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Abstract: In this study, a novel nanohybrid composite was fabricated via the incorporation of man-
ganese ferrite (MnFe2O4) nanoparticles into the integrated surface of reduced graphene oxide (rGO)
and black cumin seeds (BC). The nanohybrid composite was prepared by a simple co-precipitation
method and characterized by several spectroscopic and microscopic techniques. The characterization
analysis revealed that the rGO-BC surface was decorated with the MnFe2O4. The strong chemical
interaction (via electrostatic and H-bonding) between the integrated surface of rGO-BC and MnFe2O4

nanoparticles has been reported. The prepared composite was highly porous with a heterogeneous
surface. The average size of the prepared composite was reported in the ranges of 2.6–7.0 nm. The
specific surface area of the prepared composite was calculated to be 50.3 m2/g with a pore volume
of 0.061 cc/g and a half pore width of 8.4 Å. As well, many functional sites on the nanohybrid
composite surface were also found. This results in the excellent adsorption properties of nanohybrid
composite and the effectual elimination of methylene blue dye from water. The nanohybrid was
tested for various linear isotherms, such as Langmuir and Freundlich, for the adsorption of methylene
blue dye. The Freundlich isotherm was the well-fitted model, proving the adsorption is multilayer.
The maximum Langmuir adsorption capacity of nanohybrid composite for methylene blue was
reported to be 74.627 mg/g at 27 ◦C. The adsorption kinetics followed the pseudo-second-order rec-
ommended surface interaction between the dye and nanohybrid composite. The interaction between
methylene blue and the nanohybrid composite was also confirmed from the FTIR spectrum of the
methylene blue-loaded adsorbent. The rate-determining step for the present study was intraparticle
diffusion. Temperature-dependent studies of methylene blue adsorption were also carried out to
estimate adsorption’s free energy, enthalpy, and entropy. The methylene blue adsorption was feasible,
spontaneous, and endothermic. A comparison study revealed that the present materials could be
successfully prepared and used for wastewater treatment.

Keywords: methylene blue; water pollution; wastewater treatment; adsorption; integrated surface;
biocompatible material
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1. Introduction

In the modern world, pollutants in water are one of the most significant environmental
problems. As a result, the problem is only expected to worsen [1]. Most of these pollutants
are, but not limited to, colored, containing dyes [2]. Dyes are generally complex heterocyclic
organic structures that are chemically inert. These inert structures are responsible for the
non-biodegradable properties and toxicity of the dye [3].

Among various dyes, methylene blue (MB) is one of the most commonly used dyes in
textile industries [4]. MB is a cationic dye with a heterocyclic structure whose toxicity has
been reported in the literature [5].

The human body has been reported to experience many harmful effects from MB
dye, mainly stomach and chest pain, severe nausea and vomiting, skin irritation, high
fever, pounding heartbeats, breathing difficulties, etc. [6–8]. As a result of MB consump-
tion, the cardiovascular system, gastrointestinal tract, and central nervous system are
also damaged [9].

To overcome these hazards, it is necessary to remove MB from the water before it is
consumed by humans [9]. Among these efforts, adsorption technology has been found
to be the most affordable, sustainable, and straightforward way of treating water [10].
Nanomaterials (NMs) have been considered to be better for this method. Conventionally,
spinel-type ferrite NMs with a typical formulation, M-Fe2O4 (M = Mn, Fe, Co, Ni, and
Cu), have widely been used for wastewater treatment [11,12]. Ferrites are magnetic NMs
devices with numerous physiochemical and functional properties [13]. Besides having a
high saturation magnetization, they have the advantage of being nanosized and having a
high surface range-to-volume ratio.

Among these ferrites, manganese ferrite (MnFe2O4) is the most effective ferrite NMs
due to its low cost, low toxicity, ease of preparation, high surface area, high mechanical
hardness, excellent chemical stability, and bulky hydroxyl groups on their surfaces [14].
MnFe2O4 and its composites have been widely used in water treatment as adsorbents [15].
However, more efforts to increase the efficiency and sustainability of NMs are essential.
The latest and most advanced attempt has been to modify the organic surface with ferrite
NMs [12,16,17]. Therefore, incorporating NMs in the organic surface may also improve the
thermal and mechanical properties of the organic material [18].

Of note, most graphene oxide (GO) or reduced GO (rGO) modifications were achieved
with NMs [17,19,20]. GO has proven attractive for auxiliary metals and oxides of metals due
to its high electrical conductivity, particular mechanical strength, and huge specific surface
area [19]. However, such materials’ high cost and low efficiency still need to be solved. To
overcome these problems, many other efforts have been made. The most useful among
them is the merging of organic substances containing bulky functional groups, such as
cellulose [21], chitosan [22], and biopolymer sponge [23], with GO. These organic/organic-
integrated surfaces proved to be very useful for water treatment. However, this effort may
be more helpful by making an integrated surface through a biochar/hydrochar or activated
carbon (AC) of natural waste products [24,25].

Integrating these carbons with GO can be a good option, but producing these carbon
materials requires high energy consumption and chemical activation [26,27]. This produc-
tion further increases the cost of the overall process. Furthermore, gas evolved during the
production of biochar/AC also becomes a problem for the air environment [28]. Therefore,
moving towards natural plant material (without converting in AC or hydro/biochar) can
be a successful attempt at sustainable, affordable material and will create more research
opportunities for researchers [29].

Looking at the previous studies, it is found that many types of natural plant materials,
like leaves [30–32] and seeds [33], etc., have been used (without converting in AC) to
prepare nanocomposite followed by water treatment applications.

