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Abstract: Neuronal injury and apoptosis are important causes of the occurrence and development of
many neurodegenerative diseases, such as cerebral ischemia, Alzheimer’s disease, and Parkinson’s
disease. Although the detailed mechanism of some diseases is unknown, the loss of neurons in
the brain is still the main pathological feature. By exerting the neuroprotective effects of drugs,
it is of great significance to alleviate the symptoms and improve the prognosis of these diseases.
Isoquinoline alkaloids are important active ingredients in many traditional Chinese medicines. These
substances have a wide range of pharmacological effects and significant activity. Although some
studies have suggested that isoquinoline alkaloids may have pharmacological activities for treating
neurodegenerative diseases, there is currently a lack of a comprehensive summary regarding their
mechanisms and characteristics in neuroprotection. This paper provides a comprehensive review of
the active components found in isoquinoline alkaloids that have neuroprotective effects. It thoroughly
explains the various mechanisms behind the neuroprotective effects of isoquinoline alkaloids and
summarizes their common characteristics. This information can serve as a reference for further
research on the neuroprotective effects of isoquinoline alkaloids.
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1. Introduction

Degenerative diseases of the nervous system have brought a significant medical
and public health burden on people worldwide. With the acceleration of population
aging, the prevalence and incidence of degenerative nervous system diseases have sharply
increased in recent years [1]. Although the pathological mechanisms of cerebral ischemia,
Alzheimer’s disease, and Parkinson’s disease differ, nerve cell injury and apoptosis are
common pathological features [2]. After experiencing cerebral ischemia, the blood vessels
and tissues in the brain may become damaged, leading to the destruction of the blood–
brain barrier. Under the combined action of a series of cascade reactions, such as oxidative
stress stimulation, the release of inflammatory factors, aggravation of autophagy, and
mitochondrial dysfunction, a large number of nerve cells rapidly undergo apoptosis. This
process directly leads to learning and cognitive dysfunction after cerebral ischemia [3].
The pathological mechanism of Alzheimer’s disease is still controversial, but studies have
confirmed that progressive neurodegeneration is its main feature. Neuroinflammation and
angiogenesis, neurogenesis, and neurological recovery dysfunction play an important role
in the pathophysiology of AD [4]. The main cause of Parkinson’s disease is the degeneration
and eventual loss of dopaminergic neurons in the substantia nigra. Dopamine replacement
therapy has achieved remarkable results [5]. Therefore, drug research with neuroprotective
effects, which can reduce nerve damage and promote neuronal repair and regeneration, is
of great significance in alleviating the progression of such diseases and even curing them.
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However, the research progress of drugs with neuroprotective effects has been slow, and
few such drugs have been marketed in recent years [6].

Isoquinoline alkaloids, including nuciferine, berberine, and tetrandrine, are the main
active components extracted from traditional Chinese medicines, such as lotus leaf, Coptis
chinensis Franch, and Stephania tetrandra S. Moore, respectively. Most of these traditional
Chinese medicines have been used in clinical treatments for many years. The core functions
are clearing heat and detoxifying, diuresis and detumescence, and promoting blood circu-
lation and cooling the blood. Now, they have also been studied for their anti-inflammatory
and anti-oxidant properties [7–10]. Upon observing their structures, we have found that
they have a common structural basis and belong to isoquinoline alkaloids. By consulting
the relevant literature on these alkaloids, it can be found that these compounds have a
wide range of pharmacological effects and significant pharmacological activities, especially
in improving nerve damage caused by neurodegenerative diseases. Studies have shown
that the active ingredients of isoquinoline alkaloids can exert neuroprotective effects by
inhibiting nerve injury inflammation, anti-oxidative damage, regulating autophagy, inhibit-
ing intracellular calcium overload, and improving mitochondrial dysfunction, as well as
promoting vascular endothelial cell proliferation, and neuronal repair and regeneration [11].
However, these alkaloids have not yet been used to treat neurodegenerative diseases, and
the related research is not deep enough. Additionally, there is no review focused on a
comprehensive summary of the neuroprotective effects of isoquinoline alkaloids.

