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Abstract: Phenylketonuria (PKU) is a rare metabolic disorder caused by mutations in the phenylala-
nine hydroxylase gene. Depending on the severity of the genetic mutation, medical treatment, and
patient dietary management, elevated phenylalanine (Phe) may occur in blood and brain tissues.
Research has recently shown that high Phe not only impacts the central nervous system, but also
other organ systems (e.g., heart and microbiome). This study used ex vivo proton nuclear magnetic
resonance (1H-NMR) analysis of urine samples from PKU patients (mean 14.9 ± 9.2 years, n = 51) to
identify the impact of elevated blood Phe and PKU treatment on metabolic profiles. Our results found
that 24 out of 98 urinary metabolites showed a significant difference (p < 0.05) for PKU patients com-
pared to age-matched healthy controls (n = 51) based on an analysis of urinary metabolome. These
altered urinary metabolites were related to Phe metabolism, dysbiosis, creatine synthesis or intake,
the tricarboxylic acid (TCA) cycle, end products of nicotinamide-adenine dinucleotide degradation,
and metabolites associated with a low Phe diet. There was an excellent correlation between the
metabolome and genotype of PKU patients and healthy controls of 96.7% in a confusion matrix model.
Metabolomic investigations may contribute to a better understanding of PKU pathophysiology.

Keywords: phenylketonuria; metabolomics; Ex Vivo 1H-NMR analysis spectroscopy; genotype;
pathogenesis

1. Introduction

Phenylketonuria (PKU; OMIM#261600) is a rare metabolic disorder caused by mu-
tations in the phenylalanine hydroxylase (PAH) gene. Depending on the severity of the
genetic mutation, patient adherence to dietary phenylalanine (Phe) restriction, and the
efficacy of medical treatments, elevated blood Phe may occur in blood and brain tissues. If
not diagnosed and treated early in the neonatal screening program, this elevated blood Phe
can cause intellectual disability, behavioral and psychiatric problems, microcephaly, motor
deficits, eczematous rash, autism, seizures, and developmental problems. The monitoring
of treatment in PKU patients is based on blood Phe using target Phe levels for different
age groups [1,2]. Up to now, the traditional explanation for the toxic effect of elevated
Phe on brain development and brain function has been neurotransmitter depletion [3,4]
and amino acid imbalances [5]. However, in addition to these neuropathological effects,
elevated blood Phe has been observed to adversely affect other organ systems (e.g., eye [6,7]

Molecules 2023, 28, 4916. https://doi.org/10.3390/molecules28134916 https://www.mdpi.com/journal/molecules

https://doi.org/10.3390/molecules28134916
https://doi.org/10.3390/molecules28134916
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/molecules
https://www.mdpi.com
https://orcid.org/0000-0003-4986-8006
https://orcid.org/0000-0002-9702-7802
https://orcid.org/0000-0001-7706-7463
https://doi.org/10.3390/molecules28134916
https://www.mdpi.com/journal/molecules
https://www.mdpi.com/article/10.3390/molecules28134916?type=check_update&version=1


Molecules 2023, 28, 4916 2 of 19

and heart [8–10]). A recent review has proposed that the explanation for peripheral organ
involvement in the pathology of PKU involves energy dysregulation, oxidative stress [11],
and the gut microbiome [12]. Dietary Phe restriction and/or the special semisynthetic,
low-Phe medical food diet intended to benefit patients with PKU may also impact normal
metabolic processes. Therefore, our understanding of the pathology of PKU is expanding
to include other, more complex, dysregulated pathways.

Different analytical techniques have been used to investigate the adverse impact of
elevated blood Phe on metabolic pathways, substances, and organ systems [10,12–16].
Analyzing the quantity of small molecules (i.e., the metabolome) may lead to a better
insight into the impact of elevated Phe on pathways and organ systems. In addition,
methods using untargeted and targeted metabolomics [17–20] may improve the diagnosis
and treatment of inborn errors of metabolism. Progress in nuclear magnetic resonance
spectroscopy (NMR) technology in analyzing the metabolome may offer an additional
method to study metabolic diseases [21–25].

The aim of this study is twofold: (1) to investigate if the urinary metabolome corre-
lates with the severity of the genetic defect (genotype) and (2) to reveal the impacts of
elevated blood Phe and/or dietary and medical treatments on metabolic pathways and
the gastrointestinal microbiome using targeted and untargeted metabolomic analysis in
the urine.

2. Results
2.1. Patient Characteristics

All patients were diagnosed and treated shortly after birth. The age range was
0.25–33 years for PKU patients and age-matched healthy controls. Table 1 shows that
there was no significant difference for age, gender, or for urinary creatinine in PKU patients
and age-matched controls.

Table 1. Data for age, gender, and urinary creatine for age-matched healthy controls compared to
patients with PKU.

