
Citation: Yan, X.; Li, J.; Wu, D. The

Role of Short-Chain Fatty Acids in

Acute Pancreatitis. Molecules 2023, 28,

4985. https://doi.org/10.3390/

molecules28134985

Academic Editors: Ju-Hye Yang,

Kwang-Il Park and George Grant

Received: 28 May 2023

Revised: 17 June 2023

Accepted: 21 June 2023

Published: 25 June 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

molecules

Review

The Role of Short-Chain Fatty Acids in Acute Pancreatitis
Xiaxiao Yan 1,2,† , Jianing Li 1,† and Dong Wu 1,3,*

1 Department of Gastroenterology, Peking Union Medical College Hospital, Chinese Academy of Medical
Sciences and Peking Union Medical College, Beijing 100730, China; yanxiaxiao2@163.com (X.Y.);
lijianing@263.net (J.L.)

2 Eight-Year Medical Doctor Program, Chinese Academy of Medical Sciences and Peking Union Medical
College, Beijing 100730, China

3 Clinical Epidemiology Unit, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences
and Peking Union Medical College, Beijing 100730, China

* Correspondence: wudong@pumch.cn
† These authors contributed equally to this work.

Abstract: Acute pancreatitis (AP) is a digestive emergency and can develop into a systematic illness.
The role of the gut in the progression and deterioration of AP has drawn much attention from
researchers, and areas of interest include dysbiosis of the intestinal flora, weakened intestinal barrier
function, and bacterial and endotoxin translocation. Short-chain fatty acids (SCFAs), as one of the
metabolites of gut microbiota, have been proven to be depleted in AP patients. SCFAs help restore
gut homeostasis by rebuilding gut flora, stabilizing the intestinal epithelial barrier, and regulating
inflammation. SCFAs can also suppress systematic inflammatory responses, improve the injured
pancreas, and prevent and protect other organ dysfunctions. Based on multiple beneficial effects,
increasing SCFAs is an essential idea of gut protective treatment in AP. Specific strategies include
the direct use of butyrate or indirect supplementation through fiber, pre/pro/synbiotics, or fecal
microbiota transplantation as a promising adjective therapy to enteral nutrition.
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1. Introduction

Acute pancreatitis (AP) is a common digestive emergency and can develop into a
systematic illness with a higher risk of death. According to the complications present,
AP can be classified as mild (MAP), moderately severe (MSAP), or severe (SAP). About
one-fifth of the cases will develop into SAP, which makes individuals prone to combined
multi-organ failure (MOF) [1]. Organ dysfunction usually occurs in the early stage, and
infection of pancreatic or peripancreatic necrotic tissue is the leading cause of death in
the late stage. Furthermore, gut dysfunction plays a vital role in the deterioration of
AP, which is associated with infectious complications and is described as the “motor of
MOF” [2]. Recent studies have found that the progression of SAP is associated with
early systemic inflammatory response syndrome (SIRS), dysbiosis of the intestinal flora,
weakened intestinal barrier function, and bacterial and endotoxin translocation.

In AP patients, there are changes in intestinal flora diversity and composition. The
increase of pathogenic bacteria and the reduction of probiotics have been detected, as well
as decreased levels of short-chain fatty acids (SCFAs). SCFAs, mainly including acetate,
propionate, and butyrate, are produced by microbial fermentation of undigested dietary
carbohydrates in the intestine. There is a biological gradient for SCFAs from the gut lumen
to the periphery [3]. As one of the intestinal flora’s metabolites, SCFAs directly provide
energy for intestinal mucosal epithelial cells. The remaining part can be absorbed into the
bloodstream to provide energy to other cells in the body [4,5]. SCFAs participate in glucose
and lipid metabolism as substrates after transporting to hepatocytes and adipocytes and
regulate appetite by interplaying with neurons [6,7]. SCFAs are also important signaling
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molecules involved in stabilizing the intestinal barrier and promoting intestinal immunity.
Specifically, SCFAs protect the intestinal barrier by regulating the expression and distri-
bution of tight junction proteins and promoting the secretion of mucin on the intestinal
surface [8,9]. Moreover, SCFAs suppress the production of pro-inflammatory cytokines and
promote immune cell recruitment, thus being regarded as a potential bioactive molecule
for treating intestinal diseases [10,11]. There are two major functional pathways of SCFAs:
the inhibition of histone deacetylase (HDAC) to exert epigenetic effects and the activation
of G protein-coupled receptors (GPRs) to transfer signals [12]. Microbiota alterations and
the decreased production of SCFAs are involved in the increase of intestinal permeability,
leading to intestinal bacterial translocation, pancreatic tissue necrosis and infection, and
even sepsis and MODS [13].