Therefore, we used isoquinoline alkaloids, neuroprotection, nerve injury, and the
names of some isoquinoline alkaloids, such as nuciferine, berberine, and tetrandrine,
as well as some nerve injury mechanisms such as neuroinflammation, oxidative stress,
and autophagy as keywords. After consulting a large amount of literature in PubMed
and CNKI literature retrieval media, we have compiled a list of several representative
isoquinoline alkaloids with neuroprotective effects, and comprehensively discuss their
different mechanisms of neuroprotective effects and some common characteristics. It is
hoped that this can provide a reference for further basic research on the neuroprotective
effects of isoquinoline alkaloids.

2. Isoquinoline Alkaloids with Neuroprotective Effects
2.1. Nuciferine

Nuciferine is a natural product extracted from the traditional Chinese medicine, lo-
tus leaf. Lotus leaf has the effect of dispelling dampness and decreasing phlegm, dis-
persing stasis, and lowering fever in the theory of traditional Chinese medicine. It is a
traditional medicinal material for food therapy [12]. Nuciferine has been shown to have
anti-inflammatory, antioxidant, anti-aging, hypolipidemic, and other pharmacological
activities [13]. The physicochemical properties and metabolomics analysis of nuciferine
showed that its absolute bioavailability is 69.56%. It has good fat solubility and high
blood–brain barrier permeability, which are the bases for its treatment of central nervous
system diseases [14]. At the same time, existing studies have also shown that nuciferine
can produce neuroprotective effects by inhibiting neuroinflammation, reducing oxidative
damage, and regulating autophagy [15].

2.2. Berberine

Berberine is a plant alkaloid extracted from Coptis chinensis Franch, which has a
variety of pharmacological properties. Many studies have focused on lowering blood
glucose, anti-obesity, and improving insulin resistance [16–18]. However, current studies
have also shown that it has many pharmacological activities, such as anti-inflammatory,
anticancer, cardiovascular, and central nervous system effects [19]. It is also a potential
drug for the multitarget treatment of neurodegenerative diseases caused by metabolic
disorders [20]. Usually, when neuronal damage is caused by neurometabolic diseases,
multiple important organelles, including lysosomes, peroxisomes, and mitochondria, will
undergo dysfunction, causing metabolic disorders and lead to a significant amount of
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neuronal apoptosis [21]. This feature of berberine provides a novel therapeutic idea for
neuroprotection by improving metabolic disorders and optimizing energy metabolism.

2.3. Tetrandrine

Radix Stephanie Tetrandrine has been traditionally used as a medicine for dispelling
wind and dampness, promoting diuresis, and reducing swelling. As the main alkaloid
component of Radix Stephanie tetrandrae, tetrandrine has also received extensive atten-
tion in recent years [22]. Studies have demonstrated that this compound has a variety
of neuroprotective pharmacological activities. The main neuroprotective mechanism in-
volves regulating Ca2+ and K+ channels, maintaining intracellular calcium homeostasis,
and reducing neuronal and glial cell damage caused by Ca2+ overload [23]. In addition,
it can regulate central neurotransmitter transport and metabolism, inhibit neuroinflam-
mation, improve vascular endothelial dysfunction, decrease oxidative stress, and regulate
autophagy [24–26]. It has a highly comprehensive neuroprotective effect and is a potential
neuroprotective agent.

2.4. Morphine

Morphine is a classic analgesic and sedative drug. At present, its clinical application
is mainly to alleviate pain. Traditional studies have shown that morphine has a potent
inhibitory effect on the central nervous system, and large doses of morphine can produce
toxic effects on nerve cells [27]. However, we are cognizant that in recent years, many
studies have shown that morphine can also exert neuroprotective effects through various
mechanisms [28]. The main mechanisms include reducing intracellular Ca2+ overload,
reducing cell oxidative damage, activating autophagy, and inhibiting intracellular toxic
protein production to promote neuronal regeneration and differentiation [29–32]. At the
same time, researchers have applied very low doses of morphine to very preterm infants,
which has effectively improved the neurodevelopmental status of the infants [33]. This
also reflects the neuroprotective potential of low-dose morphine. What’s more, studies
have shown that morphine derivatives also have neuroprotective effects. For example,
Hydrophone protects hippocampal CA1 neurons from ischemia-reperfusion injury by
activating the mTOR signaling pathway, and methadone can improve cognitive dysfunction
in drug withdrawal patients [34,35]. This suggests that derivatives of isoquinoline alkaloids
may also have neuroprotective effects, but research in this area is more limited, and more
related research is needed.