Mean (±SD) or Percentage p-Value

Healthy Controls (n = 51) PKU Patients (n = 51)

Gender (% female) 52.9 51.0

Age (years) 14.9 ± 9.2 14.9 ± 8.2 0.545

Creatinine [mmol/mol Crea] 8.2 ± 7.0 8.2 ± 7.3 0.857

2.2. Metabolome and Genotype

Figure 1 shows a clear discrimination between the spectroscopic urinary fingerprints
of the classical PKU (cPKU) group (red ellipsoid, n = 36) and healthy controls (blue ellipsoid,
n = 51). The mild PKU (mPKU) patients (n = 12) are predicted between the cPKU group and
healthy controls. Because of the small numbers, no differences were calculated in those who
were treated with sapropterin (sapropterin dihydrochloride/tetrahydrobiopterin/BH4),
but they are more similar to the healthy control group. All the 36 cPKU patients had a
genotype/phenotype value (GPV) of 0–2.7; PKU patients with GPV > 2.7–6.9 are outside
and between cPKU and healthy controls.

There are two exceptions. For patient ID 137, the urinary fingerprint of this patient
is predicted in the cPKU group, even though he is defined as mPKU. However, he was
not treated with sapropterin, and his plasma Phe level was 1118 µmol/L. For patient ID
385, the NMR spectrum is predicted to be in the healthy control group. His phenotype
was evaluated between mPKU and mild hyperphenylalaninemia (MHPA) [26]. He was not
treated with sapropterin, but with a low Phe-restricted diet. Three patients represented by
a diamond (♦) symbol in Figure 1B had blood Phe levels and/or genetic data that were not
meaningful for a clear phenotype definition: two of them are predicted in the cPKU group,
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and one between healthy controls and cPKU group. Thus, the number of cPKU was set to
38, and of mPKU to 13.
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Figure 1. (A) Discrimination between classical PKU (cPKU) and healthy controls. PCA/CA/MCCV
classification shows clear discrimination between cPKU (red ellipsoid) and an age-matched healthy
control group (blue ellipsoid) with confusion of 96.7%. The space of discrimination is one repre-
sentation of the modelling samples in two dimensions. The ellipsoids represent the 95% percentile
of the model. (B) Prediction of mild PKU (mPKU) and non-determined genotype patients into the
cPKU and healthy control model. Patients (except ID 137) with diamonds had a genotype phenotype
value (GPV) of >2.7–6.9 and a phenotype of mPKU. Patients with green/black diamonds are not
treated with sapropterin; green/yellow diamonds are treated. Patients with open diamonds have no
classification because genotype was not available. Patient 385 has a phenotype between mPKU and
hyperphenylalaninemia (HPA) according to [26].

2.3. Serum Phenylalanine in PKU Patients

Week 1 and week 2 serum Phe concentrations were not significantly different, so
only serum Phe data collected at week 1 was used in this study. As expected, serum Phe
concentrations are lower for younger patients. Figure 2 shows a trend of increasing blood
Phe with age; this is a phenomenon previously observed and attributed to gradual patient
non-compliance to dietary Phe restriction [27].
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mild PKU (mPKU, n = 13) phenotype. Patients indicated with open circles are treated 

with sapropterin dihydrochloride (tetrahydrobiopterin [BH4]). 

Table 2 summarizes PKU patient characteristics showing serum Phe levels, genotypes 

with GPV, total natural protein intake (g/kg bodyweight/day), and sapropterin treatment. 
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Figure 2. Serum phenylalanine (Phe) level (µmol/L) by age for patients with PKU (n = 51).

Figure 3 shows that there is a significant difference in serum Phe when cPKU (mean
777 + 467 µmol/L) and mPKU (mean 421 ± 255 µmol/L) phenotypes are compared. For
both phenotypes, sapropterin (shown as open circles) may help lower blood Phe. There
was one outlier with a BH4 responsive genotype, but who was not treated with sapropterin
and had a blood Phe level of 1118 µmol/L (ID 137, Figure 1).
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Figure 3. Serum phenylalanine (Phe) level (µmol/L) by classical PKU (cPKU, n = 38) or mild
PKU (mPKU, n = 13) phenotype. Patients indicated with open circles are treated with sapropterin
dihydrochloride (tetrahydrobiopterin [BH4]).

Table 2 summarizes PKU patient characteristics showing serum Phe levels, genotypes
with GPV, total natural protein intake (g/kg bodyweight/day), and sapropterin treatment.
PKU treatment is a Phe-restricted diet (n = 31), sapropterin supplementation (n = 9), and
no dietary treatment except supplementation with large neutral amino acids (n = 6). Mean
patient age is 14.9 years (range–0.25 to 33 years).
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Table 2. Blood Phe values, genetic alleles (when detected), sapropterin treatment status, dietary Phe
intake, and genetic phenotype value (GPV) for patients with PKU (n = 51).

