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Abstract: The cost-effectiveness and high efficiency of atmospheric cold plasma (ACP) incentivise
researchers to explore its potentials within the food industry. Presently, the destructive nature of
this nonthermal technology can be utilised to inactivate foodborne pathogens, enzymatic ripening,
food allergens, and pesticides. However, by adjusting its parameters, ACP can also be employed
in other novel applications including food modification, drying pre-treatment, nutrient extraction,
active packaging, and food waste processing. Relevant studies were conducted to investigate the
impacts of ACP and posit that reactive oxygen and nitrogen species (RONS) play the principal roles
in achieving the set objectives. In this review article, operations of ACP to achieve desired results
are discussed. Moreover, the recent progress of ACP in food processing and safety within the past
decade is summarised while current challenges as well as its future outlook are proposed.

Keywords: atmospheric cold plasma; food modification; active packaging; microbial inactivation;
enzyme inactivation; food waste processing

1. Introduction

Incidents of foodborne outbreaks and subsequent recalls of food products are fre-
quently caused by ineffective disinfection methods. In addition to concerns of microor-
ganisms’ resistance to standard food processing practices, producers also need to consider
other marketing factors, such as chemical-free products, minimal processing, and safety,
to satisfy consumers’ demands [1–3]. Conventionally, thermal processes which involve
the incorporation of heat, including pasteurisation and sterilisation, have been extensively
exploited. However, the techniques have several drawbacks: long processing time, loss
of sensory properties, and degradation of thermally sensitive nutrients. Scientists have
looked into other approaches to overcome these problems.

Plasma is commonly referred to as the fourth state of matter based on the levels of
energy, after solid, liquid, and gas. It comprises electrons, ions, neutral species, photons,
and metastable and other excited gaseous atoms. Both man-made and naturally occurring
plasmas can have a wide range of temperatures and densities. The ability to regulate their
behaviour is of great interest to the scientific community [4–6]. The first application of
plasma was conducted by Werner von Siemens in 1857 when he created a dielectric barrier
discharge ozoniser to treat water. Then, the term plasma was later coined in 1928 by Irving
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Langmuir [7,8]. Plasma can be classified into two types: thermal and nonthermal (low
temperature) [3]. Non-equilibrium or “cold” plasma, which are both types of nonthermal
plasma, are states that are not in local thermodynamic equilibrium (usually less than
60 ◦C) [9].

As a result, cold plasma at atmospheric pressure has attracted substantial attention
within the food industry in the past decade since the expensive vacuum pump can be
omitted while the generated cold plasma still maintains similar properties. In food tech-
nology, a diverse application of atmospheric cold plasma (ACP) can be observed since it
offers numerous benefits, as summarised in Figure 1. ACP is considered as an economical
processing technology as it does not require heat, pressure, water, or additional chemical
solvents [10]. Moreover, it utilises less energy than conventional methods due to shorter
treatment time [3]. However, ACP still encounters some constraints that limit its full poten-
tial within the food processing industry. This review briefly provides the mechanism of
how ACP is generated and summarises specific areas within the food industry where ACP
can be employed. Furthermore, challenges of ACP in the field are discussed.
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Figure 1. Applications of atmospheric cold plasma (ACP): Depending on the set parameters, ACP
can be utilised to inactivate pathogens and compounds, or modify food products.

2. Mechanism of ACP

ACP is commonly generated at ambient temperature and pressure by the interaction
between an electric field (usually a pair of electrodes) and gas molecules, which subse-
quently form charge carriers (a mixture of electrons and ions). Then, the free charge carriers
are further excited by the electric field and collide with atoms and molecules in the gas or
with electrode surfaces, producing a large quantity of new charged particles. A steady-state
cold plasma at atmospheric pressure is formed when the particles and charge carrier losses
are balanced [11]. Figure 2 shows a diagram of cold plasma generation at atmospheric
pressure.
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Figure 2. Generation of atmospheric cold plasma (ACP): Initially, gas molecules are ionised in an
electrical field, producing a mixture of electrons and ions. Then these charged carriers are further
excited and create a large quantity of new charged particles.

While the exact composition of plasma-generated species depends on various con-
ditions such as gas type, voltage, and humidity, it typically contains reactive oxygen and
nitrogen species (RONS), free radicals, excited molecules, and UV photons [3]. Within
the food processing industry, some of the most common ACP generators are the dielec-
tric barrier discharge (DBD), atmospheric plasma jet (APPJ), radio frequency (RF), spark
and glow discharge, and gliding arc (GA). The general schematics of DBD and APPJ are
illustrated in Figure 3. DBD offer certain advantages over other plasma devices, including
its ability to generate high-energy species with minimal energy input. In addition, the
potential to scale up DBD is greatly feasible due to its simple geometric design [12]. During
the treatment of food products, DBD can be used to treat the sample directly or indirectly.
The direct treatment involves positioning the food between the two electrodes, whereas the
indirect treatment requires a container or a medium to contact the plasma discharge [13].
However, since plasma particles produced by DBD remain between two parallel electrodes,
the sample shape and size could pose restrictions. Unlike DBD, APPJ releases the reactive
species into an open environment which can be directly applied to the object without
limitation to its size [14]. In radio frequency discharge, pulsed electric current is used to
generate a plasma column in the centre of an electric coil. This plasma column produces a
high-density ionized gas which can be utilized in various applications [15]. Spark discharge
has the advantage of producing a remarkably high energy density, but its downside is the
discharge short duration, which may lead to damage in both the electrode and material
used [16]. The power of glow discharge is limited by the transition from glow to arc
discharge. During this transition, the discharge voltage decreases, requiring an increase in
current to maintain power at the same level, which in turn leads to gas heating [17]. GA
discharges are relatively simple in structure and can operate under a variety of conditions;
however, its drawbacks include limited gas–plasma interaction time and a low percentage
of treated gas after processing [18].Therefore, each plasma device has its own benefits and
drawbacks, which stipulates a thorough consideration in regard to the purposes of plasma
treatment, surroundings, and target sample.
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Figure 3. General schematics of plasma devices: (a) Dielectric barrier discharge (DBD): Plasma creates
a uniform glow between the two parallel electrodes. (b) Atmospheric plasma jet (APPJ): Plasma
reactive species exit through the nozzle into the open environment.

