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Abstract: Flavonoids represent the main class of plant secondary metabolites and occur in the tissues
and organs of various plant species. In plants, flavonoids are involved in many biological processes
and in response to various environmental stresses. The consumption of flavonoids has been known
to reduce the risk of many chronic diseases due to their antioxidant and free radical scavenging
properties. In the present review, we summarize the classification, distribution, biosynthesis path-
ways, and regulatory mechanisms of flavonoids. Moreover, we investigated their biological activities
and discuss their applications in food processing and cosmetics, as well as their pharmaceutical
and medical uses. Current trends in flavonoid research are also briefly described, including the
mining of new functional genes and metabolites through omics research and the engineering of
flavonoids using nanotechnology. This review provides a reference for basic and applied research on
flavonoid compounds.

Keywords: flavonoids; biosynthesis pathway; classification; biological activity; application

1. Introduction

Flavonoids, a group of important secondary metabolites, are widely distributed in
widely found in fruits, vegetables, herbs, stems, cereals, nuts, flowers, and seeds [1]. So
far, over 10,000 flavonoid compounds have been isolated and identified [2]. Flavonoids
processed favorable biochemical and antioxidant effects on various diseases such as cardio-
vascular disease, cancer, and neurodegenerative disease [3]. Flavonoids are associated with
a broad spectrum of health-promoting effects and are an indispensable component in a va-
riety of nutraceutical, pharmaceutical, medicinal and cosmetic applications. This is mainly
attributed to their anti-inflammatory, anti-oxidative, anti-carcinogenic, and anti-mutagenic
properties as well as the ability to regulate key cellular enzyme function [4,5].

Flavonoids are synthesized through the phenylpropanoid metabolic pathway and
possess 15 carbon atoms arranged in three rings (C6–C3–C6) labeled A, B, and C [6].
Flavonoids play a variety of biological activities in plants, animals, and bacteria [7]. In
plants, flavonoid compounds are normally found in flowers, fruits, leaves, and seeds,
which are responsible for their color, fragrance, and flavor characteristics [8]. As important
secondary metabolites, plant flavonoids are involved in regulating auxin transport, male
fertility, pollination, seed development, flower coloring, and allelopathy [9]. Flavonoids
play protective roles against abiotic (ultraviolet radiation, cold, salt, drought, and heavy
metals) and biotic (herbivores, bacteria, fungi) stresses [10]. Flavonoids are classified into
various types depending on their chemical structure, degree of unsaturation, and oxidation
of carbon ring, including flavones, flavanones, isoflavones, flavonols, chalcones, flavanols,
and anthocyanins. Each of these flavonoids is widely distributed in nature [4,11].

Flavonoids have attracted increasing research interest in recent years. Thus, in the
present review, we systematically summarize recent progress in plant flavonoid research
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in terms of their classification, biosynthesis, biological activity, and potential applications
in food processing, cosmetics, and pharmaceutical industries [5,12,13]. We also discuss
the use of omics research for mining functional genes and identifying new flavonoid
compounds. In addition, we summarize recent research progress on the role of flavonoid
nanoparticles in various diseases. The main purpose of this review is to provide up-to-date
information on the classification, biosynthesis, biological activity, and potential applications
of flavonoids. In addition, research into the therapeutic potential of flavonoid nanoparticles
has highlighted their value and importance in preventing life-threatening diseases and
improving global health.

2. Methodology

To perform a comprehensive review of plant flavonoids, emphasizing the classification,
biosynthesis and regulatory mechanisms, biological activities, potential applications, omics
research, and flavonoid nanoparticles, a thorough literature search was performed. Seven
scientific electronic databases, including SCiFinder, PubMed, MEDLINE, EMBASE, Scopus,
ScienceDirect, and the Google Scholar library, were used for searching in PubMed. The
keywords were searched alone or in combination with other keywords. The PRISMA flow
chart was used to display the methodology for the published information selection through
Page’s method (Figure A1) [14,15].

3. Flavonoid Classification

Flavonoids are mainly found in plant cell vacuoles in the form of C-glycosides or
O-glycosides [16]. The basic molecular structure of flavonoids depends upon their basic
C6–C3–C6 skeleton (labeled A, B, and C, Figure 1). Flavonoids are classified into seven
subclasses based on modifications to their basic skeletons; these subclasses include flavones,
flavanones, isoflavones, flavonols, chalcones, flavanols, and anthocyanins [17,18].

3.1. Flavones

Flavones, one of the largest classes of flavonoids, consist of 4H-chromen-4-one bearing
a phenyl substituent at position 2. Flavones mostly occur as 7-O-glycosides, which are
found in celery, parsley, red pepper, chamomile, mint, and ginkgo [5,19,20]. Apigenin and
luteolin are two common flavones (Figure A2). In nature, apigenin is usually found in a
glycosylated form, with a sugar moiety attached to the tricyclic core structure via hydroxyl
groups (O-glycosides) or directly to carbon (C-glycosides) [21]. The principal ingredients
of apigenin are glycosylated apiin, apigenin, vitexin, isovitexin, or rhoifolin. Apigenin
can scavenge free radicals and regulate antioxidant enzyme activity in pancreatic cells,
and apigenin can decrease inflammation in cancer, neuroinflammation, and cardiovascular
diseases [9,22].

3.2. Flavonols

Flavonols, also called 3-hydroxy flavone, can be identified by specific substitutions
in their A- and B-rings, which are connected by a three-carbon chain [23]. Flavonols
possess hydroxyl groups at positions 5 and 7 in the A-ring and are mainly present in
epidermal cells to protect DNA against UV-induced damage [24]. Four types of flavonol
compounds (quercetin, galangin, kaempferol, and myricetin) are mainly distributed in
vegetables and fruits, such as asparagus, onions, lettuce, broccoli, tomato, and apples
(Figure A2) [25]. Flavonols exhibit interesting biological activities, including antioxidant,
antibacterial, cardioprotective, anticancer, and antiviral activities. Dietary flavonols can
significantly decrease the risk of gastric cancer in smokers and in women (Figure A2).
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various plants.

3.3. Flavanones

Flavanones (dihydro-flavones) possess a saturated C-ring [26]. The saturated double
bond between positions 2 and 3 in the C-ring represents the only structural difference
between flavanones and other flavonoid compounds [27]. Flavanones are mainly dis-
tributed in citrus fruits, including oranges, lemons, mandarins, grapefruits, clementines,
and limes [28]. Flavanones contain hydroxyl groups at positions 5 and 7 in the A-ring
and possess hydroxyl/methoxy substituents at the C3 or C4 positions of the B-ring [29].
The defining characteristic of flavanones is a disaccharidic moiety linked to the seven
positions of aglycone [30]. Depending on their structural differences, flavanones can occur
in the form of naringin, naringenin, hesperidin, hesperetin, pinocembrin, likvirtin, and
eriodictyol [31]. Among them, naringenin and hesperetin, as the main dietary flavanones,
occur almost exclusively in citrus fruits (Figure A2) [28,32]. Naringin can increase the
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activity of antioxidant enzymes (CAT, PON, GPx, and SOD) and enhance the immune
system. Furthermore, naringenin and hesperetin have been shown to recover impaired
thyroid function in rats.

