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Abstract: Fe[C5H5N]2[N(CN)2]2 (1) was synthesized from a reaction of stoichiometric amounts of
NaN(CN)2 and FeCl2·4H2O in a methanol/pyridine solution. Single-crystal and powder diffraction
show that 1 crystallizes in the monoclinic space group I2/m (no. 12), different from Mn[C5H5N]2[N(CN)2]2

(P21/c, no. 14) due to tilted pyridine rings, with a = 7.453(7) Å, b = 13.167(13) Å, c = 8.522(6) Å,
β = 114.98(6)◦ and Z = 2. ATR-IR, AAS, and CHN measurements confirm the presence of dicyanamide
and pyridine. Thermogravimetric analysis shows that π-stacking interactions of the pyridine rings
play an important role in structural stabilization. Based on DFT-optimized structures, a chemical
bonding analysis was performed using a local-orbital framework by projection from a plane-wave
basis. The resulting bond orders and atomic charges are in good agreement with the expectations
based on the structure analysis. SQUID magnetic susceptibility measurements show a high-spin state
FeII compound with predominantly antiferromagnetic exchange interactions at lower temperatures.

Keywords: crystal structure; iron; pyridine; dicyanamide; quantum chemistry; magnetism

1. Introduction

Solid-state materials containing pseudo elements, such as cyanide [1–8], carbodiimide,
and cyanamide [9–18] have gained a lot of interest over the last decades, in particular
because those complex anions allow to mimic halide or chalcogenide chemistry with much
more covalent nitrogen atoms. Another interesting pseudo-halide entity, the dicyanamide
anion (dca), has comparatively gained less attention but is considered important because
of its structural behavior and boomerang-shaped appearance. One of its outstanding
properties is the ability to stabilize high-spin states due to the weaker ligand field in
comparison to cyanide. In addition, the dicyanamide anion can coordinate up to four
cations, due to the free electron pairs and the negative charge at the nitrogen atoms.
Therefore, dca may act as a bridging ligand between metals [19–25].

Three-dimensional metal dicyanamides can occur in the so called α- and β-structures.
In the α-structure, all nitrogen atoms of the dca moiety are µ-1,3,5 bridging ligands, and
the metal atom is octahedrally surrounded by nitrogen atoms of six dca units. This results
in a rutile-like 3D network. In the β-structure, only the terminal nitrogen atoms are
coordinated to the metal (µ-1,5 bridging), resulting in the metal adopting a tetrahedral
coordination of four dca units, thereby forming a layered structure. Due to the boomerang
shape of the dca units, the layers are zigzag-shaped. The α-structure is known for 3d
metals in oxidation states not in favor of Jahn–Teller distortion (e.g., Mn [26,27], Fe, Co,
Ni [28]) [29]. In addition to Cu(dca) [30], a β-structure is also known for Co(dca)2 [31] and
Zn(dca)2 [32]. Due to the rutile-like network, 3d metal dicyanamides in the α-structure
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exhibit cooperative magnetism making them interesting research targets [27–29]. On
the other hand, dicyanamides crystallizing in the β-structure feature free accessibility
to the metal as a consequence of their layered structure, a property of potential use in
heterogeneous catalysis [23–32].

By introducing neutrally charged, non-bridging ligands L (e.g., DMF, EtOH, pyri-
dine [33,34], pyridazine [35,36], and ammonia [37,38]) to these 3D metal dicyanamides,
both structure and properties change to a structure type between the α- and the β-structures.
In the latter structure type, only the terminal nitrogen atoms of the dca units are µ-1,5
bridging the metals, as said before, so the additional L ligands complete the octahedral
metal coordination. Independent from the ligand, the dca units and metals can be treated
as 2D layers built up from interacting 1D chains, analogous to the β-structure of pure
3d metal dicyanamide compounds. Due to the additional ligands, the different layers or
chains can interact with each other leading, for example, to the formation of hydrogen
bonds or π-stacking stabilizing the compound. These in-between structures exhibit para-
magnetic behavior instead of cooperative magnetism [33–38] probably due to the longer
exchange pathway of µ-1,5 instead of µ-1,3,5 dicyanamide anions present in pure 3D metal
dicyanamides [36]. In this paper, we discuss the synthesis and characterization of a new
ML2[N(CN)2]2 compound: Fe[C5H5N]2[N(CN)2]2.

