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Abstract: Au nanoparticles were synthesized in a soft template of pseudo-polyanions composed of
polyvinylpyrrolidone (PVP) and sodium dodecyl sulfate (SDS) by the in situ reduction of chloroau-
ric acid (HAuCl4) with PVP. The particle sizes and morphologies of the Au nanoparticles were
regulated with concentrations of PVP or SDS at room temperature. Distinguished from the Au
nanoparticles with various shapes, Au nanoflowers (AuNFs) with rich protrusion on the surface
were obtained at the low final concentration of SDS and PVP. The typical AuNF synthesized in the
PVP (50 g·L−1)–SDS (5 mmol·L−1)–HAuCl4 (0.25 mmol·L−1) solution exhibited a face-centered cu-
bic structure dominated by a {111} crystal plane with an average equivalent particle size of 197 nm and
an average protrusion height of 19 nm. Au nanoparticles with four different shapes, nanodendritic,
nanoflower, 2D nanoflower, and nanoplate, were synthesized and used to modify the bare glassy
carbon electrode (GCE) to obtain Au/GCEs, which were assigned as AuND/GCE, AuNF/GCE,
2D-AuNF/GCE, and AuNP/GCE, respectively. Electrochemical sensing platforms for nitrite de-
tection were constructed by these Au/GCEs, which presented different detection sensitivity for
nitrites. The results of cyclic voltammetry (CV) demonstrated that the AuNF/GCE exhibited the best
detection sensitivity for nitrites, and the surface area of the AuNF/GCE was 1.838 times of the bare
GCE, providing a linear c(NO2

−) detection range of 0.01–5.00 µmol·L−1 with a limit of detection
of 0.01 µmol·L−1. In addition, the AuNF/GCE exhibited good reproducibility, stability, and high
anti-interference, providing potential for application in electrochemical sensing platforms.

Keywords: Au nanoparticle; Au/GCE; nitrite; cyclic voltammetry; polyvinylpyrrolidone; sodium
lauryl sulfate

1. Introduction

Nitrites are often used in food for color protection and as preservatives [1], although
excessive and long-term intake of nitrites may cause dizziness, cancer, and fetal defor-
mity [1–3]. Therefore, it is important to strictly monitor the nitrite content with high
sensitivity in a wide detection range.

The present nitrite detection methods include ultraviolet spectrophotometry [4], chro-
matography [5], chromatography-mass spectrometry [6], fluorescence [7], electrochemical
methods [8], biosensors [9], and colorimetric methods [10]. These detection methods
have advantages of high sensitivity, fast response, and high accuracy; but most of them
involve complicated sample preparation, expensive instruments, and time-consuming
operations [5,6,9,11]. Electrochemical sensing platforms that involve the electrocatalytic
oxidation of nitrites are widely applied in nitrite detection due to the advantages of high
selectivity, fast response speed, portability, field inspection, and easy operation [12–14],
but the electrocatalytic oxidation of nitrites detected by glassy carbon electrodes (GCEs)
usually has a high overpotential [15–17]. To eliminate the overpotential issue, the mod-
ification of the GCE surface with nanoparticles has been applied, which can enhance its
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adsorption capacity and conductivity and provide more catalytic active sites to improve
the detection sensitivity of GCE [14,15,17]. The nano/submicron materials of metals [18],
metal oxides [14], conductive polymers [19], and carbon and its derivatives [20–22] are
used to modify GCE; among them, Au nanoparticles have become a popular choice for
GCE modification due to the chemical stability, biocompatibility, good conductivity, and
electrocatalytic activity of gold [11], and they are often used in combination with other
metals [23], graphene, MOFs [12] or polymers [24] to improve the detection sensitivity of
GCE. However, the modification process of GCE often requires multiple steps, and the
particle sizes and morphologies of the Au nanostructure are difficult to control.

Gold nanoflowers (AuNFs) have attracted more attention because of the large spe-
cific surface area and the resultant high catalytic or SERS activities [25,26]. Researchers
used to synthesize the AuNFs by seed-mediated growth and template protection [27,28].
However, with the seed-mediated growth method, it is difficult to control the particle
sizes and morphologies of the Au particles that require further loading on the substrate
surface to form nano-protrusion. However, with the template protection method, strong
adsorption of the commonly used cationic template materials may seriously interfere with
the subsequent application of the as-synthesized Au nanoparticles. Therefore, anionic
template materials composed of polyvinylpyrrolidone (PVP) and sodium lauryl sulfate
(SDS) were used in this work instead of cationic surfactants. The AuNFs together with
other morphology-controllable Au nanoparticles were synthesized in a one-pot process
at room temperature, and the soft template function of the PVP–SDS pseudo-polyanions
regarding the particle sizes and morphologies of the Au nanoparticles was investigated
by regulating the concentrations of PVP or SDS. Furthermore, GCE was modified with the
as-synthesized Au nanoparticles to construct electrochemical sensing platforms for nitrite
detection, and the electrochemical behavior of NO2

− detected by the modified GCE was
studied to examine the morphological effects of Au nanoparticles on the electrochemical
sensing platforms for nitrite detection.