3.4. Isoflavonoids

Isoflavones have a B-ring at the C3 position of the heterocyclic C-ring of the diphenyl-
propane (C6–C3–C6) backbone, which represents their only chemical structural differ-
ence from other flavonoids [33]. Isoflavonoids are characteristic metabolites of legu-
minous plants and play essential roles in nodule induction and microbial signaling in
legumes [34,35]. Isoflavones are classified into three groups: genistein, daidzein, and
glycitein (Figure A2) [36]. The molecular structure of isoflavones is similar to that of
animal estrogens. Isoflavones are phytoestrogens that exhibit potent estrogenic activity.
Phytoestrogens are similar in structure to the human female hormone 17-β-estradiol in that
they bind to estrogen receptors [37]. In addition, isoflavones possess a strong antioxidant
activity, which can decrease the risk of cancers by inhibiting free radical-induced DNA
damage [37].

3.5. Flavanols

Flavanols, also called catechins or flavan-3-ols, are characterized by a hydroxyl group
at position 3 in the C-ring [38]. Flavanols lack a double bond between positions 2 and 3 in
the C-ring [39]. Several flavanols, including catechin, gallocatechin 3-gallate, gallocatechin,
epicatechin, epicatechin 3-gallate, catechin 3-gallate, and epicatechin 3-gallate, are widely
distributed in many fruits (e.g., apples, bananas, pears, and blueberries) [40,41]. Flavanols
can protect blood vessels against tobacco by increasing the content of NO in blood vessels.
A flavanol-rich diet can facilitate the permanent improvement of endothelial function and
prevent the development of cardiovascular diseases [42,43].

3.6. Anthocyanins

Anthocyanins, as glycosylated polyphenolic compounds, are a group of soluble vacuo-
lar pigments that possess a range of colors, from orange, red, and purple to blue, depending
on the pH of the micro-environment of the flowers, seeds, fruits, and vegetative tissues [44].
The position and number of hydroxyl and methoxyl groups present as substituents in
the flavylium structure result in different anthocyanins (Figure A2). Thus, over 650 an-
thocyanins have been identified in many plants [45]; these are grouped into five items,
including cyanidin, delphinidin, malvidin, pelargonidin, and peonidin, and their cor-
responding derivatives [46]. Anthocyanins are mainly found in the outer cell layer of
various fruits and vegetables, such as blackcurrants, grapes, and berries [47,48]. The antiox-
idant ability of anthocyanins is associated with their ring orientation and the position and
number of free hydroxyls around the pyrone ring. Anthocyanins play important roles in
visual acuity, cholesterol decomposition, and the reduced risk of cardiovascular disease in
humans [49,50]. In addition, anthocyanins are commonly used as food colorants.

3.7. Chalcones

Chalcones (1,3-diaryl-2-propen-1-ones) are natural open-chain flavonoids, carrying
up to three modified or unmodified C5-, C10-, and C15-prenyl moieties on both their A
and B-rings. These bioactive products are widely distributed in the Fabaceae, Moraceae,
Zingiberaceae, and Cannabaceae families [9]. They exhibit a wide spectrum of pharma-
cological effects, including antioxidant, antibacterial, anthelmintic, antiulcer, antiviral,
antiprotozoal, and anticancer effects [51]. Chalcones are precursors of flavonoids and
isoflavonoids. Their structural features are easily constructed from simple aromatic com-
pounds. Their prominent bioactivity has inspired the synthesis of chalcone analogs, as
well as minor structural modifications to natural chalcones; these compounds form a large
collection of bioactive chalcone derivatives [52]. Xanthohumol and isbavirachalone are two
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representative derivatives that exhibit abundant biological and pharmacological activity
(Figure A2) [49].

Generally, the number and position of –OH groups have a great influence on flavonoid
bioactivity. The –OH groups can link to the carbon atoms of the benzene ring (3,5,7, and 3′,4′-
dihydroxy substitution pattern), which directly determines the bioactivity of flavonoids.
Moreover, the position of the –OH group also influenced the flavonoid bioactivity. The most
effective radical scavengers are flavonoids with the 3′,4′-dihydroxy substitution pattern
on the B-ring and/or hydroxyl group at the C-3 position. In addition, the C2–C3 double
bond is not necessary for high activity. Flavanols lacking the C2–C3 double bond displayed
strong activity. The presence of a 3 –OH group significantly enhances the bioactivity.

4. Flavonoid Biosynthesis in Plants
4.1. Flavonoid Biosynthetic Pathways

Flavonoid synthesis occurs at the junction of the shikimate pathway and the acetate
pathway. The former can generate p-coumaroyl-CoA, and the latter regulates C2-chain
elongation [53] (Figure 2). Phenylalanine ammonia-lyase (PAL) deaminates phenylalanine
to ammonia and cinnamic acid [54]. Then, C4H (cinnamic acid 4-hydroxylase) catalyzes
the production of 4-coumaric acid [4], and 4CL (4-coumaric acid: CoA ligase) converts
4-coumaric acid to form 4-coumaroyl-CoA, which is a key enzyme in the phenylpropanoid
metabolic pathway that regulates the biosynthesis of lignin and flavonoids [55].
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Figure 2. Flavonoid synthesis pathway. CHS (chalcone synthase) can catalyze three molecules of
malonyl-CoA and one molecule of p-coumaroyl-CoA to form naringeninchalcone [56]. Malonyl-CoA
is an important precursor for the synthesis of natural products, including flavonoids and polyke-
tides [57]. CHI (chalcone isomerase) converted naringenin-chalcone into flavanones [58]. Naringenin,
as an important flavonoid skeleton, is catalyzed by FNSI and FNS II (flavone synthase I and flavone
synthase II) and IFS (isoflavone synthase) to form flavones and isoflavones, respectively [59]. Further-
more, flavanone-3-hydroxylase (F3H), flavonol 3′-hydroxylase (F3′H), and flavonol 3′5′-hydroxylase
(F3′5′H) catalyzed naringenin to generate dihydro-myricetin, dihydro-kaempferol, and dihydro-
quercetin, respectively [60]. The FLS (flavonol synthase) converted dihydroflavonols into flavonols
(kaempferol, quercetin, and myricetin), which was catalyzed by the dihydroflavonol 4-reductase
(DFR) to generate leucoanthocyanidins [61], which was catalyzed by leucoanthocyanidin dioxygenase
(LDOX) to produce anthocyanidins [62]. Anthocyanidins and leucoanthocyanidins were further
converted to proanthocyanidins catalyzed by leucoanthocyanidin reductase (LAR) and anthocyanidin
reductase (ANR), respectively [63]. Modification of anthocyanins is responsible for the stabilization
of vacuolar anthocyanins, including glycosylation, methylation, and acylation [64].