However, there is still a lack of specific evaluation and treatment methods for gut
dysfunction [14]. No quantitative method exists to detect it clinically except for doctors’
observations. For example, the loss of intestinal peristalsis indicates impaired intestinal
function. One of the most well-studied interventions is early enteral nutrition. It can
mitigate mortality, organ failure, sepsis, and necrosis infection by replenishing caloric
losses, increasing blood flow to preserve the bowel mucosa, and stimulating intestinal
motility [15,16]. Other gut protection strategies include restoring intestinal dynamics,
selective decontamination of the digestive tract, and regulating intestinal flora by probiotics.
SCFAs will be another important intervention target for AP in the future. Here, we review
the changes in microbiota and SCFAs in AP, their possible mechanisms, and the potential
therapeutic value of SCFAs, collectively aiming to provide a new theoretical basis for
intestinal protective therapy of AP.

2. Alteration of Gut Microecology in AP

The role of dysbiosis in pancreatic diseases has attracted much attention with the rapid
evolvement of microbiota research. Compared with healthy controls, AP is accompanied
by intestinal microecological dysbiosis, although in the early stages of the disease course.
Multiple studies found that the diversity of intestinal flora decreased either in AP patients
or mice models (Table 1). The increased pathogenic bacteria and decreased probiotics
are prominent features. At the phylum level, increased Bacteroidetes and Proteobacte-
ria were found in AP patients with fewer Firmicutes and Actinobacteria. At the genus
level, the main characteristic alterations were increased Enterobacteriaceae, Enterococcus, and
Escherichia-Shigella, with decreased Bifidobacterium [17,18]. The main secretory products of
Bifidobacterium are acetic acid and lactic acid, which can lower the intestinal pH and inhibit
the growth of harmful intestinal bacteria. Reduced Bifidobacterium are also recognized
cellulose degraders that promote the fermentation of dietary fiber and produce SCFAs.
Stratified analysis of AP patients found that the microbiota alteration differed with the
disease severity. Among these alterations, the decrease of SCFA-producing bacteria affected
the integrity of the intestinal barrier and worsened the severity of AP. Zhu et al. reported
that SAP was characterized by reduced commensal bacteria, such as Bacteroides, Allopre-
votella, and Blautia. Their linear discrimination analysis coupled with effect size (LEfSe)
analysis revealed a significant increase of Acinetobacter, Stenotrophomonas, and Geobacil-
lus and a substantial reduction of Bacteroides, Alloprevotella, Blautia, and Gemella in SAP
than mild acute pancreatitis (MAP) and moderately severe acute pancreatitis (MSAP) [18].
Previous studies have shown that these reduced organisms could facilitate fermentation
and produce SCFAs [19–22]. Yu et al. found more Bacteroides, Escherichis-Shigella, and
Enterococcus in MAP, MSAP, and SAP, respectively. Moreover, Eubacterium hallii, one of the
butyrate-producing bacteria, was the most decreased strain in MASP and SAP patients [23].

Recently, investigations of microbial composition have extended to the pancreas,
which was once thought to be a sterile organ. Several studies supported the fact that
microorganisms inhabit the pancreas in a nonpathological state, namely inherent pancreatic
microbiota [24,25]. However, there has not been a specific definition of normal pancreatic
microbiota based on the limited research. Potential sources and routes of pancreatic bacteria
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include the esophagus, stomach, duodenum, or biliary tract microbiota via the pancreatic
duct or translocation from the lower gastrointestinal tract through the portal circulation or
mesenteric lymph nodes [14]. Pancreatic infection is a significant cause of complications
and death in patients with acute necrotizing pancreatitis (ANP). About one-third of the
patients with pancreatic necrosis will develop infectious necrosis [1], but it is more common
later in the clinical course. Most infections are single intestinal microbial infections, such
as Escherichia coli, Pseudomonas, Klebsiella, and Enterococcus, indicating the translocation
of gut bacteria [26,27]. An ANP mice model study evaluated the spatial (lumen versus
mucosa) and regional composition and function of the microbiota from the duodenum,
ileum, caecum, colon, pancreas, and blood using 16S rRNA gene amplicon sequencing.
Results showed that the distal gut microbiota was significantly impacted, and the duodenal
microbiota might also play a role in bacterial translation and secondary infections [28].