2.5. Tetrahydropalmatine

Tetrahydropalmatine is a key component of the traditional Chinese medicine Corydalis
ambigua. In addition to the traditional analgesic, sedative, and hypnotic effects, many stud-
ies on the effects on the cardiovascular and central nervous systems have also made some
progress [36,37]. Especially for neuroprotection, tetrahydropalmatine can not only inhibit
the level of nerve injury inflammation, antioxidant damage, and regulate autophagy to
reduce neuronal apoptosis, but also has a unique ability to promote vascular endothelial cell
proliferation and neuronal repair and regeneration [38]. Angiogenesis plays an important
role in wound healing, nerve defects, and nerve regeneration. Tetrahydropalmatine also
has the potential to increase the expression of neurotrophic factors, promoting neurogenesis
and enhancing the repair and regeneration abilities of neurons after injury [39].

The structures of several aforementioned alkaloids are shown in Figure 1. These struc-
tures all contain the same isoquinoline nucleus, which belongs to the active components of
isoquinoline alkaloids. In addition to the above, a variety of isoquinoline alkaloids have
neuroprotective effects, showing pharmacological activity in the treatment of neurode-
generative diseases [40]. In order to better demonstrate the neuroprotective effects and
mechanisms of this type of compound, we selected about 10 representative isoquinoline
alkaloids with the same isoquinoline nucleus structure and neuroprotective effect, as shown
in Table 1.



Molecules 2023, 28, 4797 4 of 18

Molecules 2023, 28, x FOR PEER REVIEW 4 of 18 
 

 

have neuroprotective effects, showing pharmacological activity in the treatment of neuro-
degenerative diseases [40]. In order to better demonstrate the neuroprotective effects and 
mechanisms of this type of compound, we selected about 10 representative isoquinoline 
alkaloids with the same isoquinoline nucleus structure and neuroprotective effect, as 
shown in Table 1. 

 
Figure 1. The chemical structure of isoquinoline alkaloids with neuroprotective effects. (a–e) These 
are the chemical structures of nuciferine, berberine, tetrandrine, morphine, and tetrahydropal-
matine, respectively. They all have the same isoquinoline (benzopyridine) core structure. 

Table 1. Isoquinoline alkaloids with neuroprotective effects and their neuroprotective mechanisms. 

Alkaloid Structure Neuroprotective Mechanism Reference 

Papaverine 

 

anti-inflammatory; anti-oxidation; anti-apoptosis; promote 
neurogenesis; inhibition of α-synuclein aggregation 

[41–46] 

Higenamine 

 

anti-inflammatory; anti-oxidation; anti-apoptosis; [47–49] 

Sinomenine 

 

anti-inflammatory; anti-oxidation; regulating autophagy;  
anti-pyroptosis; anti-apoptosis; neuroimmune intervention; 

inhibition of Ca2+ overload 
[50–58] 

N

O

O

O
O

Figure 1. The chemical structure of isoquinoline alkaloids with neuroprotective effects. (a–e) These
are the chemical structures of nuciferine, berberine, tetrandrine, morphine, and tetrahydropalmatine,
respectively. They all have the same isoquinoline (benzopyridine) core structure.

Table 1. Isoquinoline alkaloids with neuroprotective effects and their neuroprotective mechanisms.
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3. Neuroprotective Effect and Mechanism of Isoquinoline Alkaloids

The above studies have shown that a variety of isoquinoline alkaloids with a common
structural basis, can exert neuroprotective effects based on a variety of different modes of
action and have potential application value for the treatment of many neurodegenerative
diseases. Recent reports have also revealed the intracellular signaling pathways and
mechanisms that these alkaloids may target, thereby exerting their neuroprotective effects.
In this section, we will briefly describe the mechanism of nerve injury, summarize the
neuroprotective mechanisms and signaling pathways of the five common isoquinoline
alkaloids mentioned in the previous section, and clarify their potential contribution to the
treatment of neurodegenerative diseases.