4.2. Transcriptional Regulation of Flavonoid Synthesis

Flavonoid biosynthesis is tightly regulated by biosynthetic enzymes and regulatory
transcription factors (TFs) [65]. Several TF families have been reported to be involved
in regulating flavonoid biosynthesis in plants, including WRKY, Dof, MADS-box, bZIP,
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MYB, bHLH, WD40, and NAC (Table 1) [66]. Plant MYBs are characterized by a highly
conserved MYB DNA-binding domain and are further classified into four groups based on
the position and number of MYB repeats: 1R-MYB, 2R-MYB, 3R-MYB, and 4R-MYB [67].
Among them, R2R3-MYB TFs are involved in regulating the expression of structural genes
in the flavonoid pathway [68]. For example, transgenic tobacco overexpressing NtMYB3
from Narcissus tazetta can reduce the content of flavonoids by inhibiting the expression of
FLSs [69]. Transgenic Arabidopsis overexpressing GbMYB2 from Ginkgo biloba can decrease
flavonoid accumulation by inhibiting the expression of some structural genes (e.g., GbPAL,
GbFLS, GbANS, and GbCHI) [70]. Yan et al. revealed that soybean GmMYB100 negatively
regulated flavonoid biosynthesis by inhibiting the activities of CHS and CHI promoters [71].
In addition, the overexpression of PpMYB17 in pear calli was found to bind and activate
the promoters of structural genes of PpCHS, PpCHI, PpF3H, PpFLS, and PpUFGT under
light conditions, which enhanced the biosynthesis of flavonoids [72]. Transgenic tobacco
overexpressing FtMYB31 from Fagopyrum tataricum increased the expression of CHS, F3H,
and FLS genes and promoted the accumulation of flavonoids [73]. The overexpression
of SbMYB8 from Scutellaria baicalensis in transgenic tobacco promoted the expression of
the SbCHS gene, increased flavonoid content, and enhanced the activities of antioxidant
enzymes in transgenic tobacco [63]. Furthermore, bHLH TFs play essential roles in regulat-
ing the biosynthesis of flavonoids. CsMYC2 was able to promote flavonoid biosynthesis
by increasing the expression of the UFGT gene [74]. MdbHLH3 promoted anthocyanin
accumulation and fruit coloration in response to low temperatures in apples [75]. In ad-
dition, MBW complexes (MYB-bHLH-WD40) regulate flavonoid biosynthesis in different
plants [64,76]. The TT2–TT8–TTG1 complex plays a major role in developing seeds and
also plays an important role in regulating the expression of LBGs (DFR, LDOX, TT19, TT12,
AHA10, and BAN) [77]. Moreover, the MBW complex exhibits tissue-specific regulation of
the expression of the genes involved in flavonoid biosynthesis [78]. The MYB5–TT8–TTG1
complex is active in the endothelium, regulating DFR, LDOX, and TT12 expression, whereas
the TT2–EGL3/GL3–TTG1 complexes regulate the expression of LDOX, BAN, AHA10, and
DFR in the chalaza [78].

In addition, several TF families, including bZIP, NAC, Dof, and WRKY, play important
roles in regulating flavonoid biosynthesis [79,80]. For example, VvibZIPC22 was able to
bind and activate the promoters of structural genes of VviCHI and VviCHS to increase their
flavonoid contents [81]. Transgenic tobacco overexpressing NtHY5 increased the expression
of phenylpropanoid pathway genes, promoted the biosynthesis of flavonoids, and en-
hanced plant tolerance to salt stress [82]. Transgenic Arabidopsis overexpressing AtNAC078
increased the content of flavonoids under strong light conditions by upregulating the
expression of CHS, F3′H, DFR, and LDO [83]. MdNAC52 promoted the biosynthesis of
flavonoid compounds (anthocyanins and procyanidins) in apples by binding and activating
the promoters of MdMYB9, MdMYB11, and LAR [84]. Arabidopsis AtDOF4 upregulated the
expression of structural genes of DFR, LDOX, TT19, and PAP1 to increase the content of
flavonoids in plants [85]. Apple callus overexpressing MdWRKY11 was able to increase the
expression of F3H, FLS, DFR, ANS, and UFGT and promote the biosynthesis of flavonoids
and anthocyanins [86].

4.3. Non-Coding RNA Regulates Flavonoid Biosynthesis

Non-coding RNA, including lncRNA (long non-coding RNAs) and microRNA, played
important roles in regulating flavonoid biosynthesis [87]. lncRNAs may act as precursors
and endogenous target mimics of miRNAs to indirectly regulate protein-coding genes
(PCgenes) [87]. Two lncRNAs, XR_001591906 and MSTRG.9304, were found to regulate the
expression of the CHS gene in flavonoid biosynthesis during peanut seed development [88].
miRNAs directly cleave structural genes (SG) for flavonoid synthesis, thereby negatively
regulating the accumulation of flavonoids, including miR396-targeting UFGT, miR172-
targeting 4CL, and miR829.1-targeting CHS [89]. The miRNA-directed cleavage of TFs
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involved in flavonoid synthesis through miRNA–TF–SG regulatory networks such as
miR156–SPL–F3H, miR828/TAS4–MYBs–DFR, and miR858–MYBs–CHS/FLS [89,90].