2. Results
2.1. Characterization of the Crystal Structures, Particle Sizes, and Morphologies of
Au Nanoparticles

PVP has been used as stabilizing agent to form spherical nanoparticles via in situ
reduction [29], or to yield ginger-like Au nanobranches in PVP–SDS aqueous solution
under microwave irradiation [30].

With PVP (50 g·L−1)–SDS (5 mmol·L−1) pseudo-polyanions as the soft template,
typical Au nanoflowers (AuNFs) were synthesized, and their morphology, size, size distri-
bution, XRD, and local surface plasmon resonance (LSPR) profiles are shown in Figure 1.
The TEM, HRTEM, and particle size distribution of the AuNFs in Figure 1A–F show that
the average equivalent particle size is 197 nm, the average height of nano-protrusion is
19 nm, and the main lattice fringe spacing is 0.235 nm. The diffraction peaks of the XRD
pattern of Au in Figure 1G are consistent with the Au powder diffraction standard (JCPDS,
04-0784), indicating that the as-synthesized nanoparticles have a face-centered cubic Au
nanostructure with a dominant {111} crystal plane, which is also consistent with the lattice
information disclosed by the HRTEM profiles in Figure 1C−D.

The size of the initial Au crystal calculated by the Debye–Scherrer equation is 9.0 nm,
which is similar to the size of the PVP-bound SDS micelles formed in the PVP–SDS pseudo-
polyanions [31], suggesting that the PVP-bound SDS micelles play a role as a primary
template to confine the size of the initial Au crystal. Figure 1H shows that the nano-
protrusion structure and nano-size of the AuNFs cause an obvious LSPR characteristic peak
at 576 nm.

Subsequently, possible correspondence between the morphology of the Au nanoparti-
cles and the structure of the PVP–SDS pseudo-polyanion was verified.
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characterized by (A, B) TEM, (C, D) HRTEM, (E) size distribution, (F) nano-protrusion height dis-
tribution, (G) XRD, and (H) LSPR. 
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Figure 1. AuNFs synthesized in PVP (50 g·L−1)–SDS (5 mmol·L−1)–HAuCl4 (0.25 mmol·L−1) solu-
tion characterized by (A,B) TEM, (C,D) HRTEM, (E) size distribution, (F) nano-protrusion height
distribution, (G) XRD, and (H) LSPR.

2.2. The Effects of PVP–SDS Soft Templates on the Growth of Au Nanoparticles

First, the structure of the PVP–SDS pseudo-polyanion depends on the PVP-bound
SDS micelles that were linked with PVP chains through cation bridging association [32–34].
When PVP-SDS was used as a soft template, the particle sizes and morphologies of the
as-synthesized metallic nanoparticles would be affected by the soft template structure [35].
Therefore, the single or synergistic soft template effects of PVP and SDS on the synthesis of
the Au nanoparticles are studied to verify how the particle sizes and morphologies of the
as-synthesized Au nanoparticles are regulated by dint of the cation-bridging structure of
the PVP–SDS pseudo-polyanions. In this work, 2 mmol·L−1 c(NaOH) and 0.25 mmol·L−1

c(HAuCl4) were adopted because higher c(NaOH) or c(HAuCl4) (Figure S1) would result
in dominant Au nanoplates instead of other morphologies.

Au nanoparticles were synthesized in the above soft templates with a fixed c(PVP) and
ever-increasing c(SDS); their TEM images are shown in Figure 2 with the corresponding
LSPR spectra in Figure S2.

As a control by solely using PVP as both a reductant and a soft template, the obtained
Au nanoparticles in Figure 2A were mainly irregular nanospheroids with an average
equivalent particle size of 41 nm and without obvious nano-protrusion on the surface, and
thus they were simply stacked by a few of the larger primary Au nanocrystals due to the
lack of the confinement effects of the primary template provided by the PVP-bound SDS
micelles on the growth of the primary Au crystals in the absence of SDS.