3.1. Neuroprotection towards Inflammatory Injury

Almost all neurodegenerative diseases are accompanied by inflammation. When
neurons are affected under the action of various intracellular mechanisms, abnormal pro-
tein metabolism and degeneration, organelle dysfunction, etc., will occur, resulting in a
large amount of neuronal apoptosis [91]. Inflammation is usually regarded as a process
of self-repair of the body, which helps to remove a large number of fragments caused
by cell necrosis and death. Therefore, neuronal apoptosis will induce the activation of
immune cells and the release of a large number of inflammatory factors. However, due to
inflammation, brain tissue damage, blood–brain barrier damage, and edema, cerebrovas-
cular dysfunction will worsen and induce further neuronal apoptosis [92]. Therefore,
although inflammation is not the main pathological mechanism of most neurodegenerative
diseases, it is a key event in these diseases. Reducing inflammatory damage is still of
great significance for neuroprotection and disease treatment [93]. As shown in Figure 2,
isoquinoline alkaloids have significant anti-inflammatory activity. It has been shown that
tetrandrine can effectively inhibit the activation of NLRP3 inflammasome by inhibiting I/R-
induced overexpression of inflammatory and apoptotic factors such as NLRP3, caspase-1,
IL-1β, IL-18, and Sirt-1. Up-regulation of Sirt-3 further inhibited NLRP1 inflammasome
activation and significantly reduced the neurological deficit, infarct volume, and brain
water content in MCAO mice [94]. In addition, it can also down-regulate the expression of
NSE, TNF-α, NF-κB, TRAF1, GADD34, p-PERK, IRE1α, CHOP, and p-JNK by regulating
the IRE1α/JNK/CHOP signaling pathway, reducing the level of neuroinflammation and
neuronal apoptosis in mice with traumatic brain injury (TBI) [95]. Studies have shown
that tetrandrine can reverse the ectopic transcription of inflammation-related genes, in-
cluding TNFα, IL-1β, IL-6, COX-2, iNOS, and p65, in 5XFAD mice (a transgenic model of
AD), inhibiting the secretion of inflammatory cytokines TLR4, p65, iNOS, and COX-2 in
microglia BV2 cells induced by Aβ1-42, and improving AD by reducing inflammation and
neurotoxicity [96].

In addition to tetrandrine, berberine and nuciferine also have good anti-inflammatory
activity. In addition to activating the PI3K-AKT signaling pathway and inhibiting the
NF-kB signaling pathway to produce anti-inflammatory effects, berberine can also inhibit
the production of TNF-α, cyclooxygenase-2 (COX-2), and inducible nitric oxide synthase
(iNOS), which helps to reduce neuroinflammation and prevent blood–brain barrier dam-
age [97–100]. In addition to improving neuroinflammatory damage, berberine can also
directly act on improving cognitive dysfunction in AD through a variety of other mecha-
nisms. Nuciferine has been shown to inhibit the activation of NF-κB, reduce the release of
pro-inflammatory mediators such as TNF-α, IL-1β, and PGE2, and inhibit the inflammatory
response of BV2 cells induced by LPS. Further studies have shown that nuciferine can
also activate PPAR-γ, inhibit neuroinflammatory damage caused by NF-kB, and exert
neuroprotective effects [101].



Molecules 2023, 28, 4797 7 of 18

Molecules 2023, 28, x FOR PEER REVIEW 6 of 18 
 

 

diseases. Recent reports have also revealed the intracellular signaling pathways and 
mechanisms that these alkaloids may target, thereby exerting their neuroprotective ef-
fects. In this section, we will briefly describe the mechanism of nerve injury, summarize 
the neuroprotective mechanisms and signaling pathways of the five common isoquinoline 
alkaloids mentioned in the previous section, and clarify their potential contribution to the 
treatment of neurodegenerative diseases. 

3.1. Neuroprotection Towards Inflammatory Injury 
Almost all neurodegenerative diseases are accompanied by inflammation. When 