Table 1. Gut microbiota dysbiosis in acute pancreatitis compared with healthy controls.

Studies Subjects Sample Phylum Genus Species

Tian 2015 [29] 76 AP and 32 HC Fecal
Enterobacteriaceae ↑

Enterococcus ↑
Bifidobacterium ↓

Zhang 2018 [17] 45 AP and 44 HC Fecal

Bacteroidetes ↑
Proteobacteria ↑

Firmicutes ↓
Actinobacteria ↓

Zhu 2019 [18] 130 AP and 35 HC Fecal Proteobacteria ↑
Bacteroidetes ↓

Escherichia/Shigella ↑
Enterococcus ↑

An unknown genus in
family of

Enterobacteriaceae ↑
Prevotella_9 ↓

Faecalibacterium ↓
Blautia ↓

Lachnospiraceae ↓
Bifidobacterium ↓

Yu 2020 [23] 60 AP and 20 HC Rectal swab

Finegoldia ↑
Anaerococcus ↑
Enterococcus ↑

Eubacterium hallii ↓

Blautia ↓
Finegoldia ↑

van den Berg 2021 [30] 35 AP and 15 HC Fecal Proteobacteria ↑
Escherichia/Shigella ↑

Streptococcus ↑
Butyrate producers ↓ 1

AP, acute pancreatitis; HC, health controls. The arrows indicate the alteration of gut microbiota in AP compared
with healthy controls. 1 A panel of butyrate producers based on genus taxonomy was constructed based on
butyrate-producing taxa (Alistipes, Anaerostipes, Butyricicoccus, Butyricimonas, Butyrivibrio-010, Coprococcus_1, Copro-
coccus_2, Coprococcus_3, Eubacterium, Faecalibacterium, Flavonifractor, Odoribacter, Oscillibacter, Pseudoflavonifractor,
Roseburia, Ruminococcus_2, Subdoligranulum).

3. Function of SCFAs in AP
3.1. Mitigation of Intestinal Injury

Gut barrier dysfunction is present in three of five patients with AP, which is associated
with poor clinical outcomes [31]. Considering the site of SCFAs production, most studies
on the mechanism of SCFAs focused on intestinal homeostasis [32]. Intestinal homeostasis
is an organic and dynamic balancing state involving the gut microbiota, the intestinal
epithelial barrier, and the mucosal immune barrier. The protective role of SCFAs can
also be summarized in these three aspects. SCFAs can rebuild the disordered intestinal
flora. After butyrate supplementation, the abundance of SCFA-producing Alloprevotella
and Muribaculaceae increased [33,34]. SCFAs also act directly on the intestinal epithelium
to protect the integrity of the intestinal barrier, which can be observed at the histological
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level. Moreover, SCFAs are a critical carbon source for colonic enterocytes [35]. SAP
rats in the butyrate treatment group showed mitigated mucosa lesions and decreased
epithelial apoptosis. Butyrate protected the intestinal barrier by upregulating tight junction
proteins, such as zonula occludens-1 (ZO-1), claudin, and occludin [33,34]. In addition
to the epithelial barrier repairment, butyrate also well-restored mucin-secreting goblet
cells, thus protecting the damaged mucous membrane [33]. For the immunity barrier,
pre-treatment with sodium butyrate ameliorated intestinal inflammation and injury by
reducing intestinal pro-inflammatory cytokines, including tumor necrosis factor (TNF)-α
and interleukin (IL)-6. Butyrate also increased the expression of Foxp3 at both mRNA
and protein levels, detected in immunofluorescence staining and flow cytometry analysis.
These results supported the elevated percentage of regulatory T cells (CD4+, CD25+,
Foxp3+), which could maintain intestinal homeostasis by preventing inappropriate innate
and adaptive immune responses [36–38].