The AuNFs in Figure 2B–D were obtained in the c(SDS) range of 2–15 mmol·L−1 that is
within the dual-critical concentration range (c1 and c2) of SDS in the presence of PVP [32,33].
The AuNFs possessed an average equivalent particle size range of 100–200 nm with rich
16–20 nm protrusion on the particle surface.

The above experimental results not only support the speculation that the PVP-bound
SDS micelles serve as the primary template to confine the primary Au crystals similar to
the micellar size in Figure 1 but also preliminarily reveal that PVP may display a secondary
template to induce the formation of AuNFs. The PVP chain promotes the accumulation and
stack of the controlled primary Au crystals in a finite space through selective adsorption and
causes the continuous reduction of HAuCl4 on the preferred adsorbed {111} crystal plane
of the primary Au crystals; both actions lead to the formation of AuNFs with increased
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particle size and surface protrusion. On the contrary, the Au nanoplates dominant in
Figure 2E–G possess higher c(SDS), and even the 2D AuNFs (Figure 2H) correspond to
the highest c(SDS) at 60 mmol·L−1. This is because excessive PVP-bound SDS micelles
associated with the PVP chains weakened the reduction power of PVP, accelerating the
nucleation of Au particles while slowing down the growth rate of the primary Au crystals
and leading to the reduction process dominated by the crystal growth rule instead of the
soft template control.
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Figure 2. TEM images of Au nanoparticles growing in PVP (50 g·L−1)–SDS–HAuCl4 (0.25 mmol·L−1)
solutions with c(SDS) at (A–H) 0, 2, 5, 15, 30, 45, 50 and 60 mmol·L−1. The data of d and h present the
particle size and the protrusion height, respectively.

Therefore, the above experimental results show that SDS is important for controlling
the synthesis of AuNFs because only adequate c(SDS) can induce the formation of AuNFs
and regulate both the particle size and the protrusion height of AuNFs or otherwise form
either Au nanospheroids in the absence of SDS or Au nanoplates and 2D AuNFs in response
to higher c(SDS).

Subsequently, with a fixed c(SDS) and ever-increasing c(PVP), the Au nanoparticles
were synthesized in SDS–PVP solutions (TEM, Figure 3; LSPR spectra, Figure S3).

Herein, PVP was the only reductant in the solution, so it is indispensable. The
ever-increasing c(PVP) means increasing reduction power and thus accelerating growth
rates of the primary Au crystals. The AuNFs exhibited the most obvious protrusion
at a c(PVP) of 50 g·L−1, indicating that for the formation of the AuNFs with obvious
nano-protrusion, the best synergy is balanced among the reduction rate of HAuCl4, the
competition between nucleation and the crystal growth of the gold particles, and the
stacking degree of the primary Au crystals affected by c(PVP). Overhigh c(PVP) (>50 g·L−1)
would lead to too fast a reduction rate to be controlled, resulting in a lack of control
of the particle sizes of Au nanoparticles and the presentation of a bimodal particle size
distribution; in addition, the surface protrusion of the Au nanoparticles tends to be flat due
to the Ostwald ripening effect.

Therefore, PVP acted as not only the in situ reductant in the primary template but also
as the secondary template to regulate the stacking degree of the primary Au crystals to
fabricate AuNFs.
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The next, the as-synthesized AuNFs are used to modify the bare GCE for nitrite
detection based on the electrocatalytic oxidation of NO2

−.

2.3. Electrocatalytic Oxidation of Nitrites Detected by Au/GCEs
2.3.1. The Electrochemical Behavior of NO2

−

The oxidation reaction of nitrites on Au/GCEs is irreversible (Equations (1) and (2)),
and the corresponding reaction mechanism [8,11,36] is shown in Equation (3).

NO−2
Au−−−−→NO2 + e− (1)

2NO2 + 2H2O−−→NO−3 + NO−2 + 2H+ (2)

NO−2 + H2O Au−−−−→NO−3 + 2H+ + 2e− (3)

The four Au nanoparticles with different shapes (Figure 4A1–D1, nanodendritic,
nanoflower, 2D nanoflower, and nanoplate) were used to modify the bare GCE to obtain
Au/GCEs (named AuND/GCE, AuNF/GCE, 2D-AuNF/GCE, and AuNP/GCE, respec-
tively) to construct electrochemical sensing platforms for nitrite detection. Some of them
were presented in Figures 2 and 3 for comparison as well. The electrochemical behavior
of NO2

− was detected with the four Au/GCEs at pH 5–9, as the cyclic voltammetry (CV)
plots show in Figure 4A2–D2.