2. Results and Discussion
2.1. Structural Description and Discussion

The crystal structure of Fe[C5H5N]2[N(CN)2]2 was determined and confirmed based
on several X-ray diffraction experiments at ambient temperature (300 K) as well as at
100 K. Thorough inspections of these data pointed to the monoclinic system (a = 7.453(7) Å,
b = 13.167(13) Å, c = 8.522(6) Å, and β = 114.98(6)◦), while the structure was solved and
refined in space group I2/m (no. 12). In this context, it should be noted that the previously
reported Mn[C5H5N]2[N(CN)2]2 crystallizes in the space group P21/c (no. 14) [33]. There-
fore, the powder as well as single-crystal X-ray diffraction data were carefully examined in
order to confirm the choice of an I-centered monoclinic lattice for the iron-containing species
(see below and Section 3 for a full discussion regarding the structure determination).

Each unit cell comprises two formula units, while the bond lengths of the dca units in
the iron-containing compound are consistent with data provided for such units in the liter-
ature [33,38]. In the dca unit, the distance of the outer C–N bond is d(N2–C4) = 1.150(7) Å,
while the length of the inner C–N bond is d(C4–N3) = 1.308(6) Å. Such C–N distances
are indicative of an inner single bond and an outer triple bond, in harmony with a
simple Lewis sketch. The angles of the dca units are ∠(N2–C4–N3) = 174.7(5)◦ and
∠(C4–N3–C4) = 119.5(6)◦ which are also in good agreement with data in the literature [33,38].
The iron atoms are coordinated by four equatorially arranged dca units and additionally
by the nitrogen atoms of two pyridine rings located in trans position (Figure 1, left). As
a consequence, the coordinating nitrogen atoms form an almost ideal octahedron with
distances of d(Fe–N1)pyridine = 2.192(11) Å and d(Fe–N2)dca = 2.166(5) Å in analogy to the
manganese-containing compound reported in the literature (d(Mn–N)pyridine = 2.271(3) Å,
d(Mn–N)dca = 2.226(3) Å). Unlike 3d metal dicyanamides, these compounds show µ-1,5
bridging in which the central nitrogen atom of the dca unit is not bonded to the metal.
Indeed, the dicyanamides form bridging ligands, which connect the iron atoms within
1D chains. The pyridine rings of the different chains are intercalated with each other
(Figure 1, right).

This results in the formation of 2D layers in which the pyridine rings play an important
role in stabilizing the structure. A view along the a-axis reveals the almost perpendicular
N–Fe–N angle of ∠(N2–Fe–N2) = 91.6(3)◦. Looking along the b-axis, another structural
peculiarity becomes apparent. The pyridine rings of different 2D-layers are ordered in
a parallel manner. Notably, the pyridine rings in the manganese-containing compound
are tilted by circa 17◦ individually, alternating every second layer [33]. This circumstance
explains the cancellation of translation symmetry, and therefore the symmetry reduction of
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the manganese-containing compound in comparison to the iron-containing species. The
distances between the intercalated rings alternate between 3.844(17) Å and 3.692(18) Å,
which is well within the range of a typical π-stacking distance [39,40]. Seemingly, this
stacking additionally stabilizes the substance that is neither sensitive to air nor moisture,
even insoluble in water or selected organic solvents.
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Figure 1. Coordination sphere of the iron atoms in Fe[C5H5N]2[N(CN)2]2 (left) and intercalation of
pyridine rings within different chains (right). For clarity, the atoms of the dca units were removed in
the right subfigure. Fe in gold, N in green, C in black, H in grey.