SAP patients can develop intraabdominal hypertension (IAH), which can progress to
abdominal compartment syndrome (ACS) with a high mortality rate of 66.7%. These se-
vere abdominal complications may correlate with pancreatic necrosis and intra-abdominal
infection, likely resulting from bacterial translocation [39–41]. Clostridium butyricum is an
anaerobic bacterium that can ferment dietary fibers to produce SCFAs. SAP + IAH rats
who received oral C. butyricum or butyrate had reduced pathological severity scores of
intestinal injury and plasma levels of inflammatory markers. Compared with the non-
treated group, the expression of ZO-1, claudin-1, and occludin increased, and claudin-2,
matrix metallopeptidases 9 (MMP9), and TNF-a lowered in the treatment group, indicating
repairment of the intestinal mucosal barrier. The treatment also rebuilt the intestinal flora,
significantly increasing richness and diversity, growing probiotics (Lactobacillus, Coprococcus,
and Allobaculum), and decreasing pathogenic species (Bacteroides, Escherichia, Helicobacter,
and Desulfovibrio) [42]. These multiple reversed pathological responses suggested butyrate
supplementation as a promising therapeutic strategy to restore intestinal function. Another
study further confirmed the protective effect of C. butyricum or butyrate via downregu-
lating MMP9 expression [43]. MMP9 was upregulated in intestinal tissues of the SAP
model according to existing studies [44,45], and is one of the members of MMPs that can
degrade and remodel extracellular matrix. MMPs are also involved in the inflammation
process and intestinal barrier injury. For example, MMPs can increase endothelial cell
permeability by disrupting tight junction proteins [46]. Additionally, Kocael et al. reported
that MMP9 overexpression also facilitated the loss of intestinal villous in the mesenteric
ischemia-reperfusion injury model [44]. Therefore, MMP9 is a vital molecule mediating
intestinal injury and a potential target of SCFA supplementation.

3.2. Reduction of Pancreas Injury

There has been evidence for the direct interaction between the pancreas and SCFAs
and the existence of the gut–pancreatic axis [47]. Cathelicidin-related antimicrobial peptide
(CRAMP) production by insulin-secreting beta-cells is controlled by SCFAs produced by
the gut microbiota. However, local functions of SCFAs in the pancreatic tissue of AP are
limitedly studied. In the AP mice model, butyrate mitigated the severity of AP in multiple
ways, reflected in both the pancreas and the gut. A study provided new insights into
tissue-specific mechanisms of butyrate. Pre-treatment with sodium butyrate decreased
the infiltration of macrophages and neutrophils in the pancreas and reduced levels of
intestinal pro-inflammation cytokines. Sodium butyrate acted as an HDAC1 inhibitor in
the pancreas or as a GPR109A agonist in the colon to suppress the activation of NLRP3 in-
flammasome [48]. Lei et al. also reported that, in the heparanase-exacerbated AP model,
the supplementation of Parabacteroides or sodium acetate could reduce neutrophils in
blood and infiltration in the pancreas [49]. Similarly, in another study, sodium butyrate
supplementation significantly reduced the proportion of neutrophils, macrophages, and
M2-type macrophages in the pancreatic tissue from AP mice and inhibited IL-1b, CXCL1,
and TNF-a levels [34].



Molecules 2023, 28, 4985 5 of 14

3.3. Prevention and Protection of Other Organ Dysfunctions

In the early phase of AP, inflammation of the pancreas activates cytokine cascades,
which are clinically manifested as SIRS [50]. Avoidance of SIRS or timely termination of
SIRS is the key to early control of AP. Fecal concentrations of butyrate, propionate, and
acetate in patients with severe SIRS on admission decreased significantly compared with
those in healthy volunteers. They remained low throughout the six weeks of intensive
care unit (ICU) stay. In patients with gastrointestinal complications, including enteritis
and dysmotility, the level of SCFAs was even lower [51]. Zhang et al. found that sodium
butyrate treatment could inhibit the nuclear factor-κB (NF-κB) signaling pathway and lower
the expression of High-mobility group box-1 (HMGB1), which is a late cytokine mediator
stimulating the release of pro-inflammatory cytokines. The SAP model had reduced patho-
logical lesions; reduced serum levels of HMGB1, TNF-a, and IL-6; as well as diminished
HMGB1 mRNA levels and NF-κB activity [52]. Another study that used the SAP model
also evaluated the plasma levels of several markers. The administration of Clostridium
butyricum or butyrate reduced pro-inflammatory cytokines, including TNF-a, IL-6, IL-1β,
and IL-12 [42]. What is more, SCFAs mitigated the inflammation in the lipopolysaccha-
ride (LPS)-induced septic shock model by upregulating the anti-inflammatory cytokine
IL-10 [53].