Patient
ID

Phe Level
(µmol/L Plasma)

Genetic
Phenotype

Value (GPV)
Phenotype Allele 1 Allele 2 Sapropterin

Dietary
Protein Intake
(g/kg BW/day)

404 305 0 cPKU IVS12 + 1G>A p.R408W no 0.420

397 289 0 cPKU p.R408W p.E280K no 0.330

385 325 mPKU IVS12 + 1G>A p.F410I * no 0.320

369 500 5.1 mPKU IVS12 + 1G>A p.Y414C no 0.230

363 132 mPKU IVS10−11G>A Not detected no 0.500

362 597 0 cPKU p.R408W p.R408W no 0.240

359 467 0 cPKU IVS10−11G>A p.Y386C no 0.300

356 287 5.1 mPKU p.Y356X p.Y414C yes 1.101

405 429 0 cPKU IVS12 + 1G>A p.R408W no 0.290

339 303 0 cPKU IVS12 + 1G>A p.R408W no 0.440

347 279 0 cPKU IVS12 + 1G>A IVS10−11G>A no 0.200

342 344 5.0 mPKU p.R408W p.D129Y yes 1.700

336 135 0 cPKU IVS12 + 1G>A p.R408W no 0.401

334 431 5.1 mPKU p.G46S p.Y414C yes 2.700

335 475 5.1 mPKU p.G46S p.Y414C yes 2.400

323 261 5.1 mPKU p.F39L p.Y414C yes 1.102

316 528 5.1 mPKU IVS12 + 1G>A p.Y414C no 0.390

314 546 0 cPKU p.R408W p.T266E no 0.180

333 36 0 cPKU R252W p.R252W no 0.100

313 254 5.1 mPKU p.Y414C p.W120X yes 0.501

306 692 0 cPKU p.R158Q IVS12 + 1G>A no 0.400

298 533 5.1 mPKU p.R408W p.Y414C yes 0.320

302 513 0 cPKU IVS10nt−11G>A C.−473−?_168+?du no 0.070

295 627 0 cPKU IVS12 + 1G>A P281L no 0.070

292 434 0 cPKU IVS12 + 1G>A IVS12 + 1G>A no 0.180

282 392 0 cPKU IVS12 + 1G>A IVS10−11G>A no 0.200

278 622 6.9 mPKU p.R408W p.E390G no 1.290

254 327 2.0 cPKU p.L48S IVS12 + 1G>A yes 0.620

253 968 0 cPKU IVS12 + 1G>A E221D222duAG no 0.110

258 682 0 cPKU IVS12 + 1G>A p.R408W no 0.230

249 840 0 cPKU IVS12 + 1G>A p.R408W no 0.250

236 1504 0 cPKU IVS10−11G>A p.Y386C no 0.550

242 700 1.1 cPKU IVS12 + 1G>A p.I65T yes 0.460

272 1010 0 cPKU IVS10−11G>A p.R408W no 0.301

243 969 0 cPKU IVS12 + 1G>A p.R252W no 0.502

237 277 0 cPKU p.R408W p.R408W no 0.290

238 984 0 cPKU IVS12 + 1G>A IVS12 + 1G>A no 0.120

235 1175 cPKU IVS12 + 1G>A Not detected no 0.220

211 468 2.6 cPKU p.R408W p.A104D yes 0.490

212 1163 0 cPKU IVS10−11G>A p.R408W no 0.302

196 1292 0 cPKU IVS12 + 1G>A p.E221D no 0.750



Molecules 2023, 28, 4916 6 of 19

Table 2. Cont.

Patient
ID

Phe Level
(µmol/L Plasma)

Genetic
Phenotype

Value (GPV)
Phenotype Allele 1 Allele 2 Sapropterin

Dietary
Protein Intake
(g/kg BW/day)

190 869 0 cPKU p.P281L p.R243X no 1.103

191 766 0 cPKU IVS12 + 1G>A p.R408W no 0.440

176 83 0 mPKU IVS12 + 1G>A p.R408W no 0.180

168 831 cPKU Not detected Not detected no 0.230

143 1590 cPKU IVS12 + 1G>A not detected no 1.200

145 1344 2.6 cPKU IVS1 + 5G>T p.A104D no 1.000

137 1118 5.1 mPKU IVS12 + 1G>A p.Y414C no 1.100

129 1613 cPKU IVS12 + 1G>A unclear no 0.600

126 1955 0 cPKU IVS12 + 1G>A p.D282N no 0.800

121 1390 0 cPKU IVS12 + 1G>A p.R158Q no 1.104

* The blood Phe value for patient ID 385 was borderline HPA and mPKU described in [26]. BW: bodyweight.