With unmodified GCE, NO2
− at 5 mmol·L−1 (pH 7) induced an oxidation shoulder

peak at 0.820 V with a corresponding redox potential difference of 0.310 V on the CV
plots (Figure 5A), and the oxidation peak current (Ipa) was only 15 µA, which was too low
to determine the electrochemical behavior of NO2

−. However, on all tested Au/GCEs,
as shown in Figure 4A2–D2, NO2

− (5 mmol·L−1 at pH 5–9) provided an obvious sharp
oxidation peak with a narrow oxidation peak potential (Epa) within 0.800–0.820 V except in
Figure 4D2, which shows an undesired wide potential variation of 0.810–0.920 V. Meanwhile,
the Ipa values in Figure 4A2–C2 are as high as 120−150 µA compared to 50 µA in Figure 4D2,
that is, they are all much higher than that of the bare GCE in Figure 5A (15 µA).
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Figure 4. TEM images (A1–D1) of the Au nanoparticles growing in PVP–SDS–HAuCl4 and the
CV plots (A2–D2) referring to the electrocatalytic oxidation of nitrites (5 mmol·L−1) detected by
the corresponding Au/GCE at different pH values. A scan rate of 50 mV·s−1 and 10 scanning
turns; (A) the AuND/GCE in PVP (10 g·L−1)–SDS (5 mmol·L−1)–HAuCl4 (0.25 mmol·L−1), (B) the
AuNF/GCE in PVP (50 g·L−1)–SDS (5 mmol·L−1)–HAuCl4 (0.25 mmol·L−1), (C) the 2D-AuNF/GCE
in PVP (50 g·L−1)–SDS (60 mmol·L−1)–HAuCl4 (0.25 mmol·L−1), and (D) the AuNP/GCE in PVP
(50 g·L−1)–SDS (5 mmol·L−1)–HAuCl4 (1.0 mmol·L−1).
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Figure 5. CV plots of (A) NO2

− (5 mmol·L−1) detected with the bare GCE and (B) the mixed solution
of K3[Fe(CN)6] (5 mmol·L−1) and KCl (1 mol·L−1) detected by various Au/GCEs with a scan rate of
50 mV·s−1 and 10 scanning turns.

The Ipa of Au/GCEs reached the maximum value at pH 7; only the AuNF/GCE and the
2D-AuNF/GCE had some slight perturbation. A pH value of 7 is ideal for the determination
of NO2

− because NO2
− is unstable and easy to decompose in acidic solution, while it is

easily reduced to NH3 in alkaline solution [37]. The experimental results indicate that these
Au/GCEs can increase the electron transfer rate and improve the electrochemical activity of
the electrode surface, and these Au/GCEs modified by Au nanoparticles in Figure 4A1–C1
are more adaptable to the electrocatalytic oxidation and electrochemical detection of nitrites.
Hence, pH 7 was selected as one of the appropriate oxidation conditions because all Ipa in
Figure 4 reached the highest value at pH 7. Furthermore, the redox potential differences
in Figure 4A2–C2 are 0.285 V, 0.310 V, and 0.292 V at pH 7, indicating a slight decrease
compared with the bare GCE (0.310 V), meaning that the reversibility of Au/GCEs is
slightly improved.
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2.3.2. The Surface Area of Electrodes

The surface area of electrodes can be indicated by the anodic peak current Ipa since it
is proportional to the Ipa (Equation (4)) [21]; therefore, the surface area change of Au/GCEs
was investigated according to the Randles–Ševčík equation (Equation (4)).

Ipa = 2.69 × 10−5 × n3/2 × A× D1/2 × v1/2 × c (4)

where Ipa is the anodic peak current (µA), n is the number of electrons transferred, A is
the surface area of electrode (cm2), D is the diffusion coefficient of the detected molecules
(cm2·s−1), v is the scan rate (V·s−1), and c is the concentration of substance detected
(mmol·L−1).

As shown in Equation (5), the ratio of the surface area of Au/GCEs to that of GCE
(AAu/GCE/AGCE) is equal to the ratio of the Ipa of Au/GCE to that of GCE.