Because the anisotropic atomic displacement parameters (ADPs) corresponding to
certain atoms of the pyridine rings are evidently elongated along the c direction, we also
probed if the crystal structure of the iron-containing species could undergo a structural
transition to that of the manganese-containing compound. Therefore, additional powder
X-ray diffraction experiments and Rietveld refinements of the recorded data were carried
out at different temperatures. The results of the refined lattice parameters at 300 K (Figure 2,
Table S1) is in good agreement with those obtained in the single-crystal X-ray diffraction
experiments (RB = 4.67%), while the 100 K measurement could not be refined due to the
X-ray diffraction mode chosen (reflection, not transmission). Nonetheless, the reflection
data show that all reflections could be described with the theoretical pattern generated
by the single-crystal measurement, the deficiencies showing up in the profiles. Further
Rietveld refinements based on the structure model of the manganese-containing compound
did not yield a reasonable model. We therefore conclude that the aforementioned structural
transition is not evident for the iron-containing species between 300 and 100 K, possibly at
even lower temperatures. Based on the single-crystal X-ray diffraction data, we checked if
a modulated structure model might show up from a temperature-dependent rattling of the
pyridine rings around the N1–C3–H3 axis; there was also no clear evidence of a modulated
structure model. Therefore, further research including high-quality neutron diffraction
experiments within a broader temperature range might be needed to possibly monitor a
movement of the pyridine rings.

2.2. Elemental Analysis

The atomic absorption spectroscopy (AAS) and CHN measurement show the presence
of iron, carbon, nitrogen, and hydrogen (Table 1). The value for iron (from AAS) is slightly
larger, and those of carbon, hydrogen, and nitrogen are slightly smaller than expected.
A plausible explanation for this can be the presence of other ions bound in the sample,
causing the carbon, hydrogen, and nitrogen values to decrease. For example, the surface of
the compound could still be contaminated by chloride ions originating from FeCl2 used
during synthesis. Since the compound is a microcrystalline powder, the surface is relatively
large and could therefore influence the overall composition.
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Table 1. Theoretical and experimental data for Fe[C5H5N]2[N(CN)2]2 of the AAS (iron) and CHN
(carbon, hydrogen, and nitrogen) measurement.

Element Fe C H N

Theoretical (%) 16.13 48.58 2.91 32.37
Experimental (%) 17.3(2) 45.9(1) 2.60(8) 31.4(2)
Deviation (abs.) +1.17 −2.73 −0.30 −1.02

2.3. Attenuated Total Reflection Infrared Spectroscopy (ATR-IR)

The obtained IR frequencies show the presence of both the dca unit and the pyridine
ring (Figure S1), which is in good agreement with the literature [21,36]. For a better
comparison, the theoretical vibrations of Fe[C5H5N]2[N(CN)2]2, Fe[N(CN)2]2 and pyridine
were distinguished based on DFT and they show a good fit with the experimental data.
The assignments of the vibrations can be found in Table S5.

2.4. Thermogravimetric Analysis (TGA)

The TGA data are depicted as a mass fraction vs. temperature plot in Figure 3.



Molecules 2023, 28, 4886 5 of 12

Molecules 2023, 28, x FOR PEER REVIEW 5 of 12 
 

 

2.4. Thermogravimetric Analysis (TGA) 
The TGA data are depicted as a mass fraction vs. temperature plot in Figure 3. 

  
Figure 3. Thermogravimetric analysis of Fe[C5H5N]2[N(CN)2]2 measured in nitrogen flow; inset: 
possible decomposing reaction in step 3. 