Table 2 also shows the mutation analysis for the PAH gene for both alleles (n = 45).
In the six other patients, phenotype was derived from the metabolome (ID 168, 235, 362;
Figure 1), serum Phe levels > 1200 µmol/L (ID 143 and 129), and in patient ID 385 from [26].
In patient ID 143, the terminology reported was unusual (c.−473−? 168+?du), but may be
a deletion leading to a null mutation (Nenad Blau, personal communication).

2.4. Dietary Intake

Figure 4 shows that average natural protein intake (g/kg bodyweight/day) for cPKU
patients is significantly lower than for mPKU patients. Dietary protein intake was more
variable for patients with mPKU than cPKU patients. A few patients with mPKU (n = 7)
and cPKU (n = 3) are on sapropterin treatment; these n = 3 patients had higher GPV values
(see Table 2) but are still defined as cPKU [28].
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Figure 4. Patients with mild PKU (mPKU) have a significantly higher natural protein intake per day
than patients with classical PKU (cPKU). A few patients were on sapropterin treatment (mPKU, n = 7
and cPKU, n = 3, open circles).

2.5. NMR Targeted Analyses

A total of n = 149 metabolites (Supplementary Table S1) were analyzed using high reso-
lution 1H NMR, which are quantified automatically [29]. A subset (n = 98) of metabolites, for
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controls and patients, had sufficient data (>10) for statistical analysis (i.e., they were above
the detection limit of the method). All others were excluded from subsequent analysis.

Table 3 shows the n = 24 urinary metabolites that were significantly different (p < 0.05)
compared to age-matched healthy controls (n = 51). They are ranked in Table 3 according
to their fold change. These metabolites represent different substance classes, pathways,
and origin.

Table 3. A total of 24 urinary metabolites that showed a significant difference (p < 0.05) from
healthy age-matched controls (n = 51). They are ranked according to their fold change. They
belong to very different substance classes, pathways, and origins (s. text). * mmol/mol creatinine,
** N-methyl-2-pyridone-5-carboxamide, *** N1-Methyl-4-pyridone-3-carboxamide, HEA = healthy
controls, PKU = phenylketonuria, SD = standard deviation.

HEA PKU

n Mean * SD n Mean * SD p-Value Fold Change

Phenylpyruvic acid 42 10.8 10.2 46 73.9 126.6 0.003 6.853

D-Mandelic acid 10 2.1 2.2 8 9.9 8.2 0.013 4.762

2-Furoylglycine 21 12.7 17.7 20 37.5 39.8 0.007 2.950

Tartaric acid 51 10.3 24.2 51 27.3 26.9 0.0001 2.665

Phenylacetic acid 42 5.5 5.6 38 13.9 14.7 0.003 2.558

Glycine 51 117.8 124.1 51 282.6 342.2 0.008 2.400

Methionine 13 3.6 1.4 12 8.4 8.6 0.034 2.343

Acetic acid 51 8.9 7.2 51 17.2 13.3 0.001 1.931

Phenylalanine 42 21.0 18.3 47 39.7 21.4 0.0001 1.889

Neopterin 51 3.0 5.3 51 5.2 7.6 0.022 1.750

2PY ** and 4PY *** 51 5.9 3.5 51 10.1 5.3 0.0001 1.728

L-Citramalic acid 51 18.5 12.0 51 31.8 24.9 0.004 1.721

Maleic acid 50 1.1 1.9 51 1.7 2.2 0.0001 1.639

Adenine 45 2.0 2.0 50 3.2 3.7 0.03 1.570

1-Methylnicotinamide 51 9.4 9.0 51 13.6 16.0 0.027 1.459

2-Hydroxyisovaleric acid 36 1.2 0.7 31 1.7 1.1 0.01 1.459

Oxaloacetic acid 50 27.8 26.9 47 38.8 25.1 0.008 1.396

3-Methylglutaconic acid 51 5.6 2.9 51 7.8 4.4 0.003 1.392

Valine 51 4.6 2.9 51 6.4 5.2 0.011 1.392

Acetoacetic acid 46 11.8 9.9 48 16.1 8.5 0.006 1.371

Guanidinoacetic acid 51 93.1 71.5 50 74.1 67.7 0.026 0.796

Creatine 49 201.4 370.1 49 160.2 269.7 0.031 0.796

Dimethylamine 51 40.2 27.2 51 30.3 20.6 0.041 0.753

Allantoin 51 16.2 11.3 48 7.1 5.9 0.0001 0.440

2.6. Metabolites Linked to Energy Metabolism
2.6.1. N-Methyl-2-pyridone-5-carboxamide (2PY), HMDB0004193, Fold Change 1.728

Figure 5 and Table 3 show that the NADH degradation products, N-methyl-2-pyridone-
5-carboxamide (2PY) and N1-Methyl-4-pyridone-3-carboxamide (4PY) are significantly
elevated in PKU patients.
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Figure 5. NADH degradation products, N-methyl-2-pyridone-5-carboxamide (2PY) and N1-Methyl-4-
pyridone-3-carboxamide (4PY) are elevated in PKU patients in comparison to healthy controls (HEA).

