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Abstract: Single-crystal-to-single-crystal metalation of organic ligands represents a novel method
to prepare metal–organic complexes, but remains challenging. Herein, a hierarchical self-assembly
{(H12L8)·([N(C2H5)4]+)3·(ClO4

−)15·(H2O)32} (1) (L = tris(2-benzimidazolylmethyl) amine) consisting
of π-stacked cubes which are assembled from eight partially protonated L ligands is obtained. By
soaking the crystals of compound 1 in the aqueous solution of Co(SCN)2, the ligands coordinate
with Co2+ ions stoichiometrically and ClO4

− exchange with SCN− via single-crystal-to-single-crystal
transformation, leading to {([CoSCNL]+)8·([NC8H20]+)3·(SCN)11·(H2O)13} (2).

Keywords: self-assembly; π-stacked cube; metalation; single-crystal-to-single-crystal transformation;
ion exchange

1. Introduction

Metal–organic complexes have been widely used in a lot of fields including lumines-
cence [1–8], electrical conductivity [9–13], magnetism [14–19], catalysis [20–25], and so on.
In these metal–organic-complex-relevant applications, the metal ions usually act as the
functional centers. For example, metal ions can be the luminescent centers in luminescent
materials [26], paramagnetic centers in magnetic materials [27], and the active centers
in catalysts [28]. Therefore, the metal ions are usually critical to the functionalities of
metal–organic complexes.

Metal–organic complexes are traditionally prepared homogeneously by dissolving
inorganic metal salts and ligands in solution, and crystals of metal–organic complexes
are harvested by crystallization. The crystalline morphology of a metal–organic complex
prepared by this strategy is difficult to control. Metalation also occurs heterogeneously
via single-crystal-to-single-crystal transformation [29–33]. In general, the metal–organic
complexes prepared by this method preserve the parent morphology [30,31]. Therefore,
the crystal structures of the produced metal–organic complexes can be easily predicted.
Recently, such a post-synthetic metalation method has been used to mount metal active
sites onto the open chelating sites of metal–organic frameworks (MOFs) to endow the
framework with catalytic activity [32,33]. Specifically, MOFs with open chelating sites were
firstly synthesized using linkers with hard carboxylate donors and a soft chelating moiety.
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Single-crystal-to-single-crystal metalation of the open chelating sites was then achieved
under solvothermal conditions [32,33]. We envisage that this metalation method can be
used to achieve hierarchical self-assembly bearing open chelating sites, which has not
been reached.

Recently, the tripodal ligands tris(2-benzimidazolylmethyl) amine (L) and tris(2-
naphthimidazolylmethyl) amine have attracted our attention because of their chelating
sites formed by four nitrogen atoms [34–37]. The benzimidazolylmethyl arms enable L to
self-assemble into π-stacked polyhedrons with open chelating sites through π···π interac-
tions. These open chelating sites provide the possibility of single-crystal-to-single-crystal
metalation. In this work, we report the single-crystal-to-single-crystal metalation of a hierar-
chical self-assembly {(H12L8)·([N(C2H5)4]+)3·(ClO4

−)15·(H2O)32} (1) consisting of π-stacked
cubes. Upon immersing the crystals of compound 1 into the aqueous solution of Co(SCN)2,
Co2+ ions were mounted onto the chelating sites of L stoichiometrically and ClO4

− ex-
changed with SCN− leading to the crystals of {([CoSCNL]+)8·([NC8H20]+)3·(SCN)11·(H2O)13} (2).

2. Results and Discussion
2.1. Structural Characterization of the Hierarchical Self-Assembly of Compound 1

The self-assembly of iron(II) perchlorate hydrate (Fe(ClO4)2·6H2O) with L in MeOH
with traces of tetraethylammonium hydroxide ([N(C2H5)4]OH) affords yellow cubic crys-
tals of {(H12L8)·([N(C2H5)4]+)3·(ClO4

−)15·(H2O)32} (1) (Figure S1). The formula was deter-
mined by a combination of single-crystal X-ray crystallography (Table S1) and TG analysis

(Figure S2). Compound 1 crystallizes in the cubic space group Fm
−
3c. The asymmetric

unit contains 1/3 partially protonated L, 1/8 [N(C2H5)4]+, 5/8 ClO4
−, and disordered

H2O molecules. Surprisingly, the chelating site of L (Figure 1a) was not occupied by FeII

during the self-assembly process which may be attributed to the fact that FeII is too soft to
coordinate with the chelating site of L.
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The crystal structure of compound 1 can be described as a hierarchical self-assembly 
consisting of π-stacked cubes, and the hierarchical structural complexity is best 

Figure 1. Hierarchical structure of the compound 1. (a) The structure of the isolated ligand L. (b) The
cubic cage [H12L8]12+ formed by eight partially protonated ligands L (the π···π interactions are
indicated by purple dotted lines). (c) The 3D hierarchical self-assembly with [N(C2H5)4]+ and ClO4

−

positioned at the interstitial regions between cubes. (inset: adjacent cubic cages with opposite chirality
are denoted by ∆ and Λ, respectively).