Mass losses occur in three distinguishable steps at approx. 180 (1), 620 (2), and 670 °C 
(3). Assuming that the substance is the desired compound (Fe[C5H5N]2[N(CN)2]2), the first 
mass loss (1) of 100 to 61% fits the cleavage of two dca units (132.08 g/mol), leaving 
Fe[C5H5N]2 behind. The mass loss at 620 °C (2) can be explained by the cleavage of one 
pyridine ring per iron atom (79.10 g/mol). The mass loss is somewhat surprising at such a 
high temperature, since the boiling point of pyridine is at 115 °C under standard 
conditions. Hence, significant covalency in the bond between iron and pyridine does exist, 
and  π-stacking also exists between pyridine rings. According to the literature, the 
cleavage temperature of pyridine is about 400 °C [41], which is almost 200 °C below the 
temperature needed for splitting a pyridine ring from the compound. The last 
decomposition step at 670 °C (3) fits a mass loss of 38.06 g/mol and can therefore not be 
explained by the cleavage of another pyridine ring. Comparison with the literature 
indicates that pyridine may decompose into many different components although there 
is no decomposition fitting a mass loss of about 38 g/mol, while leaving a reasonable iron 
residue [42,43]. The high temperature may have caused the ring to split, resulting in the 
cleavage of a C3H3 fragment (Figure 3, inset). These fragments could have reacted with 
each other after cleavage to saturate the free-binding sites on the carbon. Such a reaction 
was not tracked in the TGA but seems the most reasonable to us. 

In summary, TGA confirms the presence of the proposed fragments in the 
compound. Furthermore, the interactions of the pyridine rings have a very large influence 
on the stability of the compound, which is already reflected in its low solubility. 

  

Figure 3. Thermogravimetric analysis of Fe[C5H5N]2[N(CN)2]2 measured in nitrogen flow; inset:
possible decomposing reaction in step 3.

Mass losses occur in three distinguishable steps at approx. 180 (1), 620 (2), and 670 ◦C
(3). Assuming that the substance is the desired compound (Fe[C5H5N]2[N(CN)2]2), the
first mass loss (1) of 100 to 61% fits the cleavage of two dca units (132.08 g/mol), leaving
Fe[C5H5N]2 behind. The mass loss at 620 ◦C (2) can be explained by the cleavage of
one pyridine ring per iron atom (79.10 g/mol). The mass loss is somewhat surprising at
such a high temperature, since the boiling point of pyridine is at 115 ◦C under standard
conditions. Hence, significant covalency in the bond between iron and pyridine does exist,
and π-stacking also exists between pyridine rings. According to the literature, the cleavage
temperature of pyridine is about 400 ◦C [41], which is almost 200 ◦C below the temperature
needed for splitting a pyridine ring from the compound. The last decomposition step
at 670 ◦C (3) fits a mass loss of 38.06 g/mol and can therefore not be explained by the
cleavage of another pyridine ring. Comparison with the literature indicates that pyridine
may decompose into many different components although there is no decomposition fitting
a mass loss of about 38 g/mol, while leaving a reasonable iron residue [42,43]. The high
temperature may have caused the ring to split, resulting in the cleavage of a C3H3 fragment
(Figure 3, inset). These fragments could have reacted with each other after cleavage to
saturate the free-binding sites on the carbon. Such a reaction was not tracked in the TGA
but seems the most reasonable to us.

In summary, TGA confirms the presence of the proposed fragments in the compound.
Furthermore, the interactions of the pyridine rings have a very large influence on the
stability of the compound, which is already reflected in its low solubility.

2.5. Chemical Bonding Analysis

To examine the chemical bonding situation in Fe[C5H5N]2[N(CN)2]2, the crystal orbital
bond index (COBI) [44] as well as Löwdin charges [45] were calculated using LOBSTER. In
contrast to common bonding indicators for solids, COBI’s interpretation is almost trivial as
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its energy integral, the ICOBI, directly translates into the covalent bond order between any
two atoms. ICOBI as well as the charges for all respective atoms are shown in Figure 4.
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c direction.

All calculated bonding descriptors are in good agreement with expectations from a
simple Lewis picture: both C–C and C–N bonds in the pyridine rings have an ICOBI of
about 1.4, indicative of the aromatic ring. The C–H bonds are single bonds, as expressed by
ICOBI ≈ 0.92. With an overall charge of +0.19, pyridine may be considered almost neutral.
The dicyanamide unit shows a bond order of 2.4 between nitrile nitrogen and carbon, while
the bond order between amide nitrogen and carbon is 1.35. In combination, both bond
orders indicate the presence of mesomerism between the N≡C–N and N=C=N forms of
the dicyanamide molecule. The calculated bond orders in the dca unit match those in the
proposed structure of Fe[C5H5N]2[N(CN)2]2. The charge on the formally divalent iron
atom indirectly suggests a strong covalent moiety in the coordinative bonds between iron
and nitrogen, confirmed by the ICOBIs of 0.43–0.44 for the Fe–N bonds.