The initial automatically quantified substance analysis appeared to detect allopurinol,
a common drug for hyperuricemia, in all urine samples, even though none had received the
drug. Further analysis using ultraperformance liquid chromatography mass spectrometry
(UPLC/MS) and confirmation by NMR using proton one-dimensional and proton-carbon
heteronuclear two-dimensional spectroscopy (Supplementary Figure S1 and text) sug-
gested that the detected compounds are two structurally similar pyridine metabolites:
N-methyl-2-pyridone-5-carboxamide (2PY), HMDB0004193, and N1-Methyl-4-pyridone-
3-carboxamide (4PY), which are both end products of nicotinamide-adenine dinucleotide
(NAD) degradation and are observed in higher concentrations in uremic patients [30].

2.6.2. 1-N-Methylnicotinamide, HMDB0000699, Fold Change 1.459

Table 3 and Supplementary Figure S2 show that 1-N-Methyl nicotinamide concen-
trations are higher in patients with PKU than healthy controls. 1-N-Methyl nicotinamide
is found in various plants, but also in bodily fluids. More recent studies in rats revealed
a possible link to irritable bowel syndrome and dysbiosis [31]. Other investigators have
identified 1-N-Methyl nicotinamide as having an important role in NAD metabolism with
regard to cellular energy and “healthy aging” [32]. It has also been found to be predictive
of various diseases such as polycystic kidney disease [33].

2.6.3. Oxaloacetic, HMDB0000223, Fold Change 1.731

Figure 6 and Table 3 show that oxaloacetic acid is significantly elevated in PKU patients.
Oxaloacetic acid is an intermediate of the citric acid cycle (TCA), and its role in energy
metabolism in the PKU mouse model has been shown recently [11,34]. Increased oxaloacetic
concentrations may indicate an impairment of glucose-6-phosphate-dehydrogenase by
high phenylpyruvate and reduced pyruvate in the TCA cycle.
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2.6.4. Creatine HMDB0000064 and Guanidinoacetic Acid HMDB0000128, Fold Change
0.796 and 0.796

Creatine plays an important role in energy metabolism. One precursor of endogenous
synthesis is guanidinoacetic acid. Figure 7a,b show that both metabolites are significantly
different and slightly decreased in PKU patients. Several inborn errors of metabolism are
due to creatine deficiency [35]. The sources of creatine are mainly foods rich in meat, but
creatine is also synthesized in the liver via glycine and arginine [35]. It is also decreased in
the serum of PKU patients [36].
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2.7. Metabolites Related to Gut and Dietary Treatment
2.7.1. Tartaric Acid HMDB0000956 and L-Citramalic HMDB0000426 Acid (Fold Change
2.665 and 1.721)

Figure 8a,b, and Table 3 show that tartaric and L-citramalic acid are both significantly
elevated in PKU patients. Each of these substances are mainly produced by bacteria in the
microbiome, and have been described as markers of dysbiosis [12,37].
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Figure 8. Tartaric (a) and L-Citramalic (b) acid are significantly elevated in PKU patients in compari-
son to healthy controls (HEA).

2.7.2. Acetic Acid, HMDB0000042, Fold Change 1.931

Acetic acid is significantly elevated in patients with PKU (Supplementary Figure S2).
The role of acetic acid produced by bacteria in the gut has recently been investigated in
animal models [38]. It may also play a role in irritable bowel syndrome [39]. Acetic acid is
present in very low concentrations in the cell, but greatly increased by bacteria in urinary
tract infections [40], indicating that acetic acid is mainly derived from bacteria. It is elevated
in PKU patients (see Table 3 and Supplementary Figure S2).

2.7.3. Allantoin, HMDB00462, Fold Change 0.440

Figure 9a and Table 3 show that allantoin is significantly decreased in patients with
PKU. Allantoin is generated by reactive oxygen species from uric acid [41]. In patients
with PKU, the cause of the decrease in Figure 9a may be due to their mainly vegetarian
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diet [42]. This is supported by a multifactorial regression analysis; natural protein intake
has a significant positive effect (Figure 9b) on allantoin excretion. Figure 10 shows that a
standardized coefficient analysis of metabolites demonstrated a negative correlation with
subject age (−0.568, p < 0.0001).
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2.7.4. Dimethylamine, HMDB00087, Fold Change 0.753

Figure 10 and Table 3 show that dimethylamine is decreased in patients with PKU
compared to healthy controls. Dimethylamine is converted from trimethylamine and is
mainly found after ingestion of fish and seafood [43] and should not be consumed by PKU
patients on a protein-restricted diet.
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2.7.5. 2-Furoylglycine, HMDB0000439, Fold Change 0.661

2-Furoylglycine is significantly elevated in patients with PKU (Supplementary Figure S2,
Table 3), and may be derived from furan derivatives which are found in food prepared
with strong heating. It is generally not found in urine from breastfed children but is found
in that of formula-fed children [44]; it may be caused by a semisynthetic diet.