3. Atmospheric Cold Plasma (ACP) in Food Technology
3.1. Microbial Inactivation

Studies of ACP have reported promising results in the inactivation of pathogens in
food processing. Table 1 is a list of selected publications related to the use of ACP to
inactivate microorganisms.
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Table 1. Scientific studies on the inactivation of microorganisms by ACP.

Food Product Plasma Device Microbial Strains Reduction (log CFU)
Parameters

ReferenceExposure
Time (s)

Exposure
Distance (mm)

Input
Power (W)

Treatment
Voltage (kV) Frequency

Prepackaged mixed
salad DBD Salmonella 0.8/g 180 30 - 35 1.1 kHz [19]

Golden Delicious
apples DBD Salmonella and E. coli 5.3/cm2; 5.5/cm2 240 35 200 - 50 Hz [20]

Boiled chicken
breast cubes DBD

Salmonella, E. coli,
L. monocytogenes, and

Tulane virus

3.7/cube; 3.9/cube;
3.5/cube; 2.2 PFU/cube 210 12 - 39 - [21]

Tender coconut
water DBD L. monocytogenes and

E. coli 2.0/mL; 2.2/mL 120 10 - 90 60 Hz [22]

Tilapia fillet DBD

V. parahaemolyticus 1.8/g 60 100 30 - 13.6 MHz [1]

S. enteritis,
L. monocytogenes

2.34 log CFU/g;
1.69 log CFU/g 300 52 70 80 60 [23]

Blueberries Plasma jet Tulane virus and murine
norovirus 3.5/g; 5.0/g 120; 90 75 549 - 47 kHz [24]

Military rations
snack Plasma jet A. flavus, yeast-mold, and

aflatoxin 4.3/g; 4.6/g; 3.0/g 360 30 - 9 - [25]

Groundnuts DBD A. flavus, A. parasiticus,
and aflatoxin 1.2/g; 1.2/g; 0.3/g 720 30 60 2 - [26]
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Most studies focus on bacteria such as Escherichia coli, Listeria monocytogenes, and
Salmonella species, which are some of the most common food pathogens. Escherichia coli is a
Gram-negative bacterium commonly found in the gut of humans and animals. While most
strains of E. coli are benign, some can be pathogenic and trigger severe diarrhoea. Each
year, more than 1.7 billion people suffer from severe diarrhoea; in addition, approximately
760,000 children under 5 years old die from diarrheal diseases every year, making it the
second leading cause of death amongst children under 5 years old [27]. Similarly, another
rod-shaped, Gram-negative bacterium that has always been a major public health concern
is Salmonella. Salmonella accounts for 155,000 deaths annually and it is one of the main
causes for gastroenteritis [28]. Both E. coli and Salmonella can live in a variety of food
products including meat, dairy, and vegetables [27,28].

Moreover, Listeria monocytogenes is another bacterial pathogen which results in 19% of
the deaths of Americans each year in cases related to food contamination [29]. The growing
popularity of ready-to-eat products as well as the refrigeration system in industrial-scale
food processes make the bacteria such a prevalent pathogen as they can develop resistance
to environmental stress and multiply in cold temperatures [30]. The research of ACP
on tender coconut water concluded that ACP can be utilised as a nonthermal process
to inactivate Gram-negative bacteria E. coli and Gram-positive bacteria L. monocytogenes,
lengthening the shelf life of tender coconut water by up to 48 days [22]. The experiment
was carried out using dry and modified air M65 (65% O2, 30% CO2, and 5% N2) with the
treatment time at 120 s at 90 kV. According to the results from optical emission spectroscopy,
RONS were responsible for bacterial cell leakage or induced other morphological changes
in bacteria [22].

Overall, the mechanism of ACP to inactivate bacteria was examined and it was con-
cluded that in Gram-negative bacteria, RONS generated by ACP damage the lipoproteins
and peptidoglycans of the cell envelope which lead to cell leakage and disruption. Mean-
while, ACP does not promote cell leakage in Gram-positive bacteria but instead impair
essential cellular components such as DNA [31].

ACP has also been extended to the inactivation of other microbes, including viruses,
yeasts, and fungi. Although viral contamination in food is less frequent than that of bacteria,
its effect on public health is as severe. Human norovirus is one of the viral pathogens which
can also cause gastroenteritis. As the virus usually exists in water, it can pose danger to
any food products that carry water, such as fruits, vegetables, and shellfish. Currently,
human norovirus cell culture systems cannot be cultivated in a laboratory setting and
the researchers have to rely on murine norovirus and Tulane virus as surrogates [32]. A
viral inactivation experiment was performed on the Tulane virus and murine norovirus on
blueberries using a plasma jet under the following conditions: 4 cubic feet/min (cfm), 0–60 s
treatment time, and 7.5 cm treatment distance. The study observed a notable reduction
of Tulane virus (1.5 PFU/g) compared to the control after 45 s of treatment time, which
demonstrated the potential of ACP on blueberry processing [24]. In viruses, RONS are the
main contributors of viral inactivation as they penetrate through capsid by diffusion and
cause damage to the RNA [33].