Microorganisms that float freely in water take nutritional signals from static surfaces,
grow on them, and form biofilms that cause infectious diseases [34]. Gibert et al. [35]
describe the biofilm development on the granule AC used for drinking water treatment.
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Bogino et al. [36] theorized that plant materials provide a suitable surface for bacterial
growth. Therefore, a material with antimicrobial activities has been used in water treatment
to overcome these shortcomings [34].

Additionally, these materials have high adsorption capacity and antibacterial activity.
These materials have cellulosic surfaces with bulky functional groups that attract metal
ions and lead to the formation of composites. Depending on adsorption, they can be the
best water treatment option.

Among various natural materials, Nigella sativa, commonly known as black cumin (BC)
seeds, displayed remarkable adsorption properties [37]. These seeds have been merged
with several NMs, showing their usefulness for water treatment applications. BC seeds
have an emerging antimicrobial activity that may help prepare antibiofilm nanocomposite
for wastewater treatment [29]. The sucrose-functionalized magnetic BC seeds were utilized
for the removal of Cr(VI) and Pb(II) ions and were found to be effective [38]. However,
a rare study appears on merging two organic frameworks, such as GO–natural plant
materials. In this study, the same effort is being made.

The study underpins an approach of growth of manganese ferrite (MnFe2O4) NPs
onto the integrated surface of reduced graphene oxide (rGO) and the seed of plants of
Black cumin (BC) (MnFe2O4/rGO-BC) via co-precipitation reaction. BC seeds’ (Nigella
Sativa) surface is cellulosic with plenty of functional groups that can easily be modified [38].
GO is a highly oxidized form of graphene. It exists as an extended form of sheets. Func-
tional groups are impregned to GO, such as -COOH, -C-O, C-O-C, and -OH groups. GO
shows hydrophilic nature with high negative charge density. GO can also be modified
easily [39,40]. Therefore, the fabrication of an integrated surface of GO-BC is easily pos-
sible. This integrated surface may respond to bulky functional groups on their surface,
which may help in the growth of NPs on their integrated surface. The resultant hybrid
nanocomposites may have a higher adsorption capacity of pollutants in the water that can
be applied to remediate MB from water. This study aimed to prepare MnFe2O4/rGO-BC
NMs and investigate their adsorption efficacy for MB dye in water. This research is the first
reported material that has not been fabricated before, and the novelty of this study is to use
an integrated organic surface prepared with natural food material.

2. Results and Discussion
2.1. Characterization Analysis
2.1.1. FTIR Analysis

Figure 1 (red line) illustrates the FTIR analysis of the composite, and the figure shows
the positions of the metal–oxygen bonds (Mn-O or Fe-O) [41].

The FTIR spectrum also shows the absorption bands for various functional groups
present in the composite, with the major being -OH (hydroxyl) and C=O (carbonyl) groups.
The reason for the presence of these groups in the composite is the integrated framework of
rGO-BC seeds on which the NPs were grown [42]. -OH stretching vibration also refers to
the moisture (water contents) present on the surface of the composite. It has been reported
that the broad O–H stretching bands of water can overlap with the vibrational bands of the
O–H stretching modes of alcohols and biomolecules [43,44].

Absorption peaks of amide I and II were also observed in the FTIR spectrum of the
composite, confirming the protein structure of BC present in the composite [45]. All these
peaks are detailed in Table 1.
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Figure 1. FTIR of MnFe2O4/rGO-BC NHC and MB-loaded NHC.

Table 1. List of FTIR bands and related functional groups assigned for MnFe2O4/rGO-BC NHC and
MB-loaded NHC at various wavenumbers.

Order
Wavenumber

Assigned for BC *
(cm−1)

Corr.
Peaks

Wavenumber
Assigned for

rGO *
(cm−1)

Corr.
Peaks

Wavenumber
Assigned for

MnFe2O4/
rGO-BC
(cm−1)

Corr.
Peaks

Wavenumber
Assigned for
MB-Loaded
MnFe2O4/
rGO-BC
(cm−1)

Corr.
Peaks

1. 3368 -OH str. 3316 -OH str. 3400–3250 -OH str. 3244 -OH str.

2. 2922, 2853 -C-H str. 2917, 2855 -C-H str. 2927, 2852 -C-H str. 2927, 2852 -C-H str.

3. 1706 -C=O str. 1589 C=C str. 1711 -C=O str. - -

4. 1657 Amide I - - 1603 Amide I 1599 Amide I

5. 1549 Amide II - - 1543 Amide II 1540 Amide II

6. 1410 -OH
bend - - - 1405–1100

Heterocyclic
structure

of MB

7. 1259 C-O str. 1388 -OH bend 1010 -OH bend 1006 -OH bend

8. 1100–700

-C-O-C
str.

and/or
C-C str.

1090
C-O str.
and/or

C-O-C str.
544, 458

M-O str.
and/or

M-O-M str.
544, 458

M-O str.
and/or

M-O-M str.

* This study is an extension of our previous study [29], therefore, we obtained the copyright permission from
the publisher.

To clarify the result, the FTIR spectrum of the prepared composite was compared with
the FTIR spectra (Figure S1, Electronic Supplementary Information (ESI)) of virgin BC and
rGO (Details given in Table 1) reported in our previous research [29]. These comparisons
explain the growth of NPs on the integrated surface of rGO-BC through multiple shifting,
as shown in Table 1.
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The FTIR spectrum of MB-loaded adsorbent (NHC after MB adsorption) was also
analyzed for this study. Figure 1 (black line) clearly shows the new absorption peak for MB,
and the NHC peak is indicated in the blue circle. These peaks appear due to the heterocyclic
structure of MB [46]. Additionally, a shift in the NHC functional groups’ peak and the
vanishing of some peaks, such as the 1711 cm−1 peak, can also be observed in the FTIR
spectrum of NHC after MB adsorption. All these peaks are listed in Table 1. According to
this result, NHC showed a strong interaction with MB via electrostatic and non-electrostatic
(H-bonding) interactions.