5. Pharmacological Properties of Flavonoids
5.1. Antioxidant Activity

The molecular mechanisms of antioxidant action contain the following processes
(Figure 3). The antioxidant activity of flavonoids depends on their stable roles in differ-
ent matrices, as well as the position and number of hydroxyl groups in their structures
(Table A1) [91,92]. The mechanisms of antioxidant activity mainly comprise the follow-
ing three processes: (1) Direct scavenging of ROS. In vitro, flavonoid antioxidant activity
depends on the arrangement of hydroxyl groups. The B-ring, with its orthodihydroxy struc-
ture, allows flavonoid phenoxyl radicals to participate in electron delocalization, leading
to the dislocation of an electron in the B-ring, which exhibits antioxidant activity. These
structures enhance antioxidant activity [9]. Antioxidant activity was found to be increased
in vitro through the polymerization of flavonoid monomers, such as proanthocyanidins
(also called condensed tannins), and the polymers of catechins, which displayed excellent
antioxidant activity due to the large number of hydroxyl groups in their molecules [93].
Moreover, free radical scavenging activity was found to be promoted by double bonds in the
phenolic ring and hydroxyl side chains and through the glycosylation of anthocyanidins [9].
(2) The activation of antioxidant enzymes. Some flavonoids can suppress the activities of
free radical-generating enzymes such as nitric-oxide synthase and xanthine oxidase [94].
Furthermore, flavonoids activate antioxidant enzymes, including the induction of phase II
detoxifying enzymes (e.g., NAD(P)H-quinone oxidoreductase, glutathione S-transferase,
and UDP-glucuronosyltransferase), which are the major defense enzymes against elec-
trophilic toxicants and oxidative stress. The electrophile-responsive element (EpRE) is
distributed in the 5′-regulatory region of a number of genes encoding phase II enzymes.
Flavonoids have been found to activate the EpRE-mediated gene expression and display
redox properties [95]. (3) The inhibition of oxidases. Flavonoids exert antioxidant activity
by inhibiting the activities of xanthine oxidase (XO) and protein kinase C, which catalyze
the production of superoxide anion. Zeng et al. reported that fisetin reduced oxidative
damage by inhibiting XO activity [96]. Furthermore, flavonoids can inhibit the activities of
cyclooxygenase, NADH oxidase, microsomal monooxygenase, and lipoxygenase [10,97].
(4) Metal-chelating activity. Hydroxyflavones may generate complexes with metal cations,
and their chelating properties differ significantly depending on the number and position of
the hydroxyl substituents [98]. Specific flavonoids can decrease the toxicity of redox-active
transition metal ions [99]. Lesjak et al. revealed that quercetin, catechin, and rutin dis-
played high antioxidant activity against Fe (III) [100]. Kaempferol can chelate Cu(II) ions,
suppress the formation of oxidants and radicals, and possess strong antioxidant proper-
ties [101]. Numerous flavonoids can generate stable metal complexes between the carbonyl
moiety and their OH groups. Quercetin possesses three potential bidentate binding sites
(α-hydroxy-carbonyl, β-hydroxy-carbonyl, and catechol), which can generate stable metal-
lic complexes. In addition, catechin can chelate a large number of metal ions, including Mn
(VI), Fe(II), Fe(III), Cu(II), Zn(II), and Al(III) [102]. (5) Increasing the level of α-tocopherol
radicals. The oxidation of low-density lipoprotein (LDL) represents a free radical-driven
lipid peroxidation process, which is associated with human health [103]. Flavonoids act as
hydrogen donors to α-tocopherol radicals and have great potential to delay LDL oxidation
through interaction with the α-tocopherol radicals. Torello et al. (2021) reported that several
flavonoids (e.g., quercetin, epigallocatechin gallate, and naringin) showed strong inhibitory
activity against LDL oxidation in vitro [104]. (6) Mitigating oxidative stress caused by
nitric oxide. Nitric oxide (NO) plays an important role in maintaining the dilation of blood
vessels, and a loss of NO causes oxidative stress in the vasculature [105]. The interaction
of NO and O2− forms the cytotoxic product peroxynitrite, which is a powerful oxidant
capable of causing pathological damage. Flavonoids can inhibit the production of NO in
several lipopolysaccharide-activated cells by inhibiting inducible NOS expression [106].
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Among flavonoids, quercetin can suppress the production of NO and vascular endothelial
growth factor (VEGF) [107].
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Table 1. Pharmacological activities of flavonoids.

Flavonoids Classification Pharmacological Activity Sources of Plant References

Proanthocyanidins anthocyanins
antioxidant, anti-inflammatory,

antibacterial, antifungal and
anti-cardiovascular

grapes, apples,
sorghum, cherries, and

other natural plant
[93]

Cyanidin anthocyanins anti-inflammatory, antiviral, and
anticancer

black rice, black beans,
purple potatoes,

blueberries
[108]

Curcumin curcuminoids anti-inflammatory and anticancer Curcuma longa [109]

Methyl chalcone chalcones anti-inflammatory and anticancer apple, citrus, soybean,
ginger, mulberry [110]

Trans-chalcone chalcones anti-inflammatory and anticancer apple, citrus, soybean,
ginger, mulberry [110]

Xanthohumol chalcones anti-cardiovascular and antiviral Humulus lupulus [111]

Licochalcone chalcones antibacterial and antifungal Glycyrrhiza uralensis [112]

Catechin flavanols antioxidant, anti-inflammatory,
antiviral, and anti-cardiovascular Camellia sinensis [101,102,113]

Epigallocatechin
gallate flavanols

antioxidant, antibacterial,
antifungal, anti-cardiovascular,

and antiviral
Camellia sinensis [104,114,115]

Naringin flavanones antioxidant, anti-inflammatory,
anti-cardiovascular, and antiviral

lemons, oranges,
grapefruits, citrus [104,110,116–119]

Hesperidin flavanones anti-inflammatory,
anti-cardiovascular, and antiviral

lemons, limes, oranges,
grapefruits, citrus [116,117,120,121]

Diosmin flavanones anti-inflammatory citrus fruits [122]

Orientin flavanones anti-inflammatory
Trollius chinensis,

Cajanus cajan,
Crataegus laevigata

[123]

Vitexin flavanones antioxidant, anti-inflammatory,
and anticancer

Ficus deltoid, Spirodela
polyrhiza [123]

Acacetin flavanones anti-cardiovascular, anticancer,
and antiviral Acacia farnesiana [124,125]

Silymarin flavanones antioxidant, anti-cardiovascular,
and antiviral Silybum marianum [126,127]

Liquiritigenin flavanones anti-inflammatory, antiviral, and
anticancer Glycyrrhiza uralensis [128]

Isorhamnetin flavanones antiviral and anticancer Ginkgo biloba,
Hippophae rhamnoides [125]

Apigenin flavones antibacterial, antifungal, and
antiviral Apium graveolens [129–132]

Morin flavones antioxidant and anti-inflammatory
Cudrania

cochinchinensis,
Maclura pomifera

[133]

Baicalin flavones Anti-cardiovascular, antibacterial,
and antifungal Scutellaria baicalensis [114,134]

Luteolin flavones anti-inflammatory,
anti-cardiovascular, and antiviral

Dracocephalum
integrifolium, Lonicera

japonica, Capsicum
annuum

[132,135]
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Table 1. Cont.

Flavonoids Classification Pharmacological Activity Sources of Plant References

Fisetin flavonols antioxidant

strawberry, apple,
onion, cucumber, and

other fruits and
vegetables

[96]

Quercetin flavonols
antioxidant, anti-inflammatory,

anti-cardiovascular, antibacterial,
and antifungal

vegetables, fruit, seeds,
nuts, tea, and red wine

[100,102,107,120,
136–138]

Rutin flavonols antioxidant, anti-inflammatory,
and antiviral

rue, tobacco, jujube,
apricot, orange, tomato,
buckwheat, and citrus

fruits

[101,120,126,127]

Kaempferol flavonols
antioxidant, anti-inflammatory,

antibacterial, antiviral, and
anticancer

fruits, vegetables,
herbs, and other

natural plants
[101,133,139]

Myricetin flavonols antioxidant, anti-inflammatory,
and anti-cardiovascular Myrica rubra [133,140,141]

Glabrol isoflavane antibacterial and antifungal Glycyrrhiza uralensis [112]

Genistein isoflavone antioxidant, antifungal, antiviral,
and anticancer

soybeans and other
plants [120,142,143]