Patients with persistent SIRS are at risk for one or more organ failures, the leading
cause of early death. Three organ systems should be assessed to define organ failure,
including respiratory, cardiovascular, and renal systems. Organ failure may be transient
with remission within 48 h in MSAP or persistent for more than 48 h in SAP [50]. SCFAs
prevent or protect against organ failures by restoring the intestinal barrier and suppressing
systematic inflammatory responses. Some changes mediated by SCFAs in specifically
targeted organs, such as the lung and kidney, are also observed.

One-third of patients presenting with severe AP develop acute lung injury (ALI) and
acute respiratory distress syndrome (ARDS). The primary manifestation is hypoxemia,
which can even develop into acute respiratory distress syndrome (ARDS). The lung injury
is characterized by increased pulmonary microvasculature permeability and subsequent
protein-rich exudate leakage into the alveolar spaces, forming the hyaline membrane [54,55].
The concept of the gut–lung axis has been proposed based on the bidirectional crosstalk be-
tween these two organs [56]. SCFAs provide one of these crosstalk pathways. Human lung
tissue contained variable acetate and propionate levels, likely originating from the gut and
transiting to the lung. SCFA receptors, namely free fatty acid receptor (FFAR) 2 and FFAR3,
were expressed in vitro in alveolar macrophages (AM) and alveolar type 2 epithelial (AT2)
cells, and exposure to LPS regulated this expression. This finding supported the direct
effects of SCFAs on the lung [57]. Specifically, gut microbiota-produced LPS and SCFAs
could strongly influence the course of lung injury and infections [58,59]. SCFAs significantly
protected animals from LPS-induced ALI, as evidenced by suppressed HMGB1 release
and NF-κB activation, decreased production of pro-inflammatory cytokines and reactive
oxygen species, declined immune cell counting, and alleviated LPS-induced microvascular
permeability and lung histological damage [60–62]. In the hypoxic model, butyrate treat-
ment decreased the accumulation of alveolar and interstitial lung macrophages, prevented
hypoxia-induced pulmonary vascular edema and vascular leakage, and upregulated the ex-
pression of tight junctions in lung microvascular endothelial cells [63]. Tian et al. similarly
found that enrichment of propionate-producing gut bacteria (especially Lachnospiraceae)
was related to reduced lung inflammation following lung ischemia-reperfusion injury
in vivo [58]. Compared with AP patients without ARDS, AP with ARDS had higher abun-
dances of the Proteobacteria phylum, the Enterobacteriaceae family, Escherichia-Shigella, and
the Klebsiella pneumoniae genus but lower abundances of the Bifidobacterium genus [64].
Thus, gut microbiota and SCFAs may play essential roles in pancreatitis-associated lung
injury through the above mechanisms, although no studies used the AP model.

Acute kidney injury (AKI) is another frequent complication of SAP. A comprehensive,
retrospective, observational study reported an overall AKI prevalence of 7.9% among
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hospitalized patients with AP [65]. The pathogenesis may include increased vascular
permeability, hypovolemia, inflammation, vasoconstriction, intravascular coagulation, and
direct nephrotoxic effects [66]. Predictors for a higher likelihood of AKI include higher
age, exhibiting biological male sex, a more significant number of co-morbidities, and
electrolyte imbalance [65]. Andrade-Oliveira et al. observed that therapy with the three
main SCFAs (acetate, propionate, and butyrate) improved renal dysfunction. In specific,
SCFAs treatment reduced pro-inflammatory cytokines and chemokines in kidney tissue
and serum, with low levels of toll-like receptor 4 (TLR4) mRNA and lesser activation of
the NF-κB pathway. SCFA treatment also diminished apoptotic cells in kidney tissue, but
increased the proliferation of kidney epithelial cells, thus promoting the restoration of
injured tissue. Mice treated with acetate-producing bacteria also achieved better outcomes
after AKI, having increased acetate levels in feces and plasma, low serum levels of creatinine
and urea, and low serum levels of cytokines and chemokines [67]. Another study showed
that a high-fiber diet had similar protective effects for AKI [68]. Zhang et al. evaluated
other organs in the SAP model after sodium butyrate treatment and found alleviated liver
and renal tissue histological injuries and improved hepatic and renal function reflected in
decreased alanine aminotransferase and creatine levels [52].