2.1.2. X-ray Diffraction Analysis

Figure 2 characterizes the X-ray diffraction pattern of BC, rGO, MnFe2O4, and NHC.
In Figure 2 (black line), the broad peak corresponding to the [002] plane suggests the
cellulosic carbon surface of BC seeds [29]. The existence of rGO is shown by the presence
of 2θ peaks at 24.55◦ and 43.16◦, corresponding to the [002] and [100] planes in Figure 2
(red line), respectively [29]. The diffraction pattern of the bare MnFe2O4 (Figure 2, blue
line) exhibited various peaks at 18.29◦, 30.06◦, 35.40◦, 37.04◦, 43.06◦, 53.48◦, 56.85◦, 62.74◦,
and 74.09◦ (2θ) corresponding to the [111], [220], [311], [222], [400], [422], [511], [440],
and [533] planes, respectively [41,47,48]. These positions of the peaks were also found in
the diffraction pattern of NHC (Figure 2, green line) which matched the standard data
of manganese ferrite XRD pattern (JCPDS card, file No. 73–1964). In the XRD pattern of
the NHC (green line), the peak of MnFe2O4 corresponding to the [222] plane at 37.04◦ (in
blue line) disappeared and the intensities of other peaks reduced. In addition, the peaks
of rGO and BC moderated significantly as the NPs grew on the surface of rGO-BC [49].
The existence of a carbon framework (due to rGO-BC) in the NHC is shown in Figure 2
(green line) by the presence of a 2θ peak at 24.33◦ corresponding to the [002, in pink color]
plane [29]. The current analysis shows similarity with previous study confirms that the
material fabricated in this study is MnFe2O4 loaded rGO-BC [41,47,48].
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2.1.3. Microscopic Analysis of NHC

Herein, the SEM images of pure BC seed (Figure 3a), rGO (Figure 3b), and NHC
(Figure 3c–e) have been discussed. The SEM images for NHC (Figure 3c,d) represented at
different magnifications revealed that MnFe2O4 NPs have grown on the integrated surface
of rGO-BC. The irregular shapes of NHC particles of various sizes can be seen in the
FE-SEM image (Figure 3c,d), suggesting a heterogeneous structure of NHC. From the SEM
images of NHC, it can be demonstrated that NPs are firmly intact on the integrated surface
of rGO-BC [50].
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SEM-EDX of the prepared composite (Figure 3e) was also analyzed, suggesting the
presence of elements of C, O, N, Fe, and Mn. The EDX analysis indicates the elemental com-
position of C (13.57 weight %), O (41.20 weight %), N (2.97 weight %), Fe (21.35 weight %),
and Mn (20.91 weight %) present in the NHC. The C, N, and O came from the plant seed
and rGO, and Fe and Mn came from the ferrite NPs present in the NHC. The EDX analysis
further confirmed the nanocomposite preparation by combining rGO-BC and MnFe2O4.

The morphology of the NHC was also studied using TEM, as shown in Figure 4.
Figure 4 shows the morphology of NHC at different magnifications, confirming that rGO-
BC was covered with the NPs. It is noted that NPs had good dispersion on rGO, showing
a thin layer structure and folding character, which was inherited from rGO [51,52]. The
TEM images demonstrated the NHC with an average size of incorporated NPs ranging
between 2.6–7.0 nm.
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2.1.4. Thermogravimetry Analysis of NHC

The thermogravimetry analysis, TGA curve in the ranges from 30–800 ◦C, under
the nitrogen atmosphere, is shown in Figure 5. The TGA curve reveals the three weight
loss phases (moisture evaporation, main volatilization, and continuous volatilization) via
pyrolysis of the carbon framework of NHC at a specific temperature range. A significant
first-stage weight loss was observed (11.80 wt.%) at low temperatures (43 ◦C to 160 ◦C),
ascribed to the moisture evaporation from the NHC. The second characteristic step of
weight loss has shown in the interval temperature ranges from 160 ◦C to 260 ◦C (10.43 wt.%),
while the third weight loss stage was observed from 260 to 500 ◦C (12.72 wt.%). These are
accredited to the main volatilization and continuous volatilization via the decay of oxygen-
containing groups (carbonyl, carboxyl, and hydroxyl) as well as the carbon framework of
NHC [53,54]. The N2-containing solid residue may also have been produced under the N2
atmosphere [53]. These findings suggest 34.95 wt.% losses during pyrolysis. Therefore, the
TGA curve represents good thermal stability of present NHC.
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2.1.5. Nitrogen Physisorption Study

The textual properties of the NHC used in this study can be examined from the given
figures of N2 physisorption (Figure 6a,b). The type III isotherm was used for this study,
describing the adsorbate’s interaction with the adsorbent surface. Type III isotherm plots
can be explained via the H3 hysteresis loop according to the IUPAC classification. The H3
hysteresis loop can be seen in the present plot (Figure 6a), representing N2 adsorption by
capillary condensation. This condensation may be due to the dispersion of heterogeneous
aggregates containing the pores. For its clarity, the pore size distribution (PSD) pattern was
extracted through the NLDFT model. The results of the PSD pattern (Figure 6b) clearly
describe the macropores in the existing sample NHC. The nitrogen physisorption analysis
revealed the specific surface area of the NHC that was calculated to be 50.3 m2/g with a
pore volume of 0.061 cc/g and a half pore width of 8.4 Å, respectively.
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2.1.6. Zero-Point Charge Analysis