The crystal structure of compound 1 can be described as a hierarchical self-assembly
consisting of π-stacked cubes, and the hierarchical structural complexity is best appreciated
by describing it in a bottom-up fashion. As shown in Figure 1, eight partially protonated
L ligands associate together through π···π interactions forming a homochiral π-stacked
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cube, and the cube [H12L8]12+ carries twelve protons to compensate the negative charges
from ClO4

−. Each partially protonated L locates on the vertices of the cube associating
with its three neighbors (Figure 1b). The cubes with opposite handedness are connected by
[N(C2H5)4]+ and ClO4

− forming a three-dimensional (3D) hierarchical self-assembly with
[N(C2H5)4]+ and ClO4

− positioned at the interstitial regions between the cubes. Due to the
simple cubic packing (SC) of the π-stacked cubes in lattice, there exists one-dimensional
(1D) channels filled with disordered H2O molecules (Figure 1c).

2.2. Single-Crystal-to-Single-Crystal Metalation of Compound 1

Since we have obtained the supramolecular self-assembly with open chelating sites, we
then try to verify the possibility of mounting metal ions onto the chelating sites via single-
crystal-to-single-crystal transformation. Soaking in the aqueous solution of Co(SCN)2
(0.15 mol/L), the crystals gradually change from yellow to purple (Figure 2). The pho-
tographs showing the color change in the single crystal of compound 1 at different time
intervals during the metalation process are shown in Figure S3. After being soaked for ten
days, an intact crystal was picked out for structural determination. Single-crystal X-ray
crystallography confirmed the successful metalation, and compound 1 transitioned to a sim-
ilar hierarchical self-assembly {([CoSCNL]+)8·([NC8H20]+)3·(SCN)11·(H2O)13} (2), which
consists of π-stacked cubes of {[CoSCNL]+}8. The formula was also determined by a com-
bination of single-crystal X-ray crystallography (Table S1) and TG analysis (Figure S4). A
mixture of L (40.8 mg, 0.1 mmol), Co(SCN)2 (35.0 mg, 0.2 mmol), and tetraethylammonium
hydroxide ([N(C2H5)4]OH) (0.06 mL) in 5 mL methanol was stirred at room temperature
for 5 min. The resulting solution was placed in a beaker undisturbed at room temperature
for volatile crystallization; however, compound 2 was not obtained.
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Figure 2. The photographs showing the single-crystal-to-single-crystal transformation from com-
pound 1 to compound 2.

The asymmetric unit of compound 2 contains 1/3 [CoSCNL]+, 1/8 [N(C2H5)4]+,
11/24 SCN−, and disordered H2O molecules. The π-stacked cube structure is preserved
after metalation, and the size of the cube remains almost unchanged. The mounted Co2+

ion coordinates with four N atoms from the same L ligand and one SCN− ion, exhibiting a
trigonal-bipyramidal geometry (Figure 3a). All the coordinated SCN− in the [CoSCNL]+

cations point inward to the center of the cube (Figure 3b). The crystal crystallizes in

the same space group Fm
−
3c before and after metalation, but the crystallographic axes

significantly shrink from 39.96 to 38.66 Å (Table S1, Figure 4). The unit cell contraction
is cross-checked by the significant shift to higher angles of the powder X-ray diffraction
(PXRD) peaks of compound 2 compared to those of compound 1. For example, the peaks
indexed to (220), (400), and (622) shift from 6.26◦, 8.84◦, and 15.28◦ in compound 1 to
6.44◦, 9.04◦, and 15.58◦ in compound 2, respectively (Figure 5a). However, the counter
anions ClO4

− at the interstitial regions between cubes in compound 1 were replaced by
SCN− in compound 2 (Figure 3c) which can also be revealed by the IR spectrum change
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(Figure 5b) from compound 1 to compound 2 [38,39]. The absorbances at 1020 and 620 cm−1

characteristic of ClO4
− become unobvious, and the absorbance at 2225 cm−1 characteristic

of SCN− appears. The side lengths of a cubic cage with the central N atom of the ligand
L as the vertex are slightly expand after the single-crystal transformation (from 10.415 to
10.618 Å), respectively. We speculate that the anion exchange from tetrahedral ClO4