2.8. Other Metabolites Showing Significant Differences (Supplementary Figure S2)
2.8.1. Amino Acids

Table 3 shows several amino acids (e.g., glycine, valine, methionine), in addition to
those amino acids related to Phe metabolism, that are significantly increased in PKU patients.
Interpretation of differences between groups is difficult and may be due to supplementation
of the low protein diet with amino acid mixtures/tablets low or free of Phe. Elevated glycine
is found in several inborn errors of metabolism; the highest levels are found in non-ketotic
and ketotic hyperglycinemia due to an impaired function of the glycine cleavage enzyme
(for overviews, e.g., www.metagene.de, metabolite “glycine”, accessed on 1 June 2023).

2.8.2. Organic Acids

In addition to the metabolites derived from elevated blood Phe, Table 3 shows two im-
portant organic acids that are elevated in patients with PKU (i.e., 2-Hydroxyisovaleric acid
and 3-Methylglutaconic acid). The organic acid 2-Hydroxyisovaleric acid (HMDB0001863)
is found to be elevated in lactic acidosis and several organic acidemias, such as propionic
acidemia, and multiple carboxylase deficiency. The organic acid 3-Methylglutaconic acid is
linked to several inborn errors of energy metabolism and (in high concentrations) may be a
“metatoxin” (HMDB0000522).

Acetoacetate is one of the ketone bodies, and is elevated in starvation and decompen-
sated diabetes mellitus. There is only a slight elevation in urine (Table 3, Supplementary
Figure S2) compared to normal controls. The incorporation in vivo of [14C]acetoacetate
into cerebral lipids was decreased by Phe in a rat model [45] of HPA.

2.8.3. Phenylalanine and Phenylalanine Derived Oxidation Products

Beside Phe, phenylpyruvic acid, D-mandelic acid, and phenylacetic acid could be
detected with significant differences compared to the control samples (see Table 3 and
Supplementary Figure S2). Interestingly, phenylpyruvate has the highest effect in fold
change (6.853). Neopterin is elevated in patients with PKU and high blood Phe [46].

3. Discussion

We applied 1H NMR ex vivo analysis to a cross-sectional cohort study of PKU patients
in whom genetic, biochemical, and dietary regimens were carefully documented. For the
first time, we correlated the metabolome with genetic data and distinguished the effect of
genotype, medical treatment, and normal controls. In addition, Figure 1 shows that the
genetic profiles of mPKU patients (reflecting the metabolome with a GPV > 2.7–6.9) could be
observed to reside between those of healthy controls and cPKU patients. With the exception
of patient ID 137, we hypothesize that the uniqueness of the urinary metabolome for mPKU
may be due to several possible factors: (1) an altered excretion of Phe and its degradation
end products [19]; (2) the influence of a low-Phe diet [15]; (3) various other influencers (e.g.,
drugs) (Supplementary Figure S2); and (4) the secondary effects of elevated Phe on various
pathways and the gastrointestinal microbiome [13].

Urine is one of the most complex biological fluids. Therefore, we added a targeted
urinary analysis comprising quantification of 98 metabolites using ex vivo 1H NMR, a
method with both advantages and disadvantages [26]. In another similar study, it was not
possible to draw conclusions for the treatment quality of a (small) set of PKU patients by
analyzing blood with a UPLC/MS/MS method [47]. In contrast, the present study was able
to successfully identify PKU patients using the urinary metabolome. We demonstrated an
excellent correlation between the metabolome and genotype of PKU patients and healthy

www.metagene.de
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controls (96.7%) in a confusion matrix model. One may speculate that application of such a
model would support treatment monitoring in PKU patients.

Multiple metabolic effects of different pathways in treated PKU patients have been
shown in plasma and urine by other investigators [13]. The advantage of our study that it
uses a method that enables quantification of a wide range of different substance classes, indi-
cating involvement of two new aspects in the pathophysiology of PKU: energy metabolism
and dysbiosis.

Evidence for dysbiosis in patients with PKU can be found in the significant alterations
in the 1-N-methylnicotinamide, tartaric acid, and L-citramalic acid concentrations. The
pathophysiology of dysbiosis has been confirmed by investigators of other metabolic [48]
and neurological diseases (e.g., Alzheimer’s disease [49], Parkinson’s disease [50]). The
microbiome and small molecules also have roles in the aging process [51]. For PKU, the
microbiome and dysbiosis may contribute to a more complete understanding of PKU
pathophysiology [52]. Of course, our metabolic study is restricted only to a possible
dysbiosis reflected by altered concentrations of metabolites derived from bacterial origin.
Dietary management in PKU patients may modulate the composition of gut bacteria and
contribute to its metabolomic profile. There is less bacterial diversity in PKU compared to
healthy controls [53]. In addition, a decrease in fecal butyrate content in PKU patients has
been observed [54].