Zero-point charge (pHzpc) analysis was performed by the well-known salt addition
method [55]. The details of the method adopted are given in the Electronic Supplementary
Information (ESI). The pHzpc result can be seen in Figure 7, which shows that the pHzpc for
the NHC adsorbent is approximately 7.5. It can be concluded from pHzpc that an aqueous
solution pH below 7.5 gives a protonated positive NHC surface, whereas above 7.5, it gives
a negatively charged surface in solution. This means that the alkaline pH of the solution
(above 7.5) will provide a better environment for NHC to adsorb the cationic MB dye.
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2.2. Results of Adsorption Studies

Batch adsorption experiments were supported to understand the behavior of adsorp-
tion of MB dye onto the NHC surface under the impact of variable experiment parameters.
In the batch experiments, 10 mL of MB solution, having an initial concentration of 10 mg/L,
was used as a solute solution.
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2.2.1. Adsorbent Amount and pH Effect

The adsorbent amount optimization experiments were carried out with 0.5, 1.0, 1.5,
2.0, 2.5, and 3.0 g/L of NHC for 10 mL of 10 mg/L of MB solutions, which were stirred for
120 min at 27 ◦C (300 K). The effect of the adsorbent amount on the adsorption percentage
can be seen in Figure S2a (Electronic Supplementary Information (ESI)). The minimum
amount of adsorbent (0.05 g/L) could remove 93% of MB from its given concentration.
The adsorption % was increased to ~97.0% with the increase in NHC to 1.0 g/L. It is
evident that with the increase in the adsorbent dosage, the entire surface sites available for
adsorption will be increased; thus, the adsorption of pollutants on the increased adsorption
sites will also be increased for fixed solute concentration [56]. The higher adsorption %
of both pollutants with a minimum amount of NHC suggests the high efficiency of NHC
towards MB dye.

The pH of the solution affects the degree of surface charge and speciation of the adsor-
bate molecules and, thus, ultimately affects the removal efficiency of the adsorbent [57].
For this study, the effect of pH on the adsorption efficiency of NHC was observed in pH
range 2–10. A significant increase in the MB adsorption onto the NHC surface can be
seen in the direction of alkaline pH (range 8–10) from acidic pH (range 2–6). The maxi-
mum adsorption of MB dye was obtained at pH 10 (Figure S2b, Electronic Supplementary
Information (ESI)).

The MB (cationic) dye molecules are positively charged and can easily be attracted
toward the negative surface. The pHzpc of present NHC was measured to be approxi-
mately 7.5 (Figure 7). It has also been reported that present NHC has bulky functional
groups such as -OH, -C=O, and -COOH. Therefore, these functional groups are depro-
tonated at alkaline pH (pH value higher than pHzpc) during adsorption and acquire a
negative charge [58]. This deprotonation increases the electrostatic interaction between
the deprotonated functional groups of NHC and cationic MB dye molecules. Thus, the
alkaline solution pH favored MB dye adsorption onto the NHC surface [59]. In this study,
the maximum adsorption of MB was found at a higher pH range of 8–10.

2.2.2. Temperature Effect, Thermodynamics, and Isotherms

The temperature effects on the removal efficiency of NHC for MB dye were investi-
gated in range 27 to 45 ◦C (300–318 K) temperatures range at the fixed concentrations of
MB in solution (10 mg/L) and 1.0 g/L of NHC adsorbent dosage (Figure 8a). The better
adsorption performance for this study was observed at a higher temperature, i.e., 45 ◦C.
That means the reaction was endothermic as the adsorption performance of NHC increased
with temperature [60]. At higher temperatures, the dye diffusion rate increases; therefore,
the present trend was obtained [60].
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By applying the obtained temperature-dependent MB adsorption data, the thermo-
dynamic equation (Equations (3) and (4)) gave the parameters such as Gibbs free energy
change (∆G◦), enthalpy change (∆H◦), and entropy change (∆S◦) (Table S1, Electronic
Supplementary Information (ESI)) [61].

∆G◦ = RT lnK (1)

∆G◦ = ∆H◦ − T∆S◦ (2)

where Kc (equilibrium constant) = Qe/Ce.
These parameters were utilized to study the effect of temperature on the adsorption

capacity of the NHC.
The −Ve values of ∆G◦ = −10.67 to −13.57 kJ/mol at 27–45 ◦C temperatures (Figure 8b),

respectively, confirmed the feasibility and spontaneity of the present adsorption process
in the given temperature range [62]. The interactions of MB to functional groups of
NHC {∆G◦ (adsorption) for MB = ∆G◦

NHC + ∆G◦
NHC---MB + ∆G◦

BC----MB + ∆G◦
rGO---MB +

∆G◦
MnFe2O4---MB} attributed to the overall ∆G◦ values.
The increase in negative values of ∆G◦ on increasing the temperature represented

the high feasibility of adsorption upon raising the temperature (Figure 8a). This can be
accounted for based on the increased diffusion rate of MB onto the NHC surface at elevated
temperatures. This also suggested that the process would be endothermic.

The endothermic nature of MB adsorption can also be confirmed by the +Ve value of
∆H◦ = +37.69 kJ/mol. The enthalpies of solute–solid interactions decrease as the solute
molecules are solvated in a liquid–solid system. The decrease means that energy is needed
to displace the solvent (H2O) from the solid surface and desolvate the MB molecules from
the solution (MB——H2O), which leads to the positive change in enthalpy (endothermic
process) of the reaction [63].

The +Ve value of ∆S◦ = +0.016 kJ/mol/K confirmed randomness at the solid–liquid
interface for the MB system [63]. The desolvated MB and the displaced solvent (H2O) both
gains extra translational energy, leading to a rise in entropy and increasing the liquid–solid
system’s unpredictability [63]. Moreover, the interaction of MB with the functional groups
of NHC (-C-O——-MB/-OH——-MB) and protonation and deprotonation of the functional
groups (-OH and -C=O) present on the NHC surface are also to blame for the positive value
of ∆S◦. FTIR analysis for NHC post-adsorption can support such interactions.