The late phase of AP is characterized by the persistence of systematic signs of in-
flammation or local complications, with an increased risk of infection. Up to 20% of AP
patients develop extra-pancreatic infections, such as bloodstream infections, pneumonia,
and urinary tract infections [69]. In a meta-analysis of studies performed in the ICU, there
was a significantly lower risk of infection in the patients who received early enteral nutri-
tion. Infectious complications occurred in 19% of the early nutritional group compared to
41% in the delayed group [70]. Considering that SCFAs can protect the intestinal barrier
and prevent bacteria translocation, SCFAs are a good choice to reduce the incidence of
systemic infectious complications of AP as a supplement to early enteral nutrition. The
above-mentioned possible mechanisms of SCFAs in AP are summarized in Figure 1.
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4. Treatment Potential of SCFAs in AP
4.1. Dietary Fiber Supplementation

Critically ill SAP patients treated with enteral nutrition and broad-spectrum antibiotics
often present with diarrhea, indicating intestinal dysfunction. Compared with healthy
volunteers, fecal microbiota mass and SCFAs were significantly lower in critically ill SAP
patients, indicating gut dysbiosis and suppression of colonic fermentation. After 2–5 week
fiber supplementation, there was a six-fold increase in fecal SCFAs and microbial counts of
specific butyrate producers, with the resolution of diarrhea [71,72]. In a prospective double-
blind randomized controlled trial (RCT) conducted by Karakan et al., nasojejunal enteral
nutrition with prebiotic fiber supplementation in SAP improved hospital stay, duration of
nutrition therapy, acute phase response, and overall complications compared to standard
enteral nutrition therapy [73]. Therefore, fiber supplementation may preserve gut function
in critically ill patients through increased SCFAs. It is an easy and safe improvement of
standard enteral nutrition. However, the efficacy of fiber supplementation may be related
to the abundance of SCFA-producing bacteria and intestinal motility.

4.2. Probiotics, Prebiotics, and Synbiotics

Due to the controversial evidence from clinical trials, pre/pro/synbiotics for AP have
not been positively accepted and recommended in guidelines. The main conclusions of
research on probiotics have undergone several changes in the last 20 years (Table 2). An
early small-scale RCT reported that specific lactobacillus and fiber supplements effectively
reduced pancreatic sepsis and the number of surgical interventions in AP [74]. Another
RCT suggested that early nasojejunal feeding with synbiotics (Lactobacilli preparations and
bioactive fibers) may prevent organ dysfunctions in the late phase of SAP [75]. However,
a Dutch study showed that for patients with predicted SAP, probiotic prophylaxis with a
combination of probiotic strains (Lactobacillus acidophilus, Lactobacillus casei, Lactobacillus
salivarius, Lactococcus lactis, Bifidobacterium bifidum, and Bifidobacterium lactis) did not reduce
the risk of infectious complications and was associated with an increased risk of mortal-
ity [76]. This study provided unexpected and exactly opposite results compared to previous
RCTs. This unfavorable result might be related to a high prevalence of bowel ischemia
in the treatment group. The authors provided a proposed mechanism that a high dose of
bacteria combined with enteral nutrition increased oxygen demand and/or local mucosal
effect. What is more, the higher AP severity, more types, higher dose and longer duration
of probiotic organisms, and more aggressive hypercaloric enteral feeding compared with
previous studies might also be influencing factors [77–80]. These conflicting results remind
us that the optimized selection, dose, timing, delivery, and patient population of probiotics
use are still pending further investigation. Subsequent trials demonstrated no increase
in mortality or morbidity, with fewer infectious complications, multi-organ dysfunction,
and decreased pro-inflammatory markers [81,82]. According to the pooled results of a sys-
tematic review including nine RCTs, pre/pro/synbiotics reduced the risk of organ failure
and length of hospital stay in patients with SAP. Still, no difference was observed for SIRS,
infected pancreatic necrosis, surgical intervention, septic morbidity, and mortality [83].

Prebiotic lactulose is a potent choice in treating AP patients suffering from gut failure.
A recent prospective randomized trial compared the efficacy of lactulose and rhubarb
in MSAP patients with intestinal dysfunction [84]. Lactulose had better performance in
decreasing the serum levels of cytokines and gut permeability index, enriching the potential
beneficial genus Bifidobacterium and inhibiting Escherichia-Shigella. Of note, the level of
SCFAs remarkably increased after treatment, with a higher amount in the lactulose group
than in the rhubarb group. In another study, Rohith et al. evaluated the efficacy of synbiotics
(containing Streptococcus faecalis T-110, Clostridium butyricum TO-A, Bacillus mesentricus TO-
A, and Lactobacillus sporogenes) in MSAP and SAP [85]. The results indicated that the value
of synbiotics was limited, which only lowered bacteremia and length of hospitalization, but
septic complications and mortality were not significantly different. Further studies must
address some crucial questions, including the selection of potential beneficiary patient
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populations, the formulation of pre/pro/synbiotics, the optimal administration timing,
and the treatment duration. Safety in particular requires attention when using live bacteria.