The research on other pathogens was investigated. The effect of ACP on a yeast
strain Saccharomyces cerevisiae was studied and it was reported that this medium can also
influence the sterilisation efficacy in addition to plasma conditions (oxygen gas level,
electrical power, and treatment time). According to the results, ACP showed the highest
inactivation efficiency when S. cerevisiae is in water and saline solution. This outcome
elucidated that ACP may be the most suitable food processing choice when the media are
water or other biological fluids containing NaCl. Contrastingly, the plasma treatment of
S. cerevisiae in YPD media exhibited the least efficiency, which asserts that the ability of ACP
to inactivate microorganisms is reduced in nutrient-rich solutions [34]. Moreover, the study
also concluded that OH radicals played the most vital role in yeast cell inactivation. The
experiment assessed the level of oxygen reactive species and reported that the water media
contained the highest level of OH radicals, whereas YPD had the lowest. One possible
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explanation is that oxygen radicals were quenched when ACP were treated in YPD solution,
which resulted in less lipid peroxidation and subsequently less cell damage [34].

Aflatoxins, produced by the fungi Aspergillus flavus and Aspergillus parasiticus, are
mutagenic and carcinogenic compounds discovered in 1960 during an outbreak called
“Turkey ‘X’ Disease” in the UK [35]. B1 and B2 aflatoxins are produced by A. flavus, whereas
B1, B2, G1 and G2 aflatoxins are all produced by A. parasiticus [26]. The most toxic aflatoxin
is B1 as it is linked to liver cancer. All aflatoxins can commonly be found in poorly dried
foods such as cereals, spices, and nuts, where the fungi can proliferate. Since aflatoxins
are extremely tolerant to both heat and freezing temperatures, they can exist in food
indefinitely [35]. Devi and team [26] published the results on the effect of ACP on fungal
growth in groundnuts and elimination of aflatoxins. After the inoculated groundnuts were
plasma-treated with 60 W for 15 min, they observed the reduction in A. parasiticus by 97.9%
and that of A. flavus by 99.3%. The results from electron microscopy showed that RONS
generated electroporation and etching of fungal spore membranes. This study indicated
the potential application of ACP to eliminate pathogenic fungi and their toxins. Despite
these diverse scientific studies, it should be noted that the efficacy of ACP depends on the
microbial species, density of pathogens, plasma system, and treatment conditions [31].

3.2. Active Food Packaging

Packaging can improve food quality and safety by protecting the product from un-
desirable external conditions such as moisture, microorganisms, dust, and extraneous
materials. However, traditional packaging is limited in extending the shelf life of food;
hence a functional packaging, also known as active packaging, is explored. According to
the statement issued by Commission Regulation (EC) No. 450/2009, the active packaging
aims to “deliberately incorporate components that would release or absorb substances into
or from the packaged food or the environment surrounding the food” [36]. In studies of
plasma application on packaging film, the examined conditions typically include plasma
treatment conditions as well as physicochemical properties of the modified film, as shown
in Table 2.

Wong et al. [37] investigated the effectiveness of ACP-treated PE film coated with
chitosan and gallic acid film for tilapia fillet preservation. The addition of 1% chitosan and
gallic acid extended freshness of the fillet for 14 days as it can hinder bacteria accumulation
by 1.52 log CFU/g compared to control, and delayed volatile basic nitrogen and thiobarbi-
turic acid by 89.9% and 33.3%, respectively [37]. At the molecular level, the bombardment
of reactive species, particularly OH radicals, oxidises covalent bonds on the film surface
to form carboxyl and other oxygen-containing functional groups [38]. This process also
enhances the roughness of the film surface which can facilitate the incorporation of other
antioxidant or antimicrobial compounds [39,40]. Thus, it can be perceived that ACP has
the potential to be integrated into many steps within the food packaging process, from the
production of active packaging to post-contamination prevention. The ability to control the
production of OH radicals and other reactive species would certainly be beneficial to the
progress in this technology.

3.3. Food Allergen Mitigation

Food allergy is a critical food safety issue, and its prevalence is growing continuously
between 2 and 10% [41]. Many studies investigate the influence of ACP on food allergens,
which are listed in Table 3. The eight major allergens, such as milk, eggs, fish, shellfish,
tree nuts, peanuts, wheat, and soybean, account for 90% of food allergies and serious
allergic reactions in the world [42]. While thermal processing is commonly used to reduce
allergenicity in food, most allergenic proteins are thermally stable [43].
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Table 2. Effect of cold plasma treatment on active packaging in food.

Food Matrix Plasma
Device

Film
Materials

Treatment Conditions Physicochemical Change
(Optimisation Methods Were Chosen)

Reference
Input

Power (W)
Treatment
Time (s)

Frequency
(MHz)

Thickness
(mm)

Tensile Strength
(MPa)

Elastic Modulus
(Mpa)

Elongation at
Break

Water Vapour
Permeability

Tilapia fillets RF-
plasma

CNMA-
CMC/LDPE 30 60 13.56 +29.97% +13.58% - - - [1]

Chicken breast fillets - 1–3% SEO-
CS/LDPE 84 10 - +650% −3% - −27% −96.7% [2]

Cooked turkey meat Plasma Jet Citrus/PET - - 30 kHz +150% - - - - [4]

Korean steamed rice
cakes

DBD-
plasma

Nylon/PP
Nylon/LDPE 21 kW 180 - - Nylon/PP + 1.6%

Nylon/PE − 0.5%
Nylon/PP + 1.2%
Nylon/PE + 0.5%

Nylon/PP − 0.3%
Nylon/PE + 0.9%

Nylon/PP − 6.25%
Nylon/PE − 7.7% [5]

Button mushroom
(Agaricus bisporus)

RF-
Plasma

CMC,
COL/LDPE 30 60 13.56 - +7.6% +47.43% - +114% [7]

RF—radio frequency; CS—chitosan; LDPE—low-density polyethylene; DBD—dielectric barrier discharge; PE—polyethylene; CNMA—cinnamaldehyde; CMC—carboxymethyl cellulose;
COL—collagen; SEO—summer savoury essential oil; PET—polyethylene terephthalate; PP—polypropylene.
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Table 3. Research studies of ACP on food allergen mitigation.