AAu/GCE

AGCE
=

Ipa, Au/GCE

Ipa, GCE
(5)

Figure 5B shows the CV curves of the solution of K3[Fe(CN)6] and KCl detected with
different Au/GCEs. Compared with the bare GCE, all Au/GCEs significantly reduced the
redox potential difference of K3[Fe(CN)6]. The Ipa values of the bare GCE, the AuND/GCE,
the AuNF/GCE, the 2D-AuNF/GCE, and the AuNP/GCE are 32.8 µA, 57.5 µA, 60.3 µA,
57.5 µA, and 49.2 µA, respectively. Substituting the Ipa, Au/GCE and Ipa, GCE values into
Equation (5), the corresponding AAu/GCE/AGCE values are 1.753, 1.838, 1.753, and 1.500,
respectively, indicating that the AuNF/GCE has the largest AAu/GCE/AGCE to provide the
most catalytic sites for nitrite oxidation.

2.3.3. The Influence of the Scan Rate on Electrochemical Behavior

According to the Laviron theory equation [38] (Equation (6)), a higher scan rate would
yield a higher oxidation peak potential Epa. The influence of the scan rate on electrochemical
behavior (Figure 6A1–D1) was investigated with the four Au/GCEs (Figure 4A1−D1) at
pH 7 with a scan rate range of 20–200 mV·s−1.

Epa = E0′ +
RT
αnF

ln
RTk0

αnF
+

RT
αnF

ln v (6)

where Epa is the oxidation peak potential (V), E0′ is the standard potential (V), R is the
ideal gas constant (8.314 J·mol−1·K−1), F is the Faraday constant (96,485 C·mol−1), α is
the electron transfer coefficient, k0 is the standard rate constant, n is the electron transfer
number (2), and v is the scan rate (V·s−1).

As shown in Figure 6, all assayed Au/GCEs presented an effective electrochemical re-
sponse on NO2

−. The Ipa increased linearly with the increase in the scan rate (Figure 6A2–D2),
indicating that the electron transfer of NO2

− to NO3
− on these Au/GCEs was con-

trolled by the adsorption step [39]. Meanwhile, lnv presented a linear relation with Epa
(Figure 6A3–D3), which is consistent with the literature [8].

The corresponding electron transfer coefficients were obtained by substituting the
electron transfer number (2) of nitrite oxidation into Equation (6), and the corresponding α
values of the four Au/GCEs (Figure 4A1–D1) were 0.495, 0.819, 0.655, and 0.877, respectively.
Except for the dendritic Au nanoparticles in Figure 4A1, the remainder were all higher
than 0.5, meaning these morphologies of Au nanoparticles corresponding to Figure 4B1–D1
can accelerate the oxidation rate of NO2

− [19,40] and thus improve the electrochemical
activity of these Au/GCEs. Nevertheless, the higher current signal of the dendritic Au
nanoparticles may be attributed to the fact that more catalytic active sites were provided by
the dendritic shape.
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oxidation of nitrites (5 mmol·L−1) detected by various Au/GCEs as (A) the AuND/GCE, (B) the
AuNF/GCE, (C) the 2D-AuNF/GCE, and (D) the AuNP/GCE at pH 7 with a scan rate range of
20–200 mV·s−1 and 10 scanning turns.

2.3.4. The Limit of Detection of NO2
− Detected by the Au/GCEs

The limit of detection (LOD) of NO2
− was detected by these Au/GCEs using the

CV approach, as shown in Figure 7. The lowest c(NO2
−) detected by the four Au/GCEs

in Figure 4A1–D1 are 0.01 µmol·L−1, 0.01 µmol·L−1, 0.05 µmol·L−1, and 100 µmol·L−1,
corresponding to Ipa values of 20.3 µA, 22.2 µA, 10.9 µA, and 2.1 µA, respectively. The ex-
perimental results show that these Au/GCEs possess higher sensitivity for nitrite detection
than unmodified GAE; the GCE modified by AuNFs (Figure 4B1) provided the strongest
catalytic activity and greatest conductivity for nitrite oxidation, followed by the dendritic
Au nanoparticles (Figure 4A1) and the 2D AuNFs (Figure 4C1), whilst the Au nanoplates
(Figure 4D1) were the worst.
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−) detected by vari-

ous Au/GCEs as (A) the AuND/GCE, (B) the AuNF/GCE, (C) the 2D-AuNF/GCE, and (D) the
AuNP/GCE at pH 7 with a scan rate of 50 mV·s−1 and 10 scanning turns.
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3. Discussion
3.1. The Selection of the Optimal Electrode

The preferred electrode was screened out by comparing the electrochemical parameters
of the four Au/GCEs in Figure 8.
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Figure 8. (A) Epa and (B) Ipa values of four Au/GCEs that detected nitrites (5 mmol·L−1) at pH 7,
(C) AAu/GCE/AGCE, and (D) the LOD of NO2

− detected by these Au/GCEs.