Table 2. Use of probiotics, prebiotics, and synbiotics in AP.

Studies Subjects Pre/Pro/Synbiotics Main Effect of Treatment Group

Oláh 2002 [74] 45 AP Live L. plantarum 299, together with a
substrate of oat fiber

Pancreatic sepsis ↓
Number of surgical interventions ↓

Oláh 2007 [75] 62 SAP

Four different lactobacilli preparations
and prebiotics containing four bioactive

fibers (inulin, beta-glucan, resistant
starch, and pectin)

Incidence SIRS and MOF ↓
Rate of late (over 48 h) organ failure ↓

Karakan 2007 [73] 30 SAP Standard enteral nutrition with soluble
and insoluble fibers

Hospital stay ↓
APACHE II, CRP, and CT store

normalization duration ↓
Overall complications ↓

Besselink 2008 [76] 298 predicted SAP

Lactobacillus acidophilus, Lactobacillus
casei, Lactobacillus salivarius, Lactococcus

lactis, Bifidobacterium bifidum, and
Bifidobacterium lactis

Risk of mortality ↑

Lata 2010 [86] 22 AP B. bifidum, B. infantis, L. acidophilus, L.
casei, L. salivarius, L. lactis Endotoxin levels ↓

Sharma 2011 [82] 50 AP

Lactobacillus acidophilus, Bifidobacterium
longus, Bifidobacterium bifidum, and

Bifidobacterium infantalis with
fructo-oligosaccharide

CRP and immunoglobulins ↓

Plaudis 2012 [87] 90 SAP Synbiotic 2000 Forte

Infection rate (pancreatic and
peripancreatic necrosis) ↓

Rate of surgical interventions ↓
ICU and hospital stay ↓

Mortality rate ↓

Cui 2013 [81] 70 SAP Bifidobacterium

Pro-inflammatory cytokines ↓
Earlier restoration of gastrointestinal

function
Complications ↓
Hospital day ↓

Wang 2013 [88] 183 SAP Live Bacillus subtilis and Enterococcus
faecium

Percentage of pancreatic sepsis and
MODS ↓

Mortality rate ↓
Pro-inflammatory cytokines and APACHE

II scores ↓
Plasma concentration of IL-10 ↑

Zhu 2014 [89] 39 SAP C. Butyricum Rate of intestinal ischemia and necrosis ↑

Li 2014 [90] 80 SAP Bifidobacterium

Pro-inflammatory cytokines levels ↓
CRP and LDH levels ↓

Mortality and incidence of complications ↓
Duration of hospitalization ↓

Wu 2017 [91] 120 SAP Live B. bifidus, B. acidophilus, E. faecalis,
and B. cereus

Incidence of infection MODS ↓
Duration of abdomen pain and

hospitalization ↓

Fang 2018 [92] 68 SAP Live Bifidobacterium, Lactobacillus, and
Enterococcus

Relieved clinical symptoms
Hospitalization time ↓

Serum inflammatory cytokine levels ↓
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Table 2. Cont.

Studies Subjects Pre/Pro/Synbiotics Main Effect of Treatment Group

Wang 2023 [84] 73 MSAP Lactulose

Serum levels of cytokines ↓
Gut permeability index ↓

Bifidobacterium ↑
Level of SCFAs ↑

Rohith 2023 [85] 86 MSAP or SAP

Synbiotics containing Streptococcus
faecalis T-110, Clostridium butyricum

TO-A, Bacillus mesentricus TO-A, and
Lactobacillus sporogenes

Total leucocyte and neutrophil counts ↓
Length of hospitalization ↓

AP, acute pancreatitis; MSAP, moderately severe acute pancreatitis; SAP, severe acute pancreatitis; SIRS, systemic
inflammatory response syndrome; MOF, multi-organ failure; MODS, multiple organ dysfunction syndrome;
APACHE II, Acute Physiology and Chronic Health Evaluation II; IL, interleukin; CRP, C-reactive protein; ICU,
intensive care unit; CT, computed tomography; LDH, lactate dehydrogenase; SCFAs, short chain fatty acids. The
arrows indicate the changes of main outcomes after the treatment of probiotics, prebiotics, or synbiotics.