Food Allergen Mitigation

Allergens Plasma Device Sample Types Antibody Binding
Capacity

Parameters Reference

Exposure Time
(min)

Exposure
Distance (mm) Input Power Input Voltage

(kV) Frequency

Casein
Plasma jet

(spark
discharge)

Allergenic protein
solution

↓ 49.9%
30

2.5 - 8 25 kHz [44]

α-lactalbumin ↓ 49.5%

β-lactoglobulin ↑ 250% 10

Casein
Plasma jet

(glow discharge)

↓ 91.1%
30

5 - 5 25 kHz

α-lactalbumin ↓ 45.5%

β-lactoglobulin ↑ 300% 10

β-lactoglobulin DBD Allergenic protein
solution ↓ 58.21% 4 - - 40 12 kHz [45]

Ara h 1
Plasma jet

(pin-to-plate)

Whole peanut ↓ 39.32%

60

70 - 32 52 kHz [46]

Defatted peanut flour ↓ 65%

Ara h 2
Whole peanut ↓ 46%

Defatted peanut flour ↓ 66%

β-conglycinin (Gly m5) Plasma jet Soy protein isolate ↓ 89% 90 - 12 kW - 2.45 GHz [47]

Glycinin DBD Allergenic protein
solution

↓ 91.64%
5

50 40 20 kHz [48]

↓ 81.49% *

Soy allergens DBD Soy protein isolate ↓ 75% * 5 35 - 40 120 Hz [49]

↑—increase; ↓— decrease; *—The binding capacity of IgE antibodies.
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ACP has become an alternative approach to deactivating allergens via structural
changes in proteins. Ng et al. [44] treated milk allergens casein, β-lactoglobulin, and
α-lactalbumin through spark discharge (SD) and glow discharge (GD) ACP. After SD-
ACP and GD-ACP treatment for 30 min, the antigenicity of casein was decreased by 49.9
and 91.1%, whereas that of α-lactalbumin was reduced by 49.5 and 45.5% compared to
control, respectively. In milk, RONS from ACP decrease the antigenicity by denaturing
α-lactalbumin and β-lactoglobulin proteins. This is achieved by the destruction of hy-
drogen bonds, which stimulates protein aggregation through disulphide bonding [50].
Essentially, ACP induces intermolecular cross-linkage from the cysteine residues of milk
allergens, which affects primary and secondary structures and hence their binding capacity
to antibodies [45].

A similar mechanism also occurs in the egg allergen. In more than 35% of patients who
are allergic to eggs, lysozyme is the main cause of their allergic reactions [51]. Lysozyme has
been used extensively as a food additive as it can hydrolyse the cell wall of Gram-positive
bacteria and induce cell disruption, increasing products’ shelf life. Consequently, ingredient
labels must add the information about any egg-derived additives including lysozyme for
safety purposes. Using a low-frequency plasma jet on a 0.3 mL lysozyme sample containing
0.1 mg/mL in 10 mM phosphate buffer (pH 7.4), a denaturation of lysozyme could be
detected [52]. It was proposed that the denaturation mechanism of lysozyme by ACP was
attributed to the RONS, which induce chemical changes in certain amino acids such as
cysteine, phenylalanine, tyrosine, and tryptophan. After the exposure to ACP, the allergenic
proteins are reported to have lost their secondary structures, such as α-helices and β-sheets,
which result in the destruction of enzymes’ binding sites [52]. This study highlights the
effect of ACP on lysozyme’s activity, which is caused by structural changes of the protein.
Nevertheless, it is also possible for new proteins to be formed after the interaction with
active species [31].

Peanut allergy is the most prevalent food allergy in many Western countries. The
effects of ACP (60 min of treatment time) on major peanut allergens Ara h 1 and Ara
h 2 were observed using whole peanut and defatted peanut flour, which showed that
the antigenicity was reduced by 65% for Ara h 1 and 66% for Ara h 2. The decrease in
antigenicity may be due to the ability of plasma reactive species to change secondary
structures of the allergens, which also reduces peanut protein solubility [46]. Liu et al. [48]
indicated that the conformational alteration is caused by an oxidation of peptide bond
amino groups, such as Trp, Tyr, and Phe amino acid residues. Furthermore, the cleavage
of these polypeptide chains can partially diminish linear epitopes. It is intriguing to note
that moderate ACP treatment improves the functionality of soy protein, such as solubility,
emulsification, and foaming properties, while overexposure may result in denaturation of
the soy protein [48,49].

3.4. Enzyme Inactivation

An ability to regulate enzymes of food products can positively contribute to their
preservation and storage. Table 4 presents the publications of ACP in enzyme inactivation.

Studies of endogenous food enzyme inactivation have been investigated using DBD
and a plasma jet to increase shelf life. One such food is wheatgerm. After treating wheat-
germ at 24 kV for 25 min, the results showed that lipase decreased by 25.03% while
lipoxygenase dropped by 49.98%. However, the extension of treatment time beyond 25 min
did not drastically improve the inactivation efficiency. It is also interesting to note that
the inactivation effect was not permanent, as the both lipase and lipoxygenase enzymes
recovered some of their activities during the storage period. However, the result showed
that ACP did not affect the phenolic content of wheatgerm. This suggests that ACP can be
a great boon when it comes to inactivation of endogenous enzymes in food processing [53].
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Table 4. Selected publications of ACP on enzyme inactivation in food products.