5.2. Anti-Inflammatory Action

Inflammation has many causes, including infections, injuries, and diseases [144].
Chronic inflammation is a common pathological basis for age-associated diseases such
as cardiovascular disease, diabetes, cancer, and Alzheimer’s disease [145]. Among these
flavonoids, apigenin can reduce the steady-state mRNA levels induced by TNF-α and can
downregulate the expression of intercellular adhesion molecule-1 (ICAM-1), E-selectin, and
vascular cell adhesion molecule-1 (VCAM-1) to endothelial cells. Yang et al. reported that
many flavonoids reduced the expression of pro-inflammatory cytokines (e.g., TNF-α, IL-1β,
IL-8, IL-6, and monocyte chemoattractant protein-1 (MCP-1)) in Jurkat T cells, peripheral
blood mononuclear cells, and RAW macrophages. Quercetin and catechins were found
to increase IL-10 production through the combined inhibition of TNF-α and IL-1β [113].
Quercetin suppressed the activity of heat shock factor (HSF) and reduced heat-induced
damage [136]. Furthermore, several flavonols (e.g., morin, quercetin, kaempferol, and
myricetin) could inhibit the activity of lipoxygenase [133]. Many flavonoids could de-
crease the production of arachidonic acid and suppress the activities of phospholipase
A2, cyclooxygenase, and NOS, which further decreased the production of key inflam-
matory substances (prostaglandins, leukotrienes, and NO) [146]. In addition, flavonoids
could inhibit the production of arachidonic acid metabolites and chemokines and de-
crease leukocyte infiltration and edema [147]. Moreover, flavonoids could chelate metal
iron, suppress the activation of the complement system, and lower inflammation [148].
Genistein reduced airway hyper-responsiveness, ovalbumin-induced bronchoconstriction,
and pulmonary eosinophilia in a guinea pig model of asthma and also suppressed the
inflammatory response and joint destruction in collagen-induced arthritic mice. Quercetin,
rutin, and hesperidin decreased chronic inflammation in an experimental model, and the
results further showed that rutin played a key role in the chronic phase [120]. Diosmin
and hesperidin could inhibit leukotriene B4 (LTB4) biosynthesis, which reduces colitis in a
trinitrobenzenesulfonic acid (TNBS)-induced colitis rat model [122]. Naringenin displayed
anti-inflammatory activity by inhibiting pro-inflammatory cytokines and reducing leuko-
cyte infiltration. Several chalcones (e.g., trans-chalcone, hesperidin, and methyl chalcone)
displayed inhibitory activity against pro-inflammatory cytokines [110]. Zhong et al. re-
vealed that the flavonoids (vitexin, orientin, and rutin) from Tartary buckwheat sprout
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could reduce NO production by inhibiting iNOS and COX2 expression in lipopolysaccha-
ride (LPS)-induced RAW cells and in male BALB/c mice [123]. Quercetin and myricetin
protected 661 W cells and the cone photoreceptor cell line from the toxic effects of H2O2.
They also enhanced the gene expression of M and S opsins under oxidative stress [140].

5.3. Cardiovascular Action

Flavonoids used as cardioprotective agents can regulate oxidative stress and inflam-
mation, commonly cause vasodilation, and regulate endothelial cell apoptosis [149]. Recent
studies have revealed that dietary flavonoid intake can effectively reduce the risk of cardio-
vascular death in adult Americans [150]. In vitro and in animal models, some flavonoids
have vasodilatory effects, improve endothelial dysfunction and insulin resistance, exert an-
tiplatelet aggregation and atherosclerotic protective effects, and lower blood pressure [151].
Flavonoids were found to prevent hepatic steatosis, dyslipidemia, and insulin sensitivity,
primarily by inhibiting hepatic fatty acid synthesis and increasing fatty acid oxidation [152].
Several studies have demonstrated that naringenin, quercetin, and hesperetin possess
vasodilator properties, and their results further showed that naringenin could reduce high
blood pressure by promoting vasodilation [116,117]. Isoflavones seem to protect against
inflammatory vascular diseases by inhibiting monocyte-endothelial cell adhesion [153].
Quercetin exerts cardioprotective effects of quercetin against ischemia-reperfusion injury
in the heart and also exhibits atheroprotective activity [137]. Baicalin can improve cardiac
dysfunction and inhibit apoptosis in the heart. Chrysin has been reported to possess
antiplatelet activity [134]. Anthocyanins reduce the risk of myocardial infarction (MI)
in humans, improve systolic blood pressure, and reduce the content of triglycerides, to-
tal cholesterol, and low-density lipoprotein cholesterol [154,155]. Several studies have
demonstrated that acacetin plays an important role in regulating human arrhythmia [124].
Sun et al. (NIDAN) found that xanthohumol could increase PTEN expression and inhibit
AKT/mTOR phosphorylation in isoprenaline-treated mice and exert a protective effect
against ISO-induced myocardial hypertrophy and fibrosis [111]. Flavonoids extracted
from Myrica rubra exerted cardioprotective effects by modulating the PI3K/Akt/GSK3β
pathway to attenuate oxidative damage and cardiomyocyte apoptosis [141]. The sirtuin 1
(SIRT1) enzyme plays a key role in the regulation of many physiological functions, and its
reduced expression often causes aging-related diseases such as myocardial hypertrophy,
myocardial infarction, and endothelial dysfunction. A study by Testai et al. found that
the long-term administration of the citrus flavonoid naringenin (NAR) (100 mg/kg/day)
in mice resulted in enhanced SIRT1 expression, significantly reduced ROS production in
myocardial tissue and significantly lowered levels of the cardiovascular inflammatory
markers TNF-α and IL6, revealing that nutritional therapy with NAR may help improve
myocardial aging and protect cardiac function [118]. Yang et al. also revealed that Oxytropis
falcata flavonoid extracts protect against myocardial ischemia-reperfusion injury by down-
regulating the ROS-mediated JNK/p38MAPK/NFκB pathway to regulate inflammatory
responses, oxidative stress, and apoptosis [156].

5.4. Antibacterial and Antifungal Action

Flavonoids exert their antibacterial activity through several mechanisms, including
bacterial membrane disruption, the inhibition of biofilm formation, the suppression of nu-
cleic acid and ATP biosynthesis, and the disruption of electron transport (Table A1) [6,157].
Quercetin, apigenin, naringenin, chrysin, genistein, kaempferol, daidzin, and daidzein
were found to block the biofilm formation, and the results further showed that quercetin,
myricetin, baicalein, and luteolin suppressed the DNA replication in bacteria [8,158]. The
epigallocatechin gallate and baicalein suppressed the biosynthesis of ATP in bacteria [114].
Wu et al. [112] found that the flavonoids (e.g., glabrol, licochalcone A, licochalcone C, and
licochalcone E) from licorice showed high efficiency against MRSA and displayed low
cytotoxicity to mammalian cells. Among these flavonoids, glabrol exerts a bactericidal
effect by increasing the permeability of the cell membrane and collapsing the proton motive
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force. Zhang et al. [159] also found that flavonoid extracts from Coriolus versicolors showed
strong antibacterial activity against Escherichia coli, Staphylococcus aureus, and Bacillus subtilis
in an experimental study. Yuan et al. [160] revealed that the cell membrane is the main
site of flavonoids acting on Gram-positive bacteria, which likely involves the damage to
phospholipid bilayers, the inhibition of the respiratory chain, or the ATP synthesis.