4.3. Direct Supplementation of SCFAs

In 2019, the International Scientific Association for Probiotics and Prebiotics (ISAPP)
proposed that a postbiotic is a “preparation of inanimate microorganisms and/or their com-
ponents that confers a health benefit on the host”. Postbiotics are deliberately inactivated
microbial cells with or without metabolites or cell components contributing to demon-
strated health benefits [93]. SCFAs are one group of these beneficial metabolites. According
to the mechanisms discussed above, SCFAs benefit AP on different levels, including regulat-
ing local and systematic inflammation, restoring intestinal barrier function, and reversing
other organ dysfunctions. A research team from the University of Amsterdam used a
mouse model of ANP fed with the Western diet, which contained 60% polyunsaturated
fatty acids and no soluble fibers. The Western diet caused a bloom of Escherichia/Shigella
and increased mortality and systemic infection in ANP mice. There was also a significant
decrease in butyrate, amino acids, and carbohydrates. Collectively, these results confirmed
that the Western diet is involved in AP pathogenesis. For therapeutic strategies, both oral
and intraperitoneal butyrate reduced mortality and E. coli dissemination and reversed the
microbiota alterations [30]. Although SCFAs have been subjected to clinical trials in humans
with some encouraging results, including ulcerative colitis, radiation proctosigmoiditis,
and visceral hypersensitivity, there have not been clinical trials about the administration
of SCFAs in AP patients, and the current findings were all from animal models [94–104].
Direct SCFAs supplementation in enteral nutrition for AP treatment is essential for future
clinical studies. It is expected to be safer than probiotics, which might cause bacteremia.
However, SCFAs used as purified substances and not as a component of an inactivated
microbial preparation would not be considered postbiotics.

4.4. Fecal Microbiota Transplantation

Fecal microbiota transplantation (FMT) is a direct approach to restoring the intestinal
environment. It has been recommended to treat Clostridium difficile infection (CDI) [105].
The US Food and Drug Administration (FDA) issued a safety alert for using FMT after
reports of serious adverse effects, including death due to infections with multidrug-resistant
bacteria [106,107]. Yang et al. reported a case of MSAP complicated with severe CDI who
suffered from diarrhea during his AP course. This 51-year-old man was treated by FMT
as a first-line therapy. During the treatment, no adverse events were reported. Diarrhea
resolved within five days after FMT. The patient remained asymptomatic, and the follow-up
colonoscopy performed 40 days after discharge showed a complete recovery. However,
the effect of FMT on AP was not evaluated and reported [108]. There are only some
FMT-related studies conducted in AP mice. The bacteria translocation and mortality rate
were significantly increased in pancreatitis mice that received FMT from healthy mice [30].
Another study reported that normobiotic FMT alleviated AP-induced gut microbiota
dysbiosis and lessened the severity of AP, including mitochondrial dysfunction, oxidative
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damage, and inflammation. Gut microbiota-derived nicotinamide mononucleotide may
play an essential role in this process [109]. According to these limited but controversial
results from animal experiments, the effects and safety of FMT in AP treatment undoubtedly
need further research.

5. Conclusions

Mucosal barrier protection is the common pathophysiological basis of almost all gas-
trointestinal diseases. Although the inflammation in AP starts in the pancreas, the gut
plays an amplifier role in the disease course, leading to aggravated, even uncontrolled,
inflammatory responses. Therefore, in treating AP, maintaining intact intestinal function
is a significant part of controlling inflammation. SCFAs are a group of gut microbiota
metabolites that could help rebuild the intestinal epithelial barrier and suppress inflam-
matory responses, thus maintaining a healthy intestinal environment. In addition to the
intestine as the most important first step, SCFAs also reduce systematic inflammation and
protect other organ functions, such as lung and kidney, which are frequently involved in
AP. Therefore, supplementation of SCFAs directly or indirectly is a promising therapeutic
approach, although existing research results are limited and controversial. More well
designed clinical trials are needed for the comprehensive and individualized application of
SCFAs, and safety is noteworthy, considering the complexity and aggressiveness of AP.
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