Enzyme Inactivation

Food Product Plasma Device Enzymes Reduction of
Enzyme Activity

Parameters
ReferenceExposure Time

(s)
Exposure

Distance (mm)
Input Power

(W) Voltage (kV) Frequency

White
mushroom DBD β-1,3-glucanase,

MDA, and PPO 46.2%; 47.5%; 42.0% 60 100 30 - 13.6 MHz [7]

Mushroom
(Agaricus
bisporus)

DBD PPO 70.0% 600 38 - 50 - [54]

Milk DBD ALP 50.0% 120 40 - 60 50.0 Hz [55]

Wheatgerm DBD Lipase and
lipoxygenase 25.0%; 50.0% 1500 20 - 24 50.0 Hz [53]

Hen egg white DBD Lysozyme 50.0% 720 3 - 0.14 16.0 kHz [56]

Hen egg white Plasma jet Lysozyme 60.0% 720 6 - 0.08 24.0 kHz [56]

Fresh-cut melon DBD POD and PME 17.0%; 7.0% 900 5 - 15 12.5 kHz [57]

Bananas DBD POD and PPO 64.4%; 62.6% 120 6 - 0.040 10.0 kHz [58]
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Other endogenous enzyme inactivations are studied, including pectin methylesterase
(PME), polyphenol oxidase (PPO), and peroxidase (POD). All of them are normally found in
fruits and vegetables as they are responsible for ripening and softening [59,60]. The presence
of these enzymes in food commodities can shorten shelf life, which depreciates their market
values. Typically, pasteurisation is implemented in the food process to inactivate these
enzymes as well as other microorganisms [60].

Tappi and team [57] used fresh-cut melon to observe the effect of ACP on POD and
PME. According to the result, POD and PME were reduced by 17% and 7%, respectively,
after 15 min of plasma exposure. After the treatment, the samples could be stored up to
4 days at 10 ◦C compared to 2.5–3 days of untreated samples [57]. The study highlights
ACP’s ability to inactivate undesirable enzymes and microorganisms in food processing.
Further developments of the method may be highly valuable to the food industry.

3.5. Food Drying Pre-Treatment

In order to lengthen food shelf life and reduce transportation costs, dehydration is
the process that is commonly used. However, conventional drying techniques may cause
degradation to heat-sensitive compounds which results in quality deterioration, such as
loss of texture, nutrients, pigment, and aroma. For this reason, there has been an increasing
interest in the use of nonthermal processing which aims to enhance the drying process.
Table 5 shows the publications of ACP in assisted drying.

Table 5. Scientific publications on food drying pre-treatment by ACP.

Food Drying Processing

Food
Product Plasma Device

Drying
Temperature (◦C)

Reduction
of Drying Time

Parameters

ReferenceExposure
Time

Exposure
Distance (mm)

Input Power
(W)

Input Voltage
(kV) Frequency

Grape
Plasma jet 70 20% 3 times 10 500 - 25 kHz [61]

Plasma jet 60 26.27% 50 s 35 300 27 50 Hz [62]

Corn
kernels DBD 37.5 21.52% 30 s - 500 - 40 kHz [63]

Chili pepper Plasma jet 70 ~16.6% 30 s 60 750 - 20 kHz [64]

Shiitake
mushroom

Plasma jet
50, 60, 70 The higher drying

rate at 50 and 60 ◦C.
60 s

50
650 - - [65]Plasma-activated

water -

Tucumã DBD 60 61.1% 10 min 15 - 20 200 Hz [66]

Jujube
Plasma jet

70
12.08% 1 min 50

650 5 40 kHz [67]Plasma-activated
water Non-effect 10 min -

Wolfberry Plasma jet 65 50% 30 s 60 750 - 20 kHz [68]

Saffron Plasma jet 60 54.05% 60 s - 1000 8 50 Hz [69]

The drying processing is a major operation, especially in agro products. Convention-
ally, a pre-treatment method, such as dipping in an alkaline solution, is employed to hasten
the drying step and extend the shelf life, but concerns regarding chemical wastewater and
toxicity from chemical residues are raised. Using a plasma jet, Huang and colleagues [61]
pre-treated the grape surface three times at a power of 500 W and a frequency of 25 kHz
to observe the drying rate of plasma-treated grapes. The results showed that the rate of
moisture loss increased as the distance between the plasma nozzle and grape decreased.
The experiment reported that no changes in appearance, colour, and antioxidant content of
the sample were detected after the ACP treatment [61]. Moreover, they also detected an
increase in the total phenolic content (TPC) from approximately 30 mg to 60 mg per 100 g of
raisin, in addition to the change in antioxidant capacity from 4.5% to 10%. This is due to the
efficiency of moisture diffusivity which reduces the drying time and energy consumption
by up to 26.27 and 26.30%, respectively [61]. Similarly, in wolfberry, 45 s of ACP treatment
could also shorten the drying time by 50% and increase the rehydration ratio by 7–16%.
As the detection of phytochemical contents increased after the ACP treatment, the authors
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speculated that ultrastructure alteration results in the release of compounds that were
trapped within cells, thereby raising the phytochemical contents [68].

Corn is one of the major grains in the world. Fresh corn kernels are easily spoiled due
to their high moisture content, which means that drying technology is a crucial operation
in corn post-harvest handling to extend the storage period [63]. ACP pre-treatment can
be implemented to improve the drying efficiency of corn kernels. Setting the parameters
at 500 W for 30 s, the drying time was reduced by 21.52%, and the drying rate was
increased by 8.15%. The activation energy of drying kinetics from ACP was 47.79 kJ mol−1,
compared to 54.82 kJ mol−1 of the control group. Furthermore, atomic force microscopy
displayed the surface topography of plasma-treated corn kernel having shrunk or damaged
granules [63,70]. This result may help explain the high effectiveness of ACP in the drying
pre-treatment process.