For obtained temperature-dependent MB adsorption data, isotherms models were
also verified. Isotherm parameters are the most important ones to explain the adsorption
mechanism at the solid–liquid interface. Isotherms can also be used to determine the
maximum adsorption capacity. The common isotherm models Langmuir and Freundlich
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were used in this study to explain MB’s adsorption mechanism onto the NHC surface.
The homogenous adsorbent surface where a monolayer of adsorbate forms is suitable to
the Langmuir isotherm [64]. The Langmuir isotherm equation in Table 2 can be used to
calculate the maximal monolayer adsorption capacity, Qo. The Freundlich isotherm is
applicable for an adsorbent surface that is heterogeneous and on which a multilayer of
adsorbate is produced. The equation in Table 2 can be used to get the Freundlich parameters,
kF values, and n values.

Table 2. The isotherms parameters for the adsorption of MB dye onto MnFe2O4/rGO-BC.

Temp
(◦C)

Langmuir
Ce

Qe
=

Ce

Qo
+

1
Qob

Freundlich
logQe = logkF +

1
n

logCe

Monolayer
Adsorption

Capacity,
Qo (mg/g)

Langmuir
Constant

(Adsorption
Intensity),
b (L/mg)

Separation
Constant,

RL

Regression
Coefficient,

R2

Freundlich Constant
(Multilayer Adsorption

Capacity),
kF (mg/g) (L/mg)1/n

Freundlich
Constant

(Heterogeneity),
n

Regression
Coefficient,

R2

27 74.627 1.030 0.088 0.987 38.000 1.509 0.993
35 62.111 1.850 0.051 0.984 41.696 1.725 0.992
45 55.866 2.890 0.033 0.980 43.984 1.957 0.997

The result of Langmuir isotherm can be reported as follows. The R2 values of Lang-
muir plots were found to be lower than Freundlich isotherm and deviate from unity at
a temperature range 27 to 45 ◦C, respectively, suggesting poor fitting of MB adsorption
data to Langmuir isotherm (Figure 8c). Although the Langmuir model did not fit the MB
adsorption data, their parameters give important information about the present MB adsorp-
tion process. The maximum MB adsorption capacity of NHC from Langmuir isotherm was
calculated to be 74.626 mg/g at 27 ◦C. The higher adsorption performance might be due to
the bulky functional groups on the NHC surface. The separation constant RL values were
obtained close to zero (0.088–0.033), recommending the feasibility of the MB adsorption
process at all temperature ranges.

The Freundlich result is reported as follows to verify the MB adsorption data further.
The R2 values of Freundlich plots were found to be higher than the Langmuir isotherm
and close to unity at all the temperature ranges, suggesting well-fitting MB adsorption
data to the Freundlich isotherm (Figure 8d). The Freundlich isotherm gave the n (hetero-
geneity measurement) values in the range 1–10 at 1.509, 1.725, and 1.957, suggesting the
heterogeneous behavior of MB adsorption. The heterogeneous surface of NHC can be
confirmed from the SEM image of NHC (Figure 3c), which is responsible for the present
heterogeneous MB adsorption process. The kF values (Freundlich constant) at 38.00, 41.696,
and 43.984 (mg/g) (L/mg)1/n, at a temperature range of 27 to 45 ◦C, respectively. Again,
the overall increase in the kF value suggests the endothermic nature of MB adsorption onto
the NHC surface. Therefore, the MB adsorption was multilayered on the heterogeneous
surface of NHC and endothermic. Similar result was also reported for previous study [65].

2.2.3. Optimization of Contact Time, Adsorption Kinetics, and Mechanism

The contact time optimization was achieved by agitating the 10 mL of MB solution
sample (having a concentration of 10 mg/L of MB and 1.0 g/L of NHC amount) for 120 min
at a time interval of 15 min (Figure 9a). The experimental results indicate that 92% of MB
was eliminated within 15 min and equilibrated at 45 min, where approximately 99% of MB
was removed. As suggested by the FTIR spectrum, there were massive adsorption sites
on the surface of NHC (Figure 1). These sites were initially free for MB adsorption (within
15 min) and thus showed a fast removal rate. After the specific time (15 min), there may be
only specific free sites on the NHC surface [66]. Therefore, the reaction might slow down
after 15 min and finally be saturated. This result also suggests that the present process of
MB adsorption was completed in several steps. These steps may control and determine the
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adsorption rate. Generally, the adsorption rate depends on the physiochemical properties
of the adsorbent.
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To better understand the adsorption rate, two kinetic models, pseudo-first-order and
pseudo-second-order, were applied to the above time-dependent adsorption data. These
two well-known kinetic models gave important kinetic parameters for MB adsorption [67].

The pseud-first-order model assumes that the adsorption rate depends on the unoccu-
pied adsorptive sites of the solid surface. The physical bond formation between adsorbent
and adsorbate is the rate-limiting step for pseudo-first-order.

The pseudo-second-order model assumes that the adsorption rate depends on the
solid surface’s unoccupied adsorptive sites and adsorbate molecules in the liquid phase.
The chemical bond formation between adsorbent and adsorbate is the rate-limiting step for
pseudo-second-order.

