid was subjected to the digestion
procedure in triplicate on two separate days, and the mean values of bioaccessibility of
both the individual and the total tocols were taken as a result.

4.3. Tocol Extraction from Whole Maize Grain

Tocols contained in the whole maize grain were extracted as described by Kurilich
and Juvik [45]. Firstly, the maize samples (0.6 g) were homogenized with 6 mL of ethanol
containing 0.1% of butylhydroxytoluene (BHT) and were incubated for 5 min at 85 °C.



Molecules 2023, 28, 5015

11 0f 14

Subsequently, the samples were saponified with 100 puL of 80% KOH for 10 min at 85 °C.
After the samples were cooled by adding 3 mL of chilled ultrapure water, the liquid-liquid
extraction of tocols was performed using 3 mL of n-hexane. The phases were separated
by centrifugation for 10 min at 2200x g (Centric 322A, Tehtnica, Slovenia). The upper
layer was separated and the extraction procedure was repeated until a colorless upper
layer was obtained (usually after five extraction steps). The collected and combined
hexane extract was dried using a rotary vacuum concentrator (RVC 2-25CD Plus, Martin
Christ, Germany). Prior to HPLC analysis, the samples were dissolved in 0.2 mL of
acetonitrile:dichloromethane:methanol (45:20:35, v/v/v) solution containing 0.1% BHT.
Each hybrid was analyzed in triplicate and the mean values of both the individual and
total tocols were taken as the result.

4.4. Tocol Extraction from the Micellar Fraction

Subsequent to maize digestion, a 5-mL aliquot of the digesta was used directly to
extract the digestible tocols. Another aliquot of digesta (8 mL) was centrifuged at 3200 g
for 1 h at 4 °C and was used for the extraction of bioaccessible tocols, as described by Zurak
etal. [34]. In both fractions, tocols were extracted with 2.5 mL of n-hexane in a liquid-liquid
extraction procedure, and phase separation was achieved via centrifugation. The upper
hexane layer was collected and the extraction was repeated three times. The combined
hexane phase was evaporated using a rotary vacuum concentrator. Prior to HPLC analysis,
the samples were dissolved in 0.2 mL of acetonitrile:dichloromethane:methanol (45:20:35,
v/v/v) solution containing 0.1% BHT.

4.5. HPLC Analysis

Tocols in the grain, digesta, and micellar fraction were identified and quantified
using a SpectraSystem HPLC instrument (Thermo Separation Products, Inc., Waltham,
MA, USA) equipped with a quaternary gradient pump (P4000), an autosampler (AS3000),
and an FL detector (FL3000). Tocol separation was achieved with the isocratic elution
of the mobile phase on two sequentially connected C18 columns: a Vydac 201TP54 col-
umn (5 um, 4.6 x 150 mm; Hichrom, Reading, UK) and a Zorbax RX-C18 column (5 pm,
4.6 x 150 mm; Agilent Technologies, Santa Clara, CA, USA). The aforementioned columns
were protected by a Supelguard Discovery C18 guard column (5 um, 4 x 20 mm; Supelco,
Bellefonte, PA, USA). The mobile phase used was an acetonitrile:dichloromethane:methanol
(75:20:5, v/v/v) solution containing 0.1% BHT and 0.05% triethylamine. The flow rate was
1.8 mL/min and 30 pL of the sample was injected. The tocols were monitored at an extinc-
tion of 290 nm and an emission of 330 nm.

Tocols were identified by comparing their retention times and were quantified via
external standardization with calibration curves, using commercially available standards
(Sigma-Aldrich, St. Louis, MO, USA; purity > 96%; 2 > 0.98 for all tocols). The total tocol
content was calculated by summing the contents of the individual tocols.

4.6. Statistical Analysis

The obtained results were analyzed using SAS statistical software (version 9.4; SAS
Institute Inc., Cary, NC, USA). Based on the total tocol content in the maize grain, hybrids
were classified into the following six groups: G1 (<25 pg/g DM), G2 (25-30 ug/g DM),
G3 (30-35 ug/g DM), G4 (3540 ng/g DM), G5 (40-45 pg/g DM), and G6 (>45 pg/g DM).
Differences between the hybrid groups were subjected to an analysis of variance using the
MIXED procedure. Means were defined using the least squares means statement and were
compared using the PDIFF option; letter groups were determined using the PDMIX macro
procedure. Additionally, equally spaced orthogonal contrasts tested the linear, quadratic,
and cubic polynomials for a quantitative relationship between the hybrid group and the
tocol content in maize hybrids. The contents of tocols in the whole grain, digesta, and
micellar fraction and the bioaccessibility of tocols were assessed using a Pearson correlation,
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as implemented in the CORR procedure. The threshold for statistical significance was
defined as p < 0.05.

5. Conclusions

The studied commercial maize hybrids varied in terms of the contents of individual
and total tocols, as was expected due to genotype variability in maize hybrids. The content
of total tocols ranged between 19.24 and 54.44 ug/g DM, while the majority of hybrids
had a tocol content ranging between 30 and 35 ng/g DM. Accounting for 75% of the total
tocols, the predominant form of vitamin E in all the hybrids studied was y-tocopherol. The
standardized INFOGEST procedure allowed the determination of vitamin E content in
the digesta and micelles, which is crucial for enabling their adsorption into the epithelial
cells of the digestive tract. The contents of the individual and total tocols incorporated into
the micelles increased with their increasing contents in the grain of the studied hybrids.
Conversely, the bioaccessibility of most tocol compounds decreased with the increasing
content in the grain. This resulted in an average bioaccessibility of 454.78 g/kg for total
tocols in the studied commercial maize hybrids.

Information on tocol content, let alone on the bioaccessibility of tocols in commercial
maize hybrids, is quite sparse. Therefore, the results presented herein could be of great
importance for both research purposes and for direct application in animal nutrition. The
large variability of the content and bioaccessibility of tocols among maize hybrids allows
the selection of hybrids suitable for producing functional eggs. Vitamin E deficiency is still
a problem, especially in developing countries. Since eggs are commonly incorporated into
the diet of most of the world’s population, the production of vitamin E-enriched eggs could
help to reduce vitamin E deficiency and improve the overall health of the population due to
the health-promoting benefits of tocols. Furthermore, since maize is already widely used as
a livestock feed, factors related to the maize grain that could improve tocol bioaccessibility
should be further investigated.
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