2.6. Magnetic Properties

The magnetic data of Fe[C5H5N]2[N(CN)2]2 normalized to a single FeII center are
displayed in Figure 5 as χmT vs. T plot at 0.1 T and as Mm vs. B plot at 2.0 K (inset).
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Figure 5. Temperature dependence of χmT of Fe[C5H5N]2[N(CN)2]2 at 0.1 T; inset: molar magnetiza-
tion Mm vs. applied magnetic field B at 2.0 K.

At 290 K, χmT is 3.80 cm3 K mol−1, which is within the expected [46] range of
3.2–4.1 cm3 K mol−1 of an isolated high spin FeII center. This range is above the spin-only
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value of 3.00 cm3 K mol−1 (for S = 2), since orbital contributions are not fully quenched
for an octahedrally coordinated 3d6 ion. Upon cooling the compound, the values of χmT
continuously decrease and drop off at temperatures below 50 K, reaching 1.11 cm3 K mol−1

at 2 K. At this temperature, the molar magnetization is an almost linear function of the
applied magnetic field up to about 1.5 T. Upon increasing fields, Mm increases at a de-
creasing rate without reaching saturation at the highest field of the experimental set-up
of 5.0 T. The value of Mm is 2.7 NA µB, which is well below the saturation value of about
4.5 NA µB estimated from the value of χmT at 290 K. The significant decrease in χmT at
temperatures below 100 K is partly due to the thermal depopulation of the energy states
of the FeII center split by electron–electron inter-repulsion, ligand field, and spin–orbit
coupling. However, the main contribution is due to predominantly antiferromagnetic, yet
weak exchange interaction between neighboring FeII centers. This is also evident from the
Mm vs. B curve. On the one hand, the magnetization of an isolated high spin FeII center
with distorted octahedral symmetry is not expected to reach saturation at 5 T and 2 K due
to the ground state being characterized by distinct mixing of energy states with different
magnetic moments. In addition to the latter, such FeII centers are additionally characterized
by magnetic anisotropy that yields lower values of Mm since they represent the mean values
obtained from a sample of randomly oriented crystallites, i.e., a powdered material. How-
ever, both effects result in a value of Mm of about 1 NA µB below the saturation value and a
slightly smaller slope at 5 T and 2 K than shown in Figure 5. Therefore, the even lower value
of Mm at this temperature and field also reveals weak, predominantly antiferromagnetic
exchange interactions within the compound. This observation fits well with the fact that
the corresponding manganese compound Mn[C5H5N]2[N(CN)2]2 has also been described
as being an antiferromagnet, with an effective moment around 5.85 µB at 300 K and weak
antiferromagnetic intrachain interactions mediated by the Mn[N(CN)2]2Mn pathways [33].

3. Materials and Methods
3.1. Synthesis

Fe[C5H5N]2[N(CN)2]2 was synthesized by adding FeCl2·4 H2O (0.9942 g, 5 mmol)
to a stirring solution of NaN(CN)2 (0.8904 g, 10 mmol, 2 Eq.) in 100 mL methanol. After-
wards, pyridine (1.5 mL, ≈18.5 mmol, 2.9 Eq.) was added dropwise. The beige-colored
product precipitated immediately, was filtered, dried, and appeared as a crystalline powder
containing a few single crystals, which were stable against air and moisture.