These models are supported by the mathematical equations given in Table 3. To test the
compatibility of the models with the experimental adsorption data acquired, the coefficients
of determination (R2) and parameters of the kinetic models were determined according to
Table 3. The pseudo-first-order model (Figure S2c, Electronic Supplementary Information,
ESI) gave a large difference between the theoretical (1.346 mg/g) and experimental value
(9.804 mg/g) of Qt (adsorption capacity at the given time) (Table 3). In addition, pseudo-
first-order gave the R2 value at 0.91 for its linear plot and the rate constant, K1, value of
0.05089/min. These experimental results suggest the unsuitability of the pseudo-first-order
model to the time-dependent MB adsorption data.
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Table 3. Kinetics parameter for adsorption of MB dye onto rGO-BC@MnFe2O4.

Kinetics Mathematical Equation Parameters

Results
Experimental Adsorption

Capacity,
Qt, exp = 9.804 mg/g

Pseudo-first-order log(Qe − Qt) = logQe −
k1

2.303
t

Pseudo-first-order constant,
k1 (1/min) 0.051

Pseudo-first-order adsorption
capacity at time t,

Qt, cal (mg/g)
1.348

Regression coefficient, R2 0.916

Pseudo-second-
order

t
Qt

=
1
h
+

t
Qe

Pseudo-second-order constant,
k2

0.138

Pseudo-second-order adsorption
capacity at time t,

Qt, cal mg/g
9.940

Regression coefficient, R2 0.999

Weber–Morris model

First (red) line, Kd1 1.893
Qt = kipdt0.5 + C First (red) line, C1 0.436

Second (blue) line, K2 0.107
Second (blue) line, C2 9.175

For the pseudo-second-order model (Figure 9b), the R2 value was found to be close to
unity (0.99) along with the k2 value = 0.138 (g/mg/min). In addition, the theoretical value
of Qt obtained from the pseudo-second-order shows good agreement with the value of
experimental Qt (Table 3). These results indicate that the pseudo-second-order model is
well suited for the present MB adsorption study. Better fitting of the pseudo-second-order
model suggests operation of the present adsorption process via chemisorption [68].

The time-dependent MB adsorption data were further verified by using Weber–Morris
kinetic model to demonstrate the rate-determining (slow) step [69]. The existing Weber–
Morris plot (Figure 9c) that does not pass through the origin confirms that the present MB
adsorption process was multi-step. Furthermore, two straight lines indicate a two-step
adsorption process (red line: 0–30 min and blue line: 45–120 min). Actually, in this model,
there is a confluence of two plots, film diffusion (first line) and intraparticle diffusion
(second line), and the determination of parameters of these plots (Kd1, C1 for film diffusion
and Kd2, C2 for intraparticle diffusion) gives information about the actual rate-determining
step. The intercept value of the line is directly proportional to the boundary thickness,
while it is inversely proportional to the adsorption rate. Therefore, the smaller slope (kd)
and larger line intercept reflect the rate-determining step. As for the present study, the two
lines {first (red) line for film diffusion and second (blue) line for intraparticle diffusion} can
be seen in the Weber–Morris plot, in which the value of intercept (C2) was found to be more
significant for the second line (Table 3), which reflects that the MB adsorption rate in the
current adsorption process was governed by particle diffusion. A similar observation was
reported by Elkady et al. [69].

In summary, the present MB adsorption process follows pseudo-second-order kinetics
combined with intraparticle diffusion, suggesting that the MB adsorption process operates
via chemisorption and is limited by intraparticle diffusion. The possible mechanisms
suggested by the FTIR spectrum of the MB-loaded NHC (Figure 1b) were electrostatic
interactions and non-electrostatic interaction, as summarized in Section 2.1.1 [65].

2.2.4. Regeneration and Reutilization

Figure 10a shows that, after chemical regeneration and reusing the NHC for several
cycles, the NHC exhibits very good removal efficiency for the first two cycles and then
abruptly drops in the third cycle. By the fifth cycle, removal efficiency was reduced to
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approximately 20%. Hence, the current absorbent holds up better to two cycles after
chemical treatment.
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Figure 10b reflects thermal regeneration and reusability of exhausted NHC for MB
adsorption. The results show that NHC maintains a very good removal efficiency for
each cycle, with a slight decrease in the removal efficiency at each temperature. It can be
further seen from Figure 10b that the removal efficiency of the regenerated NHC increases
with the increase of the heating temperature. With the fifth reusable cycle, the removal
efficiencies of NHC for MB dye were recorded as 63, 69, and 73% at 200, 400, and 600 ◦C,
respectively. The decomposition of MB dye on the surface of NHC may be the reason
for the increase of removal efficiency with heating temperature. The adsorption sites (or
pores) are filled upon adsorption of MB, and after heating, the adsorbed MB decomposed to
carbon content. The decomposition of the MB increases with increasing temperature, and
at higher temperatures the carbon content evaporates, and then fresh adsorption sites (or
pores) are responsible to restore the adsorption efficiency of thermally treated NHC [70–72].
This result suggests the NHC to be a better adsorbent from an economic point of view.

2.2.5. Comparative Analysis

Various functional groups were found on the surface of developed NHC, and the
experimental procedures and regeneration results proved that the present NHC is a better
adsorbent for MB dye. However, for any adsorbent to be of practical importance, it is
necessary to compare its adsorption capacity with other existing adsorbents. In particular,
the adsorption capacity depends on various experimental conditions for the adsorbent
such as temperature, pH, adsorbent dosage, contact time, and dye concentration. In
these experimental conditions, the comparative study of adsorbents does not prove to be
very meaningful, but the bias remains. In these experimental conditions, to reduce this
biasness, a parameter called partition coefficient (PC) was introduced, which proved to be
quite meaningful [73].

In earlier studies, the PC was studied and it was reported that PC gave the less biased
and real capacity performance of any adsorbent. Therefore, for the present study also, the
PC was derived to estimate the actual performance of NHC under different conditions
(Table 4). The PC value was derived by using Equation as given below [73].