Various flavonoids have been extracted and studied to determine their antifungal
activity and are expected to be promising, efficient, economical, and harmless drugs for
inhibiting fungal infections in humans [161]. Several mechanisms have been proposed to ex-
plain the antifungal effects of flavonoids, including the plasma membrane disruption [162],
induction of mitochondrial dysfunction [163], inhibition of cell wall generation [164], the
suppression of cell division, the inhibition of RNA/protein biosynthesis, and the inhibition
of efflux-mediated pumping systems [165]. Baicalein and apigenin were used as antifungal
agents as they regulate ROS species, decrease lipid peroxidation, and block membrane
disruption [50,130]. Glabridin inhibited the biosynthesis of the main components of fungi
cell walls (β-glucans and chitin) [114]. Quercetin can inhibit oxidative phosphorylation
and suppress the production of ROS [138]. Apigenin can control the cell cycle of fungi,
while myricetin, quercetin, kaempferol, naringenin, genistein, and luteolin suppress the
biosynthesis of DNA, RNA, and protein [166]. Li et al. [167] revealed that some flavonoids
(glcyrrhiza, glabra, isoflavones, and chalcone) induced significant bactericidal effects by
regulating the expression level of phosphatidylserine decarboxylase, which caused a loss of
mitochondrial membrane potential and cell membrane disruption. Furthermore, baicalein
and wogonin extracted from Scutellaria roots could induce apoptosis-like programmed cell
death through the overproduction of ROS. Baicalein displayed a strong antifungal activity
against Trichophyton rubrum, Trichophyton mentagrophytes, Aspergillus fumigatus, and Candida
albicans, and wogonin inhibited all fungi except Candida albicans.

5.5. Antiviral Action

Flavonoids are known to be effective antivirals as they block virus attachment, pre-
venting viruses from entering host cells and interfering with the replication, transcription,
and translation of virus genomic DNA [168]. Roschek et al. [169] revealed that flavonoids
can attach themselves to the surface proteins of viruses, inhibit viruses from entering the
host cells, modulate the immune system, and reduce viral load. In vitro and in vivo studies
have revealed that apigenin exhibits a wide range of antiviral effects against RNA and DNA
viruses, such as herpes simplex virus type 1 and type 2, African swine fever virus, hepatitis
B virus, and hepatitis C virus [131]. For example, baicalein can block the replication of the
avian influenza H5N1 virus in humans [170]. Luteolin can inhibit HIV-1 reactivation, and
genistein suppresses HIV-1 infection in CD4 + T cells and macrophages [135]. Kaempferol
can block the HIV-1 replication in host cells and prevent herpes simplex virus types 1 and 2
from entering them [139]. Badshah et al. [171] comprehensively reviewed many flavonoids
that showed antiviral activities in different testing environments, such as in vitro, in vivo
(mouse model), and in silico.

The anti-inflammatory activity of flavonoids also influences cancer, carcinogen inacti-
vation, anti-proliferation, cell cycle arrest, the induction of apoptosis, and the inhibition
of angiogenesis [172]. Epidemiological studies revealed that dietary flavonoid intake
could decrease the risk of breast, lung, colon, prostate, and pancreas tumors [173]. Sev-
eral flavonoid compounds, including quercetin, rutin, hesperetin, silymarin, xanthohu-
mol, 7,7′-dimethoxyagastisflavone, chrysoplenetin and chrysophanol D, formononetin,
genistein, cyaniding and peonidin isolated from many medicinal plants, exert genopro-
tective, cytotoxic, anti-proliferative and/or proapoptotic actions in different tumoural cell
lines [126,127]. Hirchaud et al. revealed that liquiritigenin isolated from licorice promoted
apoptosis in HeLa cells by increasing the p53 and Bax gene expression, decreasing Bcl-2
gene expression, releasing cytochrome c, and elevating the activity of caspase-9 and -3 [128].
Flavonoids inhibit angiogenesis and metastasis by regulating the expression levels of VEGF
and TGF-b1 genes [131]. In addition, flavonoids isolated from Dimorphandra mollis and
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Croton betulaster inhibited the proliferation of human glioblastoma cells and reduced the
expression levels of VEGF and TGF-b1 genes [174]. Lewis et al. found that the therapy
combining SAHA and EGCG not only significantly reduced the expression levels of miR-
221/222 but also increased p27 and ER in carcinogenic α cells and the expression level of
tumor suppressor genes [175]. Moreover, flavonoids have the ability to regulate non-coding
microRNAs (miRNAs). The ability to alter miRNA levels through different mechanisms,
either by inhibiting oncogenic miRNAs or activating tumor-suppressive miRNAs or by
affecting transcription and epigenetic miRNA processing in TNBC [176].

There are two flavonoid compounds, isorhamnetin, and acacetin, that suppress the
proliferation of human breast cancer cells [125]. The isoflavone genistein promotes breast
cancer cell arrest at the G2/M phase and subsequent ROS-dependent apoptosis. Kaempferol
has been shown to induce apoptosis via cell cycle arrest in human breast cancer MDA-MB-
453 cells [142]. Genistein acts as a potential anticancer agent against multiple cancers such
as breast cancer, prostate cancer, and ovarian cancer by inducing cell cycle G2/M phase
arrest [143]. Naringenin can inhibit ROS formation, improve antioxidant enzyme activity
such as SOD, CAT, and GSH, and further inhibit the proliferation and migration of MG-63
human osteosarcoma cells [119]. Hesperidin suppresses MG-63 cell cycle progression and
activates the apoptosis of cancer cells [121]. Epigallocatechin-3-gallate (ECGG) causes
growth arrest and cell death in prostate cancer cells [177]. In in vitro research, quercetin
caused cell_cycle arrest, DNA damage, and cell growth inhibition in several cancer cell
lines in vitro research, such as leukemia cancer, colon cancer, breast cancer, and ovarian
cancer [115]. Apigenin and luteolin cause alterations to ROS signaling and induce apoptosis
in several ovarian cancer cell lines, such as A2780, OVCAR-3, and SKOV-3 [132]. Cyanidin
blocks cancer cell proliferation and induces apoptosis in the human epithelial colorectal
adenocarcinoma cell line (Caco-2) [108]. In one study, resveratrol combined with grape
seed proanthocyanidins significantly reduced the DNMT and HDAC activities of breast
cancer cell lines [178]. In addition, resveratrol and procyanidins can synergistically inhibit
the growth of breast cancer cells [179]. Flavonoids and other polyphenols act as epigenetic
modifiers in breast cancer. Moreover, Mirza et al. reported that EGCG, genistein, curcumin,
resveratrol, lutein A and gingival sterone exhibit cancer prevention effects through the
epigenetic regulation of tumor suppressor genes [109].