3.6. Pesticide Decontamination

The utilisation of pesticides in crops contributes to higher production yields; however,
the chemical residues left in food after cultivation create safety concerns as they are highly
toxic to consumers [71]. To optimise the pesticide decontamination process, many scientific
reports propose the implementation of ACP to degrade pesticides in food crops, as shown
in Table 6.

One of the most common pesticides in the world is an organophosphate chemical
called chlorpyrifos. Having been introduced in 1965, chlorpyrifos is widely used in the
cultivation of various plants, such as fruits, vegetables, nuts, and grains [72]. Consequently,
many food crops are found to contain high concentrations of this pesticide. The publication
of chlorpyrifos and carbaryl degradation on the corn surface using ACP was observed.
Based on the optimisation study, the treatment time of 60 s, air flow rate of 1000 mL/min,
power of 20 W, and frequency of 1200 Hz resulted in 86.2% and 66.6% degradation efficiency
of chlorpyrifos and carbaryl, respectively. Moreover, the treatment did not significantly af-
fect the nutritional quality of corn, showcasing that ACP can be a promising food processing
treatment for pesticide degradation [73].

Another study of chlorpyrifos was conducted along with a pesticide called diazinon on
apples and cucumbers. The pesticide-dipped fruits were used to test the efficiency of ACP
on the toxic degradation in which the humidity, firmness, colour, and sugar percentage
of the fruits were determined. According to the results, ACP had relatively minimal
effects on those parameters when it was set at 10 min exposure and 13 kV; however,
the changes occurred when the treatment time increased [74]. Another interesting point
should be mentioned, since the study illustrated varying detoxification efficiency between
halogenated pesticides such as chlorpyrifos and the non-halogenated ones such as diazinon.
Due to the chemical composition, polarity, or penetration of plant tissue, ACP was able to
remove dianizon more effectively than chlorpyrifos [74]. According to the study, ACP may
be highly applicable in food processing as a pesticide decontamination method.
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Table 6. Selected publications of ACP on pesticide decontamination in food products.

Pesticide Decontamination

Food Product Plasma Device
Pesticide Active

Ingredients
Degradation of

Pesticides

Parameters
Reference

Time (s) Distance (mm) Input Power (W) Voltage (kV) Frequency

Strawberries DBD

Azoxystrobin,
cyprodinil,

fludioxonil, and
pyriproxyfen

69%; 45%; 71%;
46% 300 40 - 80 50.0 Hz [75]

Blueberries DBD Boscalid and
imidacloprid 80.2%; 75.6% 300 40 - 80 50.0 Hz [76]

Corn DBD Chlorpyrifos and
carbaryl 86.2%; 66.6% 60 6 20 - 12.0 kHz [73]

Mango Gliding arc Chlorpyrifos and
cypermethrin 74%; 62.9% 300 2.5 600 8 - [77]

Apple DBD Chlorpyrifos and
diazinon 87.0%; 87.4% 600 7 - 13 13.0 kHz [74]

Cucumber DBD Chlorpyrifos and
diazinon 33.7%; 82.2% 600 7 - 13 13.0 kHz [74]

Lettuce DBD Chlorpyrifos and
malathion 51.4%; 53.1% 120 35 - 80 50.0 Hz [78]
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3.7. Food Modification

Plasma treatment has a potential to modify food products to enhance properties or
nutrition. Some studies of ACP and its application to alter characteristics of food are listed
in Table 7. Cold plasma can be used in starches to decrease viscosity, molecular weight, and
gelatinisation temperatures [79].

Corn starch is one of the food materials that can be altered to improve its poor physical
and functional properties, enhancing its solubility or viscosity. A study reported physic-
ochemical changes in corn starch after being treated with ACP for 30 min at 400–800 W.
After washing with distilled water, the peak viscosity, final viscosity, and setback of starch
samples were reduced by 87.1%, 92%, and 93.3%, respectively. The results highlight that
ACP causes etching on the starch grains, which contributes to solubility and clarity [80].

Wheat is one of the most common staple crops in the world as it is used as an ingredient
in bread, pasta, and other bakery products. Consequently, numerous chemicals and
enzymes are used on wheat as oxidising or bleaching agents. To avoid potential toxicity
from these additives, the effect on wheat flour of nonthermal technology, such as high
pressure processing and ACP, has been widely studied. Since ACP can generate strong
oxidising agents, such as RONS, the technique can replace the conventional oxidising
agent without leaving any toxic residues during wheat processing. According to the report
on ACP on wheat flour, treatment times ranging between 5 and 30 min at 80 kV induce
depolymerisation of starch and reduces its crystallinity, which essentially increases the
hydration and viscosity of wheat flour [81].

Table 7. Research studies of ACP on food modification.