PC = Adsorption capacity/Final concentration. (3)

PC = Adsorption capacity/initial concentration × removal rate. (4)
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Table 4. Comparative results of MB adsorption studies with various adsorbents *. Adapted with permission from Abdulla et al. [34], copyright (2020) Elsevier
(License No. 5575340013674).

Order Adsorbent Adsorbent
Dose (g/L)

Contact
Time (min)

Solution
pH

Temperature
(◦C)

Initial
Concentration

(mg/L)

Maximum
(Langmuir)
Adsorption

Capacity (mg/g)

Equilibrium
Adsorption

Capacity (mg/g)

Removal
Efficiency

(%)
PC (L/g) Ref.

1. Ag-
Ag2O/ZrO2/GL 2.0 30.0 7.0 27.0 10.0 43.9 4.9 99.0 50.6 [34]

2. Acid-washed black
cumin seeds 1.0 60.0 7.0 27.0 10.0 73.5 9.8 98.1 51.6 [59]

3. MnFe2O4/BC 3.0 45.0 7.0 27.0 10.0 10.1 3.3 99.4 52.6 [74]
4. CuO 2.5 30.0 6.0 22.0 25.0 64.0 5.5 54.7 0.5 [75]

5.
Haloxylon

recurvum plant
stems

4.0 40.0 8.0 25.0 20.0 22.9 4.8 96.4 6.7 [76]

6. Solanum tuberosum
plant leaves 2.0 24.0 7.0 30.0 10.0 52.6 3.9 79.0 1.9 [77]

7. Fe2O3-SnO2/BC 2.0 90.0 7.0 27.0 10.0 58.8 4.9 97.9 23.9 [78]

8. MnFe2O4/rGO-BC 1.0 45.0 7.0 27.0 10.0 74.6 9.9 98.6 72.0 This
study

* We have extracted the data from previous study [34], therefore, we obtained the copyright permission from the publisher.
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It can be estimated from Table 4 that the value of PC for the current study (i.e., 72.0 L/g)
is much higher than those of several other adsorbents. The maximum adsorption capacity
and equilibrium adsorption capacity value of the present NHC adsorbent is also higher than
other adsorbents, although the dosage of the present adsorbent was significantly lower than
that of others, which reflects the essence of the present adsorbent. Compared to the acid-
washed black cumin seeds, the present NHC adsorbent provided almost similar maximum
adsorption capacity and equilibrium adsorption capacity with the same adsorbent dosage,
however, the PC value for the present NHC adsorbent was higher than that of the acid-
washed black cumin seeds. The contact time was also reported to be longer for acid-
washed black cumin seeds than for the NHC adsorbent. So, it can be said that the present
adsorbent performed better than other adsorbents which may prove to be a better option
for wastewater treatment in the future.

3. Experimental
3.1. Materials and Methods

The chemicals used in the present study are highly pure and of analytical grade.
The black cumin seeds (Nigella sativa) were purchased from a local market in New Delhi,
India. All chemicals, including Manganous sulfate monohydrate (MnSO4·H2O, 99%),
Ferric chloride (Anhydrous) (FeCl3, 96%), Graphite flakes (99.9%), Hydrochloric acid (HCl,
37%), Sodium hydroxide (NaOH, 97%), Hydrogen peroxide (H2O2, 30%), and Methylene
blue (C16H18ClN3S, 97%) were purchased from Sigma Aldrich are highly pure and of
analytical grade.

3.2. Synthesis of Reduced Graphene Oxide (rGO)

The rGO from graphite powder was prepared by Hummers’ process, similar to that
reported in our previous study [29]. In a typical batch synthesis, the desired amount of
graphite flakes (2.0 g) and sodium nitrate (1.0 g) in 50 mL of concentrated H2SO4 (98%) was
energetically stirred for half an hour in an ice bath to avoid the suspension temperature
being lower than 0 ◦C. After that, 6.0 g of KMnO4 was added slowly to the above suspension.
Then, the ice bath was removed, and the mixture was stirred at 10 ◦C for 24 h. The reaction
mixture was then cooled and converted into a dark green colored paste. To this, 300 mL of
cooled deionized water was added, and the suspension temperature was quickly increased
to 90 ◦C, which was maintained by an external heating system for 5–10 min. Bubbles were
then obtained in the reaction mixture. The reaction mixture was stirred for an additional
3 h. The reaction was terminated by adding cooled deionized water, 60 mL of 30% H2O2
solution, and 200 mL of 10% HCl solution, and thus, suspension color changed to yellow.
Afterward, the solid particles were centrifuged with 10% HCl solution and deionized water.
GO particles were found after drying under a vacuum at 60 ◦C for 24 h. This obtained GO
sample was then exfoliated to rGO by drying the sample at 250 ◦C for 2 h. The prepared
sample was characterized as rGO.

3.3. Preparation of NHC

Black Cumin (BC) seeds were cleaned with double distilled water and dried overnight
at 60 ◦C in the oven. Then, fine powder was obtained by using the grinding machine. The
rGO was synthesized by the above-reported method. The preparation of MnFe2O4/rGO-
BC was carried out via a simple co-precipitation process. Briefly, 0.5 g of prepared rGO was
dispersed into 100 mL of deionized water using ultrasonication. Another beaker had also
been used for the dispersion of black cumin seed powder (0.5 g) in 100 mL of deionized
water under ultrasonication. After that, both solutions were mixed and stirred for 1 h
on a magnetic stirrer. After that, 1.622 g of FeCl3·6H2O and 0.98 g of MnSO4·H2O were
dissolved in deionized water (100 mL), separately, and then mixed with the above solution.
The reaction mixture was continuously agitated at 80 ◦C for half an hour. After that, a
solution of 8 M NaOH was added to increase the pH of the mixture to 10.5. The mixture
was sustained for 15 min and cooled down at room temperature. The black product was
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isolated by centrifugation for 5 min at 5000 rpm and washed with acetone and deionized
water to eliminate unreacted content. The particles of the nanohybrid composite (NHC)
were then dried at 60 ◦C for 48 h to obtain a fine powder. We have also described a similar
synthesis scheme to our earlier study in which MnO2 was incorporated on the integrated
surface of rGO and BC seeds [29]. Some other previous literature also reported similar
preparation patterns for various NMs [17,30–33].