As shown in Figure 8A, the AuNP/GCE presented the undesired highest Epa value,
and the others exhibited similar Epa values at 5 mmol·L−1 of sodium nitrite and pH 7. Mean-
while, the AuNP/GCE also yielded the undesired lowest Ipa value while the AuNF/GCE re-
sulted in the highest Ipa value (Figure 8B). Figure 8C illustrates that the specific surface areas
of all Au/GCEs (AAu/GCE/AGCE) were larger than that of bare GCE, and the AuNF/GCE
provided the largest (1.838-fold that of GAE), which means that the AuNF/GCE may
have the most catalytic active sites or the strongest adsorption capacity and conductivity.
Therefore, both the AuNF/GCE and the AuND/GCE (Figure 8D) had the desired low-
est detection limit of c(NO2

−) (0.01 mmol·L−1). The experimental results prove that Au
nanoparticles with rich nano-protrusion and a smaller particle size are conducive to the
increase in the specific surface areas of Au/GCEs.

In summary, the AuNF/GCE has the largest specific surface area (1.838-fold that of
ACE), providing the most catalytic active sites and the lowest detection limit of c(NO2

−)
(0.01 µmol·L−1), so the AuNF/GCE is the best candidate for Au/GCEs to construct the
optimal electrochemical sensing platform for the subsequent nitrite detection in this study.

3.2. The Linear Range and Reproducibility of the AuNF/GCE and Interference for Electrocatalytic
Nitrite Oxidation

The correlation between c(NO2
−) and Ipa at pH 7 was investigated with the AuNF/GCE

as shown in Figure 9A,B. The electrocatalytic oxidation of nitrites detected by the AuNF/GCE
shows a linear relationship between Ipa and c(NO2

−) in the range of 0.01–5.00 µmol·L−1,
and the calculated sensitivity is 1.966 µA·L·µmol−1. The relative results obtained from
other reported Au-modified electrodes using either the same CV method or other detection
techniques such as differential pulse voltammetry (DPV) are compared in Table 1. The
AuNF/GCE demonstrated the lowest detection limit of NO2

− in Table 1; thus, the higher
sensitivity maintains the linear detectable c(NO2

−) range within two orders of magnitude
in such a low range of c(NO2

−), which can provide high operational flexibility for sample
pretreatment and preparation.

Table 1. Comparison of different Au/GCEs for nitrite detection.

Au-Modified Electrode Technique Linear Range
(µmol·L−1)

Limit of Detection
(µmol·L−1)

Sensitivity
(µA·L·µmol−1)

Au WNWs/CNFs-Gr [8] Amperometric 1.98–3771 1.24 –
GNPs/UiO-66-NH2/Rgo [12] DPV 5.0–768 3.7 –
Au/CNHN/GCE [13] Chronoamperometry 0.05–1150 0.017 0.00469
AuNP/PCG/FTO [19] DPV 0.095–200 0.095 0.063
AuNC@Cu2O [23] Amperometric 0.4–806.6 0.015 18.19
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Table 1. Cont.

Au-Modified Electrode Technique Linear Range
(µmol·L−1)

Limit of Detection
(µmol·L−1)

Sensitivity
(µA·L·µmol−1)

Au-PPy-C/g-C3N4 NCs/GCE [24] DPV 1.5–22.5 1.11 2.8816
Au/GCE [41] CV 5–500 0.5 –
MoS2/Au/CM/PGE [42] DPV 20–350 0.022 0.0216
GONRs-AuNPs/GCE [43] CV 10–10,000 1.3 0.00775
Au4.5NPs@MoS2/rGO/GCE [16] Amperometric 0.2–2600 0.038 0.158
Au/polyaniline/carbon paste
electrode [44] CV 38–1000 25 –

AuNF/GCE (this work) CV 0.01–5.00 0.01 1.966
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Figure 9. (A) CV plots and (B) Ipa–c(NO2
−) of the AuNF/GCE in electrocatalytic oxidation of nitrites

at different c(NO2
−) values of 0.01–5.00 µmol·L−1 and pH 7 with a scan rate of 50 mV·s−1 and

10 scanning turns, and (C) repeatability of and (D) interference of the optimal AuNF/GCE.