Food Modification

Food
Product

Plasma
Device Modification Results

Parameters
Reference

Time (s) Distance (mm) Input Power (W) Voltage (kV) Frequency

Fenugreek DBD Galactomannand
yield 122% 1800 40 - 80 60 Hz [82]

Maize DBD Increase in
crystallinity 36.90% 600 5 - 0.138 50 Hz [83]

Wheat DBD Increase in
viscosity 17.60% 1800 30 - 80 50 Hz [81]

Whey
protein
isolate

DBD
Emulsification

enhance-
ment

25.00% 300 44 - 70 - [84]

Xanthan
gum SBD Increase in

viscosity 40.00% 1800 53 250 3.5 15 kHz [85]

Pomegranate
juice Plasma jet

Increase in
phenolic

compounds
33.00% 300 22 6 2.5 25 kHz [86]

White
grapes Plasma jet Drying

speed 20.00% 36,000 10 500 - 25 kHz [61]

Chili pepper Gliding arc Drying
speed 16.70% 30 60 750 - 20 kHz [64]

Wolfberry Gliding arc Drying
speed 14.10% 60 60 750 - 20 kHz [68]

Similar results could also be observed in xanthan gum. While various chemical and
enzymatic techniques to improve its functionality exist, the treatments can be costly or
involve tedious procedures. Using ACP treatment (60 W for 20 min), Bulbul et al. [87] found
an increase in the porosity and compressibility index of xanthan gum. Moreover, another
study demonstrated similar results after exposing xanthan gum to ACP for 20 min at 3.5 kV.
The samples showed lower shear viscosity and increasing emulsifying capacity without
any effect on their whiteness [85]. The research investigation concluded that ACP can be a
practical processing technique for xanthan gum to expand its functional characteristics.

Under the scope of protein modification, bovine serum albumin (BSA) was treated
with ACP, which caused protein unfolding and changes in the secondary structure. This
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finding suggests that ACP promotes the structural alteration, aggregation, peptide cleavage,
and side-group modification of proteins [88]. Based on the characterisation study, ACP
promotes structural conformation and unfolding of the polypeptide chain, which leads
to more hydrogen bonding [89]. To summarise, while many researchers study the ability
of ACP to alter polysaccharide and protein structures [90–93], few publications actually
evaluate its exact mechanism, particularly on the physicochemical reactions between
proteins and active species. Thus, more research on the topic is vital to gain better insights
on its efficacy.

3.8. Nutrient Extraction

Polyphenols are antioxidants present in fruits and vegetables, which can help pre-
vent lipid oxidation and provide the colour and flavour in food. Table 8 shows selected
publications on the effects of ACP on nutrient extraction.

Table 8. Recent publications of ACP on nutrient extraction.

Nutrient Extraction

Food Matrix Plasma
Device

Parameters
Results ReferenceInput Power

(W)
Voltage

(kV)
Time
(min)

Working
Gas

Frequency
(kHz)

Gas Flow
Rate (L/min)

White
grapes Jet plasma 500 - 3–7 Air 25.00 40.00

TPC and antioxidant
capacity increased more

than twofold
[61]

Blueberry
juice Jet plasma - 11 - Ar, O2 1.00 1.00

TPC increased by 7.34%,
and antioxidant capacity

increased
[94]

Tomato
pomace

DBD
plasma - 60 15 Ar, He,

N2, air - -
TPC increased by 24.07%,
and antioxidant capacity

by 30%
[95]

Grape
pomace

DBD
plasma - 60 5–15 He - -

Increased the yield of
phenolic extracts;

improved antioxidant
capacity

[96]

Fenugreek DBD
plasma - 120 V 30 air 0.06 -

Increased the extraction
yield of fenugreek

galactomannan
[82]

Tomato DBD-
plasma 0.55–1.43 13–17 5–45 air 0.05 15.00 Increased the weight of

tomato by 20–40% [97]

Black gram Jet plasma - 3–6 3–15 O2 3.00–10.00 0.25

Chlorophyll content
increased by 23.80% and
total soluble protein and

sugar concentrations
increased by 33.28% and

51.73%, respectively

[98]

Many researchers claim that ACP can increase total phenolic content (TPC) in white
grapes [61], pomegranate juice [86], blueberry juice [94], cashew apple juice [99], tomato
pomace [95], and dry peppermint [100]. Nevertheless, operation factors, such as input
power, voltage, treatment time, gas, frequency, and gas flow rate, play important roles in
the treatment. The working gas is one of the most critical elements since it determines the
compounds that are activated. In the case of tomato pomace, the exposure of atmospheric
pressure plasma coupled with helium or argon resulted in a significant increment of
antioxidant capacity, TPC, quercetin, and naringenin [94]. Argon plasma pre-treatment
is shown to improve tomato pomace’s extraction rate, TPC, antioxidant capacity, and
flavonoids [95], whereas helium is more suitable for enhancing those variables for grape
pomace [96].

Nevertheless, not all studies on plasma report the increase in TPC. Setting the voltage
at 80 kV, a reduction in total phenolic (from 720.62 to 445.02 gallic acid equivalent µg/mL)
and flavonoid (from 265.21 to 211.46 catechin equivalent µg/mL) contents was recorded in
grape juice when the exposure time increased to 4 min [101]. Moreover, the gas flow rate
can also affect vitamin C, TPC, flavonoids, and antioxidant activity due to the interaction
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between phenol compounds and RONS [99,102,103]. As a result, the chemical structure of
vitamin C may be degraded when the plasma exposure is too high [99].

According to these publications, ACP is shown to help improve concentration, colour,
sensory properties, and nutrient retention. This can be justified by the ability of the cold
plasma to disrupt the surface of cell membranes and release bioactive compounds within
the cells [104]. Many research publications assert that the physical effect from low ion
bombardment and chemical effects from free radicals, ions, and other plasma substances of
ACP promote changes on the sample’s surface. One of hypotheses that may explain the
higher content of polyphenols after ACP processing is the rupture of cell membranes, which
leads to the release of potent compounds [105]. Nevertheless, comprehensive research
on plasma extraction technology is limited, as most publications focus on polyphenol
extraction and enhancement of antioxidant activity [106,107]. Unlike other processing
technologies, ACP is not directly utilised as an extraction method; rather, it is commonly
used as a pre-treatment step [108]. It can thus be concluded that the effects of ACP on each
sample vary depending on the gas, plasma type, treatment time, flow rate, and energy.