6. Applications of Flavonoids in Cosmetics and Foods
6.1. Applications of Flavonoids in Cosmetics

Oxidative stress can cause changes in skin pigmentation changes and facial aging [180].
Thus, antioxidant supplements are considered the best approach to both the prevention
and treatment of the above-mentioned issues [181]. Flavonoids are widely used in common
cosmetics primarily due to their antioxidant and soothing properties [182]. The cosmetic
applications of flavonoids comprise three aspects: sun protection, antiaging effects, and
anti-inflammatory effects [183]. (1) Sun protection. The chromophores of flavonoids can
increase light absorption, absorb light in the UV/blue spectral region, and reduce oxidative
stress damage from sunlight [184]. Silymarin, a mixture of flavonolignans, has antioxidant,
anti-inflammatory, and immunomodulatory properties and has led to the prevention of
photocarcinogenesis in mice. Linarin, a flavone glycoside from Buddleja cardioids, was
tested on guinea pigs and shown to have a sun protection factor (SPF) value of 9, thus
providing remarkable protection from UV damage [185]. The quercetin and rutin from
Moringa oleifera exhibited an SPF value of 2 [186]. The O/W formulation with anthocyanin
from raspberry and blackberry obtained a high SPF value of 15.8 [187]. Anthocyanins
activated transcription factor Nrf2 and induced the production of various antioxidant
enzymes [188]. Finally, acacetin can prevent UVB-induced MMP-1 expression, which leads
to skin photoaging, and may therefore have therapeutic potential as an anti-wrinkle agent
to improve skin health [189]. (2) Antiaging effects. Flavonoids play important roles in
protecting against the signs of aging, especially in the skin [190]. Micek et al. [191] reported
that 3% taxifolin cream improved the viscoelasticity of aging skin with a better penetration
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rate. Water/ethanolic extracts from various parts of Nymphaea lotus are rich in flavonoids,
which are usually used for homemade self-care products [189]. Water lily extracts contain
excess flavonoids, which inhibit matrix metalloproteinase-1 and cause skin aging via
extracellular matrix decompositions [192]. (3) Anti-inflammatory effects. Flavonoids
inhibit phospholipase and cyclooxygenase activities and regulate immune cell migration
and cytokines production [193]. A previous study revealed that the polymethoxyflavones
from the Kaempferia parviflora inhibited pro-inflammatory mediators induced by TNF-α,
such as cyclooxygenase-2 (COX-2), IL-6, interleukin (IL)-1β, mitogen-activated protein
kinase (MAPK), nuclear factor-kappa B (NF-κB), and activator protein 1 (AP-1) [194,195].
Galangin, a specific flavonoid compound distributed in Alpinia galanga, has protective
properties against human skin fibroblasts, which also exhibit an anti-inflammation effect
by inhibiting NF-κB and increasing heme oxygenase-1 [189,196].

6.2. Application of Flavonoids in Foods

Food additives, derived from either plants or animals or produced via artificial syn-
thesis, are added to foods and related products to enhance their flavor, taste, and fresh-
ness [197]. However, the excessive consumption of synthetic additives may cause potential
risks to human health. Flavonoids, as the most important group of phenolics, are widely
distributed in many vegetables and fruits and are used in food processing to decrease the
use of synthetic chemicals and improve human health [198]. The content of flavonoids
varies between plants and between organs of the same plant. Several horticultural crops,
cabbage, carrots, spinach, mushrooms, peaches, strawberries, orange juice, and white
wine, contain relatively low flavonoid content (less than 10 mg/kg) [198]. The content of
flavonoids is lower than 50 mg/kg in lettuce, beans, red pepper, tomato, grapes, and tea
and is higher than 50 mg/kg in broccoli, kale, French beans, celery, and cranberries [199].
The highest content is found in fruits such as berries (33.63 mg/100 g anthocyanins in
strawberries and 13.52 mg/100 g anthocyanins in blueberries), apples (184 mg/200 g
quercetin and 180 mg/200 g epicatechin), and citrus fruit (292 mg/500 mL hesperidin in
orange juice) [198]. Moreover, flavonoids are used to extend the shelf life of many foods and
preserve many foods due to their antimicrobial and antioxidant properties [200]. With the
development of the economy and the improvements in people’s living standards, natural
compounds have shown greater activity than synthetic chemicals because the body can ac-
cept natural compounds [201]. Flavonoids are used as food preservatives to prevent fat and
oil oxidation, feed animals as supplements, protect various enzymes and vitamins, and in-
hibit microbial growth in foods [198,202]. A previous study revealed that flavonoids could
inhibit lipid oxidation in red meats and poultry and retard spoilage due to microorganism
growth in meats thanks to their antioxidant and antimicrobial properties [200,203].

7. Omics Research and Flavonoid Nanoparticles

Omics research attempts to comprehensively understand the biological molecules
in an organism at a particular functional level, such as the genome, transcriptome, or
proteome [204]. Complete genomic sequences and annotations provided important in-
formation, including promoter sequences, gene sequences, gene structure, and predicted
gene functions. Recently, a combination of transcriptomic and metabolomic analyses has
represented an effective approach to exploring the functions of genes associated with
metabolism [205]. Yuan et al. showed that metabolome analysis detected 124 different
flavonoid metabolites, and 30 different genes involved in flavonoid biosynthesis were iden-
tified through transcriptome analysis [206]. Integrated transcriptomic and metabolomic
data revealed that anthocyanin biosynthetic genes exhibited the differential expression
patterns between purple- and green-skinned fruit of Ficus carica [207]. Similarly, the accu-
mulation of malvidin 3-O-glucoside and delphinidin 3-O-glucoside was associated with the
reddening of the jujube peel, which may be correlated with an increase in the expression
levels of three UFGT genes [208]. Combined fruit transcriptomic and metabolomic analyses
of fruit have uncovered six candidate genes (AaF3H, AaLDOX, AaUFGT, AaMYB, AabHLH,
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and AaHB2) and seven flavonoid compounds that are closely associated with the pigmen-
tation of red- and green-fleshed cultivars of Actinidia arguta [209]. Thus, the combination
of transcriptomic (proteomics) and metabolomic analyses could be used to investigate
the spatial distributions and dynamics of flavonoid metabolites and their corresponding
spatiotemporal gene expression.

Although flavonoids are thought to have beneficial effects on human health, such
as antioxidant, anti-inflammatory, and anticancer properties, the use of flavonoids in
disease treatment is not satisfactory due to low solubility, poor absorption, and rapid
metabolism [210]. Nanotechnology can solve the issue with flavonoids, namely, low wa-
ter solubility, which plays a major role in low bioavailability. For example, fisetin, as a
hydrophobic dietary flavone found in strawberries, apples, cucumbers, and onions, pos-
sessed low aqueous solubility (less than 1 mg/mL) and resulted in low bioavailability,
and has limited its use [211]. Moreover, different types of flavonoid nanoparticles have
different therapeutic effects on different diseases. Dobrzynska et al. summarized the
effects of the different flavonoid nanoparticles on cancer therapy by enhancing their anti-
tumor effects or reducing the systemic toxicity of drugs [212]. Siddiqui et al. showed that
the polylactic acid-polyethylene glycol (PLA-PEG) with encapsulated EGCG nanoparti-
cles were more than 10 times more effective against 22Rr1 prostate cancer cells than free
EGCG [213]. Quercetin-loaded PEG nanoparticles were found to prolong the circulation
time of quercetin in the bloodstream and increase its solubility and stability. Tan et al.
revealed that the PEG-derivatized phosphatidylethanolamine nanomicelles increased the
anticancer activity of quercetin and were more effective against A549 lung cancer cells
than free-quercetin [214]. Genistein-loaded TPGS-b-PCL (d-α-tocopheryl polyethylene
glycol 1000 succinate-poly(ε-caprolactone)) was found to inhibit HeLa cervical tumor cells
growth and possessed a higher level of cytotoxicity in comparison with genistein-loaded
PCL nanoparticles [212]. In addition, apigenin nanoparticles, including apigenin loaded
in PLGA nanoparticles and apigenin encapsulated in PLGA nanoparticles, showed an
anti-proliferative effect against A475 skin cancer cells and delayed the development of
hepatocellular carcinoma in rats [212]. Nanonargenin works by inhibiting both the PI3K
and MAPK paths and by restricting ER alpha to the cytoplasm to lessen the proliferation of
Tam-RMC cells [215].