3.4. Preparation of Adsorbate Stock Solution

The MB dye stock solution was made by dissolving 1000 mg of MB dye in 1000 mL
of distilled water. Using the rule of dilution, the produced solution was diluted to meet
the specifications.

3.5. Characterization and Instrumentations

Various spectroscopic and microscopic techniques were used to characterize the pre-
pared sample. The instruments used for characterization analysis are given in the Electronic
Supplementary Information (ESI).

3.6. Adsorption Experiments

The adsorption experiments in a batch piece of equipment were carried out. Different
process parameters such as contact times (15–120 min), adsorbent amount (5–30 mg/L),
initial solution pHs (2.0–10.0), initial concentrations (10–45 mg/L), and temperatures
(30–50 ◦C) were optimized in this study. During these experiments, the concentrations
of pollutants in solution before and after adsorption experiments were determined spec-
trophotometrically using a UV-Vis spectrophotometer.

For this spectrophotometric measurement, 3.5 mL of the MB sample was taken in
the Type1 UV10 (square) quartz cuvette of 10 mm path length containing 4.5 mL solution.
These concentrations were used to determine the adsorption performance of NHC in the
form of adsorption capacity and removal efficiency as (Equations (1) and (2)), respectively:

Adsorption capacity Qe = (Co − Ce)
V
m

, (5)

Removal efficiency (%) =

(
Co − Ce

Co

)
100. (6)

Here, the Qe (mg/g): the equilibrium adsorption capacity, the Co (mg/L): the initial
concentration, the Ce (mg/L): the equilibrium concentration, the V (L): the volume of dye
solution, and the m (g): mass of adsorbent.

The MB adsorption data were also verified by the adsorption kinetics, thermodynam-
ics, and isotherm models at given experimental conditions. The formulations included in
these models are detailed in their respective tables.

3.7. Regeneration and Reutilization

Using adsorbent in multiple cycles dramatically reduces the cost of the adsorption
process and increases the adsorbent’s overall efficiency. The adsorbent was regenerated
and reused in several cycles to test its efficiency. Two processes, chemical and thermal, were
used for adsorption regeneration in this study under the optimum obtained conditions. For
regeneration procedures (chemical and thermal), 2 g of NHC was mixed with 1000 mL of
MB dye solution at 10 mg/L up to saturation. The MB-loaded NHC was then separated
from the dye solution and dried in a hot air oven at 90 ◦C for 24 h.

For the chemical treatment, the 1 g of MB-loaded NHC was added to 100 mL of
0.5 mol HCl and stirred for 8 h, after which it was separated and washed several times with
deionized water so that the pH became neutral, and then it was dried at 90 ◦C for 24 h.

For thermal treatment, 1 g MB-loaded adsorbent was heated at three temperatures,
200, 400, and 600 ◦C, in muffle furnace (under the limited oxygen environment) for 2 h. The
thermally treated sample was cooled overnight at room temperature [70–72]. After that,
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the treated NHC was thoroughly washed with deionized water to eliminate the carbonized
material left over the NHC, and then dried in a hot air oven at 90 ◦C for further use.

Under optimal conditions, the regenerated (thermally and chemically) NHCs were used
for the next adsorption cycle. This adsorption–desorption cyclic process was carried out for
five cycles. The efficiency of the reutilized adsorbent was measured spectrophotometrically.

4. Conclusions

In this study, the manganese ferrite particles incorporated the functional groups con-
taining the surface of reduced graphene oxide–black cumin seeds. This newly reported
nanohybrid composite was synthesized by a simple co-precipitation method and charac-
terized through various analyses such as FTIR, X-Ray Diffraction, SEM-EDX, TEM, N2
adsorption, zero-point charge, and thermal analysis. The synthesized composite was in-
vestigated for its adsorption performance in a batch manner. The nanohybrid composite
has shown multilayer adsorption for methylene blue dye, which was confirmed by the
fitting of the Freundlich isotherm. The higher Langmuir adsorption capacity was calcu-
lated as 74.627 mg/g at 27 ◦C. Pseudo-second-order kinetics was suggested for this study,
which suggested the interaction between the active sites of the composite surface and dye
molecules. The interaction between the nanohybrid composite and methylene blue was also
confirmed from the FTIR spectrum of the methylene blue-loaded nanohybrid composite.
This study emphasizes that natural plant material, which is inexpensive, can be used as
an alternative to activated carbon. Due to the cellulose carbon surface of natural plant
materials, they can be easily modified, and affordable composites can be developed. These
composite materials can be beneficial for adsorption applications due to having cellulose
surfaces. Therefore, the present nanohybrid composite may be strategically advantageous
for removing pollutants from water. A study of this adsorbent’s antibiofilm activity should
be conducted soon, as well as an investigation of its use in real water systems. It is also
necessary to determine the efficiency of this adsorbent for adsorbing other pollutants to
develop better technology.
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oxide, rGO and black cumin seeds, BC; Figure S2: Results of (a) adsorbent dose effect, (b) pH effect,
(c) pseudo first order kinetic for MB adsorption on to the Mn-Fe2O4/rGO-BC NHC; Table S1: Results
of thermodynamic parameters at various temperatures
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