3.9. Food Waste Processing

The accumulation of food waste at landfill sites instigates the need to efficiently
manage it. Research studies have come up with ways to valorise different types of food
waste using ACP. Table 9 lists scientific publications which study the results of ACP to
enhance the production of economically valuable compounds from food waste.

Successful ethanol production from sugarcane bagasse was studied, whereby ACP
was utilised to detoxify inhibiting compounds in the pre-treatment process. Lin and
team [109] reported that ACP set at 200 W for 25 min on sugarcane bagasse hydrolysate
can remove as much as 31% of formic acid, 45% of acetic acid, 100% of furfural, and 81% of
hydroxymethylfurfural (HMF), enhancing ethanol productivity from 0.25 to 0.65 g/L/h.
Maintaining the same parameters of ACP, they could also use the carbon source obtained
from the ACP-treated sugarcane bagasse hydrolysate to produce bacterial cellulose [110].
The study showed the high efficacy of ACP to eliminate toxic compounds, indicating that
ACP can serve as a possible processing alternative in the pre-treatment step to help lower
the cost.

Table 9. Selected publications of ACP on food waste processing.

Food Waste Processing

Food
Waste

Plasma
Device Products Results

Parameters
Reference

Gas Type Time (s) Distance
(mm)

Input
Power (W)

Voltage
(V)

Frequency
(Hz)

Grape
pomace DBD

Phenolic
com-

pounds
22.8% Air 900 52 - 120 60 [96]

Pineapple
peel DBD Bacterial

cellulose 3.82 g/L Ar, Air 900 10 600 - - [111]

Sugarcane
bagasse Plasma jet

Bioethanol
production 38.5% Ar 1500 10 80–200 - - [109]

Bacterial
cellulose 1.68 g/L Ar 1500 10 200 - - [110]

Wheat
straw DBD Methane 45.0% Air 3600 20 230 - 10 kHz [112]

Likewise, agro-industrial waste such as pineapple peel can be valorised to reduce
landfill sites. In this study, pineapple peel waste is hydrolysed for bacterial cellulose
production. The results illustrated that even though ACP with argon plasma at the power
of 80–200 W possesses higher ability to remove the toxic compounds (such as formic acid,
furfural, and HMF) in the pineapple peel waste hydrolysate than air plasma at the power
of 500–600 W, it also contributed to relatively more sugar degradation. Since the study
concluded that both ACP-treated and untreated hydrolysate can be fermented without
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jeopardising the quality of bacterial cellulose, it emphasises how pineapple peel waste can
be one of the renewable sources for bacterial cellulose production [111].

In conclusion, ACP illustrates high potential in the area of food waste processing, as
it enables the waste to be repurposed as renewable materials, reinforcing the concept of
sustainability. Nonetheless, more research studies are essential to diversify the application
of ACP in this particular sector.

4. Challenges of ACP in Food Industry

Despite a plethora of uses in numerous industries, ACP still encounters certain chal-
lenges which obstruct its applicability. In food processing, treatment time is undoubtedly
one of the most critical parameters as it directly contributes to effectiveness. While an
optimised time can improve functionality or enhance desired results, overexposure may
lead to product degradation. When ACP is used to degrade allergens in soybean protein
isolate, for instance, overtreatment results in the aggregation of protein, which leads to the
loss of its functionality [49].

Moreover, different gas types and flow rates may substantially contribute to the
treatment efficacy of specific compounds. Argon plasma, for example, may be a more
efficient working gas than N2, O2, and air plasma when extracting essential oil from
lemon peel [113,114]. On the other hand, a low flow of N2 on ACP can improve total
polyphenol content in cashew apple juice by activating existing antioxidant compounds
as a response against the generated plasma reactive species, but the higher gas flow may
result in degradation of these phenolic compounds [99]. In consequence, the objective of
plasma treatment should be considered before standard parameters can be customised for
each food product.

Beyond the conditions, the type of ACP generator also contributes to the challenges.
In the study of milk allergenicity, Ng and colleagues [44] discovered that glow and spark
discharge ACP shows dissimilar efficacy on the types of protein (casein, β-lactoglobulin
and α-lactalbumin) after using the same treatment conditions. Therefore, in addition to
identifying the type of ACP devices, researchers are also required to carefully characterise
optimal conditions for each plasma source.

Additionally, instrument size creates some concerns. As the current dimensions are
built for research purposes, the device may not be suitable in an industrial operation which
requires continuous processing in large bulk. Thus, the upscale technology of ACP is
of paramount significance as it may help create a standard of procedure within the food
industry [10,79].

Furthermore, very few researchers focus on the toxicological effects of ACP on food.
Although ACP can potentially replace conventional food processing techniques, limited
information on the consumption of ACP-treated foods is documented. Hence, additional
studies on the chemistry of ACP are crucial to ensure that potential by-products from the
process do not pose any health risk for consumers. To the best of our knowledge, a formal
policy to regulate the operation of ACP on food has yet to be established by the FDA or
other food agencies. If all of these concerns are addressed, ACP could be integrated to
enhance the processing steps and safety in the food industry.

5. Conclusions and Future Outlook

The integration of ACP in the food sector shows promising results as the method
yields high productivity in inactivating food pathogens and enzymes, decontaminating
pesticides, improving food modification techniques, as well as enhancing the processing
of food waste. With such attractive features, the need to shed light on the chemistry of
these operations is more urgent than ever. Once the insights on the chemical interactions of
ACP are well-studied, the processing standard can then be formulated to make sure that
plasma-treated foods are adequately safe for human consumption. Therefore, the scaled-up
cold plasma system may contribute to the treatment quality by improving processing speed
and continuity. This may lead to an explosive progress as more researchers may attempt
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to adapt this technology in other areas. In consequence, each laboratory would be able to
compare results and devise standards where food and other materials can be effectively
processed.
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