8. Conclusions

Flavonoids represent the main class of plant secondary metabolites and occur in the
different tissues and organs of various plant species. The elucidation of their biosynthetic
pathways, as well as their regulation by transcription factors and non-coding RNA, has
enabled researchers to employ metabolic engineering to synthesize diverse flavonoids
with valuable applications. Flavonoid compounds are classified into seven subgroups
due to modifications to their basic skeletons, including flavones, flavanones, isoflavones,
flavonols or catechins, and anthocyanins. Flavonoids, as potential candidates for bioactive
compounds, are widely used in food processing and the cosmetics and pharmaceutical
industries to improve human health due to their antioxidant and free radical scavenging
properties. Moreover, the biological activities of flavonoid compounds, including their
antioxidant effects, antimicrobial effects, anticancer effects, cardioprotective effects, anti-
inflammatory effects, and skin protective effects, were addressed in this review. In addition,
we summarized the mining of new functional genes metabolites through omics research,
and the engineering of flavonoids using nanotechnology was also summarized in this
review. This review provides a reference for basic and applied research on flavonoid
compounds.

9. Future Perspectives
9.1. Mining of Functional Genes

Plant genomes and transcriptomes were widely used to investigate gene information,
including gene locations, gene structure, and gene expression patterns. Integrated tran-
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scriptome (proteome) and metabolome analyses have revealed the dynamic changes in
flavonoid compounds and the corresponding functional genes and transcription factors.
The yeast one-hybrid and yeast two-hybrid systems are considered valuable and straight-
forward techniques for studying the interactions between transcription factors and the
promotion of functional genes and transcription factors. DNA molecular markers and a
genome-wide association study (GWAS) were used to identify the relationships between
genotypes and phenotypes and explore the variation in genomic loci associated with the
important agronomic traits and detected key genes.

9.2. Extraction and Utilization of Bioactive Ingredients

Sample extraction techniques severely block the isolation and extraction of individual
flavonoid compounds in plants, which severely restricts the development of medicines. In
addition, the pharmacological mechanisms of flavonoids and their derivatives in many
plants are still unclear due to the lack of animal studies and clinical trials. With the
innovations of new extraction techniques and the development of molecular biology,
studies on flavonoids and their derivatives mainly focus on their isolation and extraction,
metabolic pathway analysis, molecular regulatory mechanisms, and potential applications
in pharmacy and health services research using nanotechnology.
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Table A1. The Biological Activity and Mechanism of Action of Flavonoids.

Flavonoids Biological Activity Mechanism of Action References

Proanthocyanidins antioxidant activity polymerizing flavonoid monomer and
Catechin polymer [93]

Fisetin antioxidant activity inhibiting the activities of oxidase [10,96,97]

Hydroxyflavones antioxidant activity generating complexes with metal cations [98]

Kaempferol antioxidant activity chelate Cu(II) ions [101]

Catechol antioxidant activity generating stable metallic complexes [102]

Quercetin antioxidant activity interacting with α-tocopherol radicals [104,106,107]

Epigallocatechin
Gallate
Naringin

antioxidant activity interacting with α-tocopherol radicals [104]

Apigenin antiinflammatory action reducing the steady-state mRNA levels
induced by TNF-α [145]

Quercetin
catechins antiinflammatory action reducing the expression of pro-inflammatory

cytokines [113,133]

Kaempferol
Myricetin antiinflammatory action inhibit the activity of lipoxygenase [133]

Diosmin
Hesperidin antiinflammatory action inhibiting leukotriene B4 biosynthesis [122]

Chalcones antiinflammatory action inhibiting proinflammatory cytokines
activity [110]
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Flavonoids Biological Activity Mechanism of Action References

Vitexin
Orientin
Rutin

antiinflammatory action inhibiting iNOS and COX2 expression [123]

Naringenin
Hesperetin anticardiovascular action reducing high blood pressure by promoting

vasodilation [116,117]

Quercetin anticardiovascular action
protecting the heart against
ischemia-reperfusion injury via the
cardioprotective effects of quercetin.

[116,117,137]

Isoflavones anticardiovascular action inhibiting monocyte-endothelial cell
adhesion [153]

Anthocyanins anticardiovascular action

improving systolic blood pressure, and
reduce the content of triglycerides, total
cholesterol, and low-density lipoprotein
cholesterol

[154,155]

Xanthohumol anticardiovascular action increasing PTEN expression and inhibited
AKT/mTOR phosphorylation [111]

Flavonoid anticardiovascular action
modulating the PI3K/Akt/GSK3β pathway
or downregulating the ROS-mediated
JNK/p38MAPK/NFκB pathway

[141,156]

the citrus flavonoid
naringenin anticardiovascular action enhancing SIRT1 expression, reduced ROS

production [118]

Quercetin antibacterial action blocking the biofilm formation and
suppressed the DNA replication [8,138,158,166]

Apigenin
Naringenin
Chrysin
Genistein
Kaempferol
Daidzin

Antibacterial
action

blocking the biofilm formation or regulate
ROS species, decrease lipid peroxidation [8,129,130,158,166]

Baicalein
Luteolin
Myricetin

antibacterial action suppressing the DNA replication or
suppressed the biosynthesis of ATP [8,129,130,158]

Epigallocatechin gallate antibacterial action suppressing the biosynthesis of ATP [114]

Glabrol antibacterial action
increasing the permeability of the cell
membrane and collapsing the proton motive
force

[112]

Glabridin antifungal action inhibiting the biosynthesis of the main
components of fungi cell walls [114]

Myricetin
Kaempferol
Naringenin
Genistein
Luteolin

antifungal action suppressing the biosynthesis of DNA, RNA,
and protein [166]

Glcyrrhiza
Glabra
Isoflavones
Chalcone

antifungal action regulating the expression level of
phosphatidylserine decarboxylase [167]

Apigenin antiviral action
inhibiting viruses from entering the host
cells, modulate the immune system, and
reduce viral load

[131,169]
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Table A1. Cont.

Flavonoids Biological Activity Mechanism of Action References

Baicalein antiviral action blocking the replication of the avian
influenza H5N1 virus [170]

Luteolin antiviral action inhibiting HIV-1 reactivation [135]

Kaempferol antiviral action blocking the HIV-1 replication [139]

Liquiritigenin promoted apoptosis increasing the p53 and Bax gene expression,
decreasing Bcl-2 gene expression [128]

Isoflflavone genistein suppress the proliferation
promoting breast cancer cell arrest at the
G2/M phase and subsequent
ROS-dependent apoptosis

[125,143]

Kaempferol suppress the proliferation inducing apoptosis via cell cycle arrest
MDA-MB-453 cells [125,142]

Naringenin inhibit the proliferation and
migration inhibiting ROS formation [119]

Apigenin
Luteolin induce apoptosis causing the alterations to ROS signaling [132]
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