As shown in Figure 9C, the electrocatalytic oxidation of nitrites was determined re-
peatedly eight times on a single AuNF/GCE with 10 scanning turns each time, and the
corresponding Ipa decreased slowly within 4.0%, showing good stability of the AuNF/GCE.
Furthermore, the anti-interference of the AuNF/GCE in nitrite detection was investi-
gated under interference from NaCl and KCl (100 times) or glucose, citric acid, L-leucine,
L-glutamic acid, and L-lysine (10 times) as high as the tested c(NO2

−). The Ipa values
of nitrite solutions with or without interfering substances were obtained from the corre-
sponding CV curves and processed with normalization, and the corresponding normalized
response values were obtained as the ratios. The closer these ratios are to 1, the stronger the
anti-interference of the modified electrode. The experimental results from Figure 9D show
that the above interfering substances did not cause significant interference to the results
detected by the AuNF/GCE, indicating that the AuNF/GCE has strong anti-interference.

3.3. The Possible Mechanism of Nitrite Detection with the AuNF/GCE

The AuNF/GCE presented potential in the sensing of NO2
− with feasibility and

practicability. The mechanism in preparation of the AuNF and AuNF/GCE and the
electrocatalytic oxidation and detection of NO2

− by the AuNF/GCE are proposed in
Scheme 1, illustrating the advantages of the greenness and safety, high sensitivity, flexible
operation, and feasibility of the electrochemical sensing platform relying on the excellent
performance of the AuNF/GCE.
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Scheme 1. Schematic mechanism of nitrite detection with the optimal AuNF/GCE synthesized by
the PVP–SDS pseudo-polyanions with a two-stage soft template function.

4. Materials and Methods
4.1. Materials

PVP (K30, MW = 40,000, 99%) was purchased from International Specialty Products
Inc. SDS (99%) was purchased from Acros Organics. Chloroauric acid (HAuCl4 ≥ 99.9%),
sodium nitrite (AR), and other reagents (AR) were purchased from China Sinopharm Co.,
Ltd, Shanghai, China. Ultrapure Millipore water (18.2 MΩ·cm) was used throughout
the experiments.

4.2. Synthesis of Au Nanoparticles

PVP and SDS solutions were mixed well in a 20 mL glass reactor and shaken in a
water bath at 40 ◦C for 30 min, followed by the addition of HAuCl4 and NaOH successively,
and vortexed well. Then, the above mixture was shaken at 40 ◦C in the dark for another
60 min. The resultant Au nanoparticles were separated by centrifugation at 12,000 rpm
(TG-16, Lu Xiangyi Centrifuge Instrument Co., Ltd., Shanghai, China), dispersed in water
to form colloidal gold, and stored in the dark for later use. The final concentrations
of PVP, SDS, HAuCl4, and NaOH in the above mixtures were in the following ranges:
c(PVP), 5–100 g·L−1; c(SDS), 0–60 mmol·L−1; c(HAuCl4), 0.25 mmol·L−1; and c(NaOH),
2 mmol·L−1.

4.3. Characterization of Au Nanoparticles

The morphology and lattice spacing of the Au nanoparticles were imaged by trans-
mission electron microscopy (TEM, JEM-2100, JEOL, Tokyo, Japan) with an accelerating
voltage of 200 kV.

The crystalline phases of the Au nanoparticles were characterized by X-ray diffraction
(XRD, D8Advance, Bruker, Karlsruhe, Germany) with a conventional θ–2θ goniometer
using Cu Kα radiation (λ = 0.15406 nm, scan rate = 4◦·min−1, and scan 2θ range = 20–90◦).

The local surface plasmon resonance (LSPR) characteristic peaks of the Au nanoparti-
cles were determined with ultraviolet spectrophotometry (UV-Vis, TU1950, Beijing Purkinje
General Instrument Co., Ltd., Beijing, China).
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4.4. The Electrochemical Behavior of Nitrites Detected by Au/GCEs