A second finding of our study is that dysregulation of energy metabolism may be an
important new aspect of PKU pathophysiology. We revealed an alteration in a metabolite
associated with the TCA (oxaloacetic acid), and thus possible mitochondrial dysfunction.
Energy dysfunction in PKU has been observed in animal studies [11]. Energy dysregulation
in PKU could also explain the impact of elevated Phe on brain tissues, as well as other
affected organs such as the heart [10,55], eyes [56,57], and on renal dysfunction [58–60].

3.1. Phenylalanine and Phenylalanine Metabolites

The main metabolic pathway of Phe is protein synthesis and the production of tyrosine
in the liver. In the case of elevated Phe, the transamination pathway to phenylpyruvate,
phenyllactate, and phenylacetate can be demonstrated using measurement of these and
other substances in urine. Previously, there has been scientific debate about the potential
toxicity of one of these metabolites and resultant brain damage in untreated PKU (see
extensive discussion in [61]).

3.2. Role of Natural Low Protein Intake on the Metabolome

It has been suggested that natural protein is superior to synthetic protein, and that
dietary Phe intake should increase stepwise whenever blood Phe is in the target range [62].
However, it is acknowledged that medical management of PKU is complex and multifac-
torial [2,63]. Although the number of patients is small, our study observed the expected
higher intake of natural protein in mPKU compared to cPKU patients (Figure 4), which
may increase with BH4 medication in some patients. One study showed that a natural
protein intake of >0.5 g/kg/day was associated with improved body composition [64].

3.3. Limitations

This study has several limitations. First, only 24 of 98 metabolites were found to be
different in a small cohort of patients with PKU compared to an age-matched control group.
Other metabolically important yet unidentified compounds may make up an important
part of the PKU metabolome. Second, although the ex vivo 1H NMR method used in this
study is highly quantitative and reproducible, this method has a higher detection limit
than UPLC- or GC-MS/MS. The number of metabolites used for the automatic analysis
is limited to n = 149, so other detectible substances may have been unobserved using
full automation (according to standard procedures with the Bruker IVDr System). There
may be other possible metabolites that contribute to the differences between the PKU and
control group, as also shown by the metabolomic analysis, resulting in a good separation
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between patients and controls (Figure 1a,b). In addition, the analysis of urinary metabolites
may not be representative of other important metabolites found in other body fluids (e.g.,
plasma or cerebral spinal fluid) [3,4,14]. Finally, Figure 11 shows that there are many
potential influences on the metabolome. An important potential influencer is age, which is
demonstrated in Supplementary Figure S3 (for patients and controls) and in Figure 5 (for
patients using multifactorial analysis). Further influences in patients with PKU apart from
age may be serum Phe and natural protein intake (Supplementary Figure S4). Even the
use of multifactorial analysis (Supplementary Figure S5) makes it difficult to differentiate
between genetic defects and natural effects (e.g., aging). Whether or not a patient with PKU
is more at risk of non-healthy aging [65] should be investigated in future studies.
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4. Materials and Methods
4.1. Study Participants

This cross-sectional study with PKU patients (n = 51) and age-matched healthy con-
trols (n = 51) was approved by institutional ethics committees (Table 1). Patients with
PKU were recruited from various private practice clinics and provided written informed
consent. Guardians provided written consent for minors to participate. Healthy controls
were recruited from otherwise routine investigations of healthy children/adults in private
practice after written informed consent under ethical approval (EK LAEK BW, F-2013-006).

4.2. Sample Collection

Spontaneous morning urine samples (3–10 mL) collected from patients with PKU and
healthy controls, and 1 mL aliquots were stored frozen at −20 ◦C prior to measurement. In
patients, blood for Phe measurements was drawn in the morning at two weekly intervals.
Serum was frozen at −20 ◦C prior to measurement, as previously described [26].

4.3. Blood Phenylalanine Analysis

Blood Phe in serum was measured according to local routine methods [66]. Mutational
analyses [26] and classification of patients with PKU or HPA were performed as previously
described [28,29]. Stratification of patients according to their genotype was performed
using the genotype/phenotype value (GPV) [28].

4.4. NMR Analysis

Urine samples were first prepared according to standard procedures as previously
described [67]. Frozen urine samples were thawed at 4 ◦C and shaken before use. A
volume of 0.9 mL of urine was added into another cryovial of 0.1 mL potassium phosphate
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buffer (pH 7.4) containing trimethylsilylpropionic acid-d sodium salt (TSP) and sodium
azide. The mixture was homogenized, and 0.6 mL was transferred to a 5 mm NMR tube
for analysis and placed in a cooled sample changer. Samples were then measured, in
full automation and according to standard procedures, using a Bruker IVDr System, as
previously described [29,68].