− to
linear SCN− is the major reason for the observed significant unit cell contraction (from
63,829 to 57,762 Å3) (Figure 4).
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Figure 3. Structure of compound 2. (a) Structure of [CoSCNL]+. (b) The π-stacked cubes of
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regions between the cubes. (inset: adjacent cubic cages with opposite chirality are denoted by ∆ and
Λ, respectively).
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To clarify whether the metalation of the ligand Lis complete, a temperature-dependent
magnetization study was performed on compound 2. The χmT value of 19.41 cm3 K mol−1

per π-stacked cube is higher than the spin-only value of eight isolated high-spin CoII ions
(15 cm3 mol−1 K) (Figure 5c) [40,41], suggesting all the L ligands are coordinated with CoII

ions. Upon cooling, the χmT value keeps almost constant until 100 K, and then begins to
decrease, reaching a value of 11.81 cm3 mol−1 K at 2 K, implying very weak antiferromag-
netic coupling between CoII ions. In the range of 2−300K, the magnetic susceptibility data
follows the Curie−Weiss law, providing θ = −4.42 K and C = 19.47 cm3 K mol−1, confirm-
ing the dominant weak antiferromagnetic interaction between the CoII ions. To provide
further insight into the magnetism of compound 2, the field-dependent magnetizations
were measured. As shown in Figure 5d, the magnetization increases slowly with increasing
field and reaches a value of 16.24 Nβ at 50 K Oe without obvious hysteresis, which is
consistent with the weak antiferromagnetic couplings between CoII ions [42,43].

3. Experimental
3.1. Materials and Physical Measurements

The ligand tris(2-benzimidazolylmethyl) amine (L) was synthesized according to the
procedure reported in the literature [44], and all the other reagents were commercially
obtained and used without further purification. Scanning electron microscopy (SEM;
Hitachi SU1510, Chiyoda-ku, Tokyo, Japan) analysis was carried out on a Hitachi SU1510
SEM. Powder X-ray diffraction (PXRD; Miniflex 600, Akishima, Rigaku, Tokyo, Japan)
patterns were performed on a Rigaku Miniflex 600 diffractometer with Cu-Kα radiation
using flat plate geometry. Thermogravimetric analysis (TGA/DSC 1, Mettler Toledo, Zurich,
Switzerland) was performed on a Mettler Toledo TGA/DSC 1 system with a heating rate
of 10 K/min under an argon atmosphere. Fourier-transform infrared (FTIR; Nicolet iS 50,
Thermo Fisher, Waltham, MA, USA) spectra were recorded in the range of 500–4000 cm−1

on a Thermo Nicolet is50 FT-IR spectrometer at room temperature. Magnetic measurements
(MPMS-5S SQUID, Quantum Design, San Diego, CA, USA) were performed on a MPMS-5S
SQUID magnetometer under an external field of 1000 Oe.
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3.2. Synthesis of Compounds 1 and 2

Synthesis of {(H12L8)·([N(C2H5)4]+)3·(ClO4
−)15·(H2O)32} (1): A mixture of L (40.8 mg,

0.1 mmol), Fe(ClO4)2·6H2O (76.4 mg, 0.3 mmol), and tetraethylammonium hydroxide
([N(C2H5)4]OH) (0.06 mL) in 5 mL methanol was stirred at room temperature for 5 min.
The resulting solution was placed in a beaker undisturbed at room temperature. Yellow
cubic crystals of compound 1 were obtained within seven days. Yield: 80% based on
L ligand.

Synthesis of {([CoSCNL]+)8·([NC8H20]+)3·(SCN)11·(H2O)13} (2). Upon immersing the
crystals of compound 1 in the aqueous of Co(SCN)2 (0.15 mol/L) for 10 days, the crystals
of compound 2 were harvested as purple crystals.

3.3. Crystallography

Single-crystal X-ray data were harvested on a Bruker D8 Venture diffractometer with
Mo-Kα radiation at 200 K. Structures were solved using a direct method and refined
by the full-matrix least-squares technique on F2 with the SHELXTL 2014 program [45].
All the H atoms were geometrically generated and refined using a riding model. The
X-ray crystallographic coordinates for structures reported in this article have been de-
posited at the Cambridge Crystallographic Data Centre (CCDC) under deposition numbers
2266971–2266972. These data can be obtained free of charge from The Cambridge Crystal-
lographic Data Centre via www.ccdc.cam.ac.uk/data_request/cif (accessed on 2 June 2023).
Detail crystallographic data are listed in Table S1.

4. Conclusions

In conclusion, we have synthesized a hierarchical self-assembly consisting of π-stacked
cubes with open chelating sites. Learning from the single-crystal-to-single-crystal meta-
lation of MOFs, metal ions were successfully mounted onto the chelating sites via single-
crystal-to-single-crystal transformation. This strategy may be used for metalation of other
supramolecular frameworks with open coordination sites, thus providing a new method of
synthesizing metal–organic complexes.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/molecules28134923/s1, Table S1: Crystallographic data of the
synthetic compounds (1 and 2), Figure S1: Scanning electron microscope (SEM) image of a single
crystal of compound 1; Figure S2: TGA for compound 1; Figure S3. The photographs showing the
color change in the single crystal of compound 1 at different time intervals during the metalation
process. Figure S4: TGA for compound 2.
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