The electrochemical activity of the samples was investigated with an electrochemical
workstation (CS350, Wuhan Corrtest Instruments Co., Ltd., Wuhan, China) with a three-
electrode system that included an opposite electrode (platinum wire), a reference electrode
(saturated calomel electrode), and a working electrode (GCE); the GCE was modified by
Au nanoparticles (Au/GCEs) to construct the electrochemical sensing platform for nitrite
detection. The platinum electrode and the bare GCE were purchased from Tianjin Aida
Hengsheng Technology Development Co., Ltd., Tianjin, China, and the calomel electrode
was purchased from INESA in China. The preparation of Au/GCEs was as follows: first,
the bare GCE with a diameter of 3.0 mm was polished in the Al2O3 slurry with a diameter
of 0.3–0.7 µm, and then, the polished GCE was cleaned with ethanol, ultrapure water,
and ethanol alternately under ultrasound for 5 min. After the cleaned GCE was dried by
nitrogen blowing, it was placed in 0.1 mol·L−1 of K3[Fe(CN)6] and 0.1 mol·L−1 of H2SO4
solution for 200 consecutive cycles by CV to activate the GCE surface. The above colloidal
Au (10 µL) was dropped onto the activated GCE surface and dried naturally for 8–12 h to
obtain Au/GCEs modified with various Au nanoparticles. All solutions for electrochemical
detection were prepared with 0.1 mol·L−1 phosphate buffer solution.

The electrochemical behavior of NO2
− was investigated by the CV approach to select

the optimal Au/GCE; the initial potential was 1.0 V, the termination potential was 0.1 or
0.2 V, and 10 cycles were used.

The reproducibility, repeatability, and stability of the optimal Au/GCE were tested
under the above-mentioned conditions.

The influence of inorganics (0.5 mol·L−1 of NaCl and KCl) and organics (0.05 mol·L−1

of glucose, citric acid, L-leucine, L-glutamic acid, and L-lysine) on the electrochemical
behavior of NO2

− was investigated to verify the interference and stability of the optimal
Au/GCE.

5. Conclusions

Au nanoparticles were synthesized in the pseudo-polyanions of PVP–SDS by dint
of the in situ reduction of HAuCl4 with PVP. The experimental results reveal that the
particle sizes and morphologies of the Au nanoparticles at room temperature can be
regulated by choosing the concentrations of PVP and SDS, in which the PVP-bound SDS
micelles may serve as the primary template to confine the primary Au crystals. PVP served
as the in situ reductant in the primary template and also as the secondary template to
balance the reduction rate of HAuCl4 and the stacking degree of the primary Au crystals.
Therefore, four types of Au nanoparticles with nanodendritic, nanoflower, 2D nanoflower,
and nanoplate shapes were obtained, among which the Au nanoflowers (AuNFs) had an
average equivalent particle size range of 100–200 nm with 16–20 nm of rich protrusion on
the surface.

Furthermore, the above four Au nanoparticles were applied to modify the bare GCE
to obtain different Au/GCEs to construct electrochemical sensing platforms for nitrite de-
tection. The cyclic voltammetry (CV) measurement demonstrated that the four Au/GCEs
exhibited a sharp oxidation peak with a narrow oxidation peak potential (Epa) within
0.800–0.820 V and Ipa values as high as 50–150 µA, indicating that these four Au nanoparti-
cles endowed the Au/GCEs with improved electrochemical activity in comparison to the
bare GCE. The GCE modified by a typical AuNF (the AuNF/GCE) provided the largest
AAuNF/GCE/AGCE of 1.838 and the lowest detectable c(NO2

−) of 0.01 µmol·L−1 with an Ipa
of 22.2 µA, followed by the AuND/GCE. This reveals the morphological effects of the Au
nanoparticles on the electrochemical sensing platforms for nitrite detection, that is, the Au
nanoparticle with rich nano-protrusions and smaller size is conducive to the increase in the
Au/GCE surface area, providing abundant catalytic activity sites to enhance the detection
sensitivity and further upgrade the LOD.

Compared with other previously reported Au-modified electrodes, the AuNF/GCE
presented the lowest LOD and the highest sensitivity in the low linear c(NO2

−) detection
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range of 0.01–5 µmol·L−1. The AuNF/GCE also displayed great anti-interference ability
against some concentrated inorganic and organic interference substances together with
good reproducibility, showing high operational flexibility for sample pretreatment and
preparation, as well as feasibility in the application of the electrochemical sensing platforms.

Supplementary Materials: The following supporting information can be downloaded at https://
www.mdpi.com/article/10.3390/molecules28134934/s1, Figure S1: TEM of Au nanoplates growing
in PVP (50 g·L−1)–SDS (5 mmol·L−1)–HAuCl4 (1.0 mmol·L−1) solution; Figure S2; LSPR spectra of
Au nanoparticles growing in PVP (50 g·L−1)–SDS–HAuCl4 (0.25 mmol·L−1) solutions with different
SDS concentrations; Figure S3: LSPR spectra of Au nanoparticles growing in PVP–SDS (5 mmol·L−1)–
HAuCl4 (0.25 mmol·L−1) solutions with different PVP concentrations.
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