3.2. Single-Crystal Diffraction

The samples were selected from the bulk and placed at the top of glass fibers with
the aid of grease. The sets of single-crystal X-ray intensity data were collected at 100 K
on a Bruker® APEX CCD diffractometer (Bruker Inc., Madison, WI; Mo-Kα1 radiation,
λ = 0.71073 Å) that was equipped with an Oxford® Cryostream 700 to control the temper-
ature of the measurements. Initial indexing of the collected data pointed to a C-centered
monoclinic lattice setting that was used for subsequent processing of the data. The raw in-
tensity data were integrated using the program SAINT [47], while an absorption correction
was accomplished utilizing the SADABS code [48]. Applications of the reflection conditions
to the data sets were accomplished via the XPREP algorithms within the APEX II suite [49]
and pointed to the space group I2/m, which was also used for the final structure solutions
and refinements. The crystal structure was solved using direct methods (SHELXS-97) and
refined in full-matrix least squares on F2 (SHELXL-2014) which also included anisotropic
atomic displacement parameters [50,51]. In the framework of the data analysis and struc-
ture solution, we became aware of reflections of very weak intensities which translated
into the large R1 value for all data, while somewhat enlarged anisotropic atomic displace-
ment parameters were evident for certain sites assigned to the pyridine rings. Therefore,
extensive examinations were undertaken to check for the presence of a space group being
different from I2/m or for the occurrence of a modulated structure as a consequence of
possible elongations of the pyridine rings; yet, none of our attempts could satisfactorily
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reveal the existence of one of the aforementioned phenomena, while close inspections of
the intensity data sets did not indicate the presence of any sort of twinning. In addition, we
probed the presence of positional disorder for the C1 and C2 sites of the pyridine ligands.
These refinement cycles resulted in notable distortions of the pyridine rings, however, the
ligand C2v symmetry was entirely lost, even though substantial improvements of the refine-
ments were not accomplished. Because there is no effect which could reasonably provoke
such a distortion of the pyridine rings, positional disorder of the C1 and C2 positions was
discarded. Furthermore, we took into consideration to carry out a numerical absorption
correction; yet, the size of the selected single crystal (≤0.1 mm) hindered to conduct a
numerical absorption correction and hence a semi-empirical method had to be used in line
with the recommendations of the International Union of Crystallography [52].

3.3. Powder X-ray Diffraction

The powder sample was first loaded into a sample holder and then transferred to
a Stoe® STADI MP diffractometer (Stoe & Cie, Darmstadt, Germany; Mo-Kα1 radiation,
(λ = 0.71073 Å), which was used to collect the powder X-ray diffraction data set in trans-
mission mode at 300 K, while the 100 K measurement was performed in reflection mode
under vacuum. The measurements were controlled via the WinXPow® program [53], which
was also used for further processing of the raw data, while the Rietveld refinements of
the collected powder X-ray diffraction patterns for the measurement at T = 300 K were
performed with FullProf Suite [54] and a formally pseudo-Voigt profile function of full
Lorentzian shape to profit from the better asymmetry correction. The atomic positions
and ADPs were taken from the single crystal refinement and were not refined further. The
results of this Rietveld refinement further confirmed the structural model determined on
the basis of the single-crystal X-ray diffraction experiments (see above).

3.4. Magnetic Measurements

A polycrystalline sample of Fe[C5H5N]2[N(CN)2]2 was compacted and immobilized
into a cylindrical PTFE capsule. A Quantum Design® MPMS-5XL SQUID magnetometer
(Quantum Design, San Diego, CA, USA) was employed to collect the magnetic data, which
were acquired as a function of temperature (2–290 K at 0.1 T) and magnetic field (0.1−5 T
at 2 K). The data were corrected for the diamagnetic contributions of the sample holder and
the compound (χm,dia = −1.73 × 10−4 cm3 mol−1).

3.5. Infrared Spectroscopy (ATR-IR)

Fine powders of Fe[C5H5N]2[N(CN)2]2 were loaded in a sample holder, while the IR
spectra (absorbance versus wavelength) were collected on a Bruker® alpha II spectrom-
eter (Bruker, Madison, WI, USA). The program OPUS was used for the controlling the
measurements as well as for processing the raw data.

3.6. Thermogravimetric Analysis (TGA)

Thermogravimetric analyses were performed using Netzsch® STA 409 C (Netzsch,
Selb, Germany). The compound was heated and weighed in nitrogen flow in the tempera-
ture range from 25 to 1000 ◦C with a heating rate of 5 ◦C/min.