4.5. Targeted NMR Analysis

The absolute and relative concentrations of 149 metabolites (Supplementary Table S1)
were calculated automatically from all urinary NMR spectra using the B.I.QuantUR analysis
tool. Only 98 of 149 metabolites were used for analysis because the concentrations of the
other metabolites were below the limit of detection. Concentrations are given in mmol/mol
creatinine as the urine collection was done on spot urine.

4.6. Untargeted NMR Analysis

Patients were stratified according to their GPV: (1) classical PKU (cPKU) patients (GPV
0–2.7) and (2) mild PKU/HPA (mPKU) patients (GPV 2.8–7). There was only one patient
(patient ID 385) whose Phe value was borderline hyperphenylalaninemia (HPA) and mPKU.
Individual GPV values were determined using the BioPKU database (www.biopku.org,
accessed on 1 June 2023). Where GPV was not available because of missing mutational
information, blood Phe concentrations of >1200 µmol/L were defined as classical PKU.

For the untargeted approach, we used the PCA/CA/k-NN MCCV analysis. We were
able to create a classification model of cPKU (n = 36) vs. healthy controls (n = 51), and
projected the undetermined genotype (n = 3) and the mPKU (n = 12) in the model. The
steps performed have already been described by Assfalg et al. [69] and Bernini et al. [70].

Spectral binning: Prior to further postprocessing, spectral intensity was scaled to
creatinine. Then, each spectrum was segmented from 0.6 to 9.4 ppm into consecutive bins
of fixed size (0.0088 ppm). The pertaining regional integrals (bin intensities) were calculated,
excluding the residual water regions (4.5–6.0) ppm. A bucket table was generated, wherein
columns represented bin numbers and rows represented NMR sample numbers.

Principal component analysis (PCA): PCA is a standard unsupervised multivariate
technique that consists of performing a coordinate transformation to try to separate relevant
values from residual ones, e.g., noise. Ideally, it projects correlated variance distributed
over several variables onto single new variables (i.e., the principal components), which
simplify the visualization and interpretation. In this cohort, PCA was used for visualization
and as a dimension reduction technique for further multivariate statistical analyses.

PCA/CA/k-NN classification: A classification approach different from SIMCA is
needed if a sample needs to be classified with respect to multiple co-existing classes.
Starting from a bucket table of a model set of samples, PCA is first applied for dimension
reduction. Then, canonical analysis (CA) in combination with MANOVA is applied to
determine the subspace for maximum class separation and its respective dimension. Finally,
a classification rule is introduced, e.g., via the k-nearest neighbor (k-NN) concept. This
produces the PCA/CA/k-NN classification procedure; for classification of a new test
sample, the sample is projected into the PCA-CA subspace first, and k-NN is used to assign
its class membership.

Monte Carlo embedded cross-validation (MCCV): PCA/CA/k-NN classification is a
supervised method. Related models are established in a supervised manner, wherein the
class membership of each object is known during the training phase. In order not to overfit
any data, extensive validation is needed. We used the MCCV approach to maximize the
rate of correct classification, and the confusion matrix has been obtained with an explained
variance of 99%, 16 Monte Carlo runs (MC), an 8-fold cross-validation (CV).

www.biopku.org
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4.7. Identification of Unknown Metabolites

To investigate unknown metabolites using NMR only, we further analyzed the samples
using ultraperformance liquid chromatography–high-resolution mass spectrometry (UPLC-
HR-MS). Details of the UHPLC-MS method are shown in Supplementary Material.

4.8. Statistical Analysis of Targeted Analysis

Metabolomic targeted statistics were performed with EXCEL, XLSTAT (2022.4.1) and
IBM® SPSS® Statistics using the resultant data from PKU samples (n = 51) compared to
age-matched healthy control samples (n = 51). A Mann–Whitney U-test and box plots were
used to describe the 95th percentile confidence values and medians, respectively.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/molecules28134916/s1, Figure S1: UPLC chromatogram and
NMR revealing two metabolites. Figure S2: Summary of statistical analysis for 24 metabolites of
age-matched healthy controls and PKU patients. Figure S3: Regression analysis of 24 metabolites
with age in age-matched healthy controls and PKU patients. Figure S4: Regression analysis between
metabolites in urine and actual Phe level in plasma and natural protein intake. Figure S5: Multifacto-
rial analysis of metabolites using standard coefficient of variation. Table S1: List of metabolites as
measured by the ex vivo 1H-NMR analysis in urine. Supplemental text: Method for identification of
unknown metabolites with UPLC-MS.
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