3.7. Atomic Absorption Spectroscopy (AAS)

For the determination of the iron content, approx. 50 mg of each sample were dissolved
three times in 5 mL concentrated HCl and quantitatively transferred to a 100 mL volumetric
flask. To each sample, 10 mL of a 0.1% KCl solution was added as an ionization buffer, and
the volumetric flasks were filled up to the calibration mark. The sample solutions were
analyzed using a novAA300 AAS from Analytik Jena, Germany; the reference solutions
were prepared from a certified iron standard (1000 mg/L) from Kraft. A six-element
multi-HKL from L.O.T. Oriel served as the emission source.
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3.8. Computational Details

All structures were optimized via density functional theory (DFT) using the Vienna Ab
initio Simulation Package (VASP) [55–58]. The electronic wave functions were modeled with
PAW pseudopotentials [59] with a kinetic energy plane-wave cutoff of 500 eV. The exchange–
correlation interactions were modeled using the generalized gradient approximation (GGA)
as parametrized by Perdew, Burke and Ernzerhof and optimized for solids (PBEsol) [60]
with an additional D3-correction term introduced by Grimme with Becke–Johnson damp-
ing [61,62]. The Brillouin-zone integration was done using Blöchl’s tetrahedron method,
employing k-point meshes with densities between 0.02 and 0.04 Å−1 [63]. Convergence of
the calculations was assumed for energy differences of 10−4 eV for ionic steps and 10−6 eV
for electronic steps.

After the structural optimization, a chemical bonding analysis was performed. Because
the bonding analysis required the use of local orbitals whose nature is in stark contrast
to that of the plane waves, the electronic ground-state wave functions were unitarily
transformed onto a local-orbital basis using the Local Orbital Basis Suite Towards Electronic-
Structure Reconstruction (LOBSTER) package [64–66]. The simulation of the lattice vibration
was performed using the program Phonopy [67] according to the Hellmann–Feynman forces
from VASP. A simulation of IR spectra was conducted based on phononic calculations and
Born effective charges received using the methods described above and processed using
the JaGeo/IR software package [68–71].

4. Conclusions

Herein, we report the synthesis and characterization of iron bispyridine bisdicyanamide,
Fe[C5H5N]2[N(CN)2]2, which is a new transition metal-containing compound with dca
and pyridine ligands. The crystal structure was determined using single-crystal as well
as powder X-ray diffraction with particular regard to a possible motion of the pyridine
rings; yet, a structural transition related to a reorientation of the pyridine rings could not be
encountered based on X-ray diffraction. AAS, CHN, ATR-IR, and TGA measurements were
performed to prove the composition. Additionally, the TGA indicates the high impact of
the π-stacking on the structural stability. The bonding situation in the compound, examined
via ICOBI and Löwdin charge analyses, agrees with the expectations based on structural
analysis. Magnetic measurements evidence that Fe[C5H5N]2[N(CN)2]2 is a paramagnetic
compound comprising high spin FeII centers. There are weak, predominantly antiferro-
magnetic exchange interactions between these atoms, observable at low temperatures.
Considering the structural information, these interactions are most likely of 1D nature be-
tween the FeII centers coupled through the dca ligands, i.e., along the Fe–(dca)2–Fe–chains
within the compound.

Supplementary Materials: Single-crystal data in CIF format can be downloaded as supporting
information at: https://www.mdpi.com/article/10.3390/molecules28134886/s1. Table S1: Data
of the single crystal refinement of Fe[C5H5N]2[N(CN)2]2; Table S2: Data of Rietveld refinement of
powderous [C5H5N]2[N(CN)2]2 sample shown in Figure 2; Table S3: Atomic positions from single
crystal refinement; Table S4: Anisotropic displacement parameters for iron, carbon and nitrogen
and isotropic displacement parameters for hydrogen in 1 from single crystal refinement; Figure S1:
ATR-IR measurement of 1 between 4000 and 400 cm–1; Table S5: ATR-IR for 1 with all assigned
vibrations below 2500 cm–1.
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