neurons are affected under the action of various intracellular mechanisms, abnormal pro-
tein metabolism and degeneration, organelle dysfunction, etc., will occur, resulting in a 
large amount of neuronal apoptosis [91]. Inflammation is usually regarded as a process of 
self-repair of the body, which helps to remove a large number of fragments caused by cell 
necrosis and death. Therefore, neuronal apoptosis will induce the activation of immune 
cells and the release of a large number of inflammatory factors. However, due to inflam-
mation, brain tissue damage, blood–brain barrier damage, and edema, cerebrovascular 
dysfunction will worsen and induce further neuronal apoptosis [92]. Therefore, although 
inflammation is not the main pathological mechanism of most neurodegenerative dis-
eases, it is a key event in these diseases. Reducing inflammatory damage is still of great 
significance for neuroprotection and disease treatment [93]. As shown in Figure 2, iso-
quinoline alkaloids have significant anti-inflammatory activity. It has been shown that 
tetrandrine can effectively inhibit the activation of NLRP3 inflammasome by inhibiting 
I/R-induced overexpression of inflammatory and apoptotic factors such as NLRP3, 
caspase-1, IL-1β, IL-18, and Sirt-1. Up-regulation of Sirt-3 further inhibited NLRP1 inflam-
masome activation and significantly reduced the neurological deficit, infarct volume, and 
brain water content in MCAO mice [94]. In addition, it can also down-regulate the expres-
sion of NSE, TNF-α, NF-κB, TRAF1, GADD34, p-PERK, IRE1α, CHOP, and p-JNK by reg-
ulating the IRE1α/JNK/CHOP signaling pathway, reducing the level of neuroinflamma-
tion and neuronal apoptosis in mice with traumatic brain injury (TBI) [95]. Studies have 
shown that tetrandrine can reverse the ectopic transcription of inflammation-related 
genes, including TNFα, IL-1β, IL-6, COX-2, iNOS, and p65, in 5XFAD mice (a transgenic 
model of AD), inhibiting the secretion of inflammatory cytokines TLR4, p65, iNOS, and 
COX-2 in microglia BV2 cells induced by Aβ1-42, and improving AD by reducing inflam-
mation and neurotoxicity [96]. 

 
Figure 2. Isoquinoline alkaloids exert neuroprotective effects by reducing inflammatory injury. Figure 2. Isoquinoline alkaloids exert neuroprotective effects by reducing inflammatory injury.

3.2. Neuroprotection towards Oxidative Stress

The relationship between free radical damage and inflammatory damage is insepa-
rable, and there is a complex interaction between them [102]. Cells produce free radicals
during normal metabolism, and the body contains antioxidants that neutralize these free
radicals, sustaining a dynamic balance between antioxidants and free radicals. When
pathological damage causes an excessive accumulation of free radicals, the balance is
disrupted, and oxidative stress occurs. Inflammatory damage is one of the factors that can
trigger oxidative stress [103]. However, oxidative stress can cause cell and tissue damage,
which can activate a variety of transcription factors, leading to abnormal expression of
genes involved in inflammatory pathways and promoting inflammatory responses. The
cycle of the two further exacerbates the disease [104]. As shown in Figure 3, in addition to
anti-inflammatory activity, isoquinoline alkaloids have significant antioxidant activity, and
berberine can protect C17.2 neural stem cells from oxidative damage [105]. The main mecha-
nism involves reducing the level of reactive oxygen species (ROS) in C17.2 cells through the
(NRf1/2)-(NQO-1)-(HO-1) pathway while down-regulating the apoptosis factors caspase-3
and Bax, and up-regulating the anti-apoptotic factor Bcl2 to reduce apoptosis. In addition,
berberine can also increase the viability of C17.2 cells by upregulating the expression of the
extracellular signal-related kinase (ERK) and phosphorylated extracellular signal-related
kinase (p-ERK), activating the WNT/β-Catenin signaling pathway, and increasing the
expression levels of pre-neural factors ASCL1, NeuroG1, NeuroD2, and DCX. This further
reduces oxidative damage to C17.2 neural stem cells and induces them to differentiate
into neurons. Moreover, studies have shown that berberine exerts neuroprotective effects
by activating antioxidant enzymes such as superoxide dismutase (SOD) and glutathione
(GSH) to antagonize oxidative stress caused by chronic cerebral hypoperfusion [106].

Another alkaloid that can reduce oxidative stress damage in nerve cells is nuciferine.
CAT, SOD, and GSH-Px are well-known antioxidant enzymes because they have strong
free radical scavenging effects in tissues and cells. Excessive levels of reactive oxygen
species (ROS) in cells reduce the activity of these enzymes [107]. However, studies have
shown that nuciferine can bring these enzyme activities in diabetic rats induced by alloxan
to close-to-normal levels, thereby protecting nerve cells from oxidative damage [108].
It is a potential drug for the treatment of Alzheimer’s disease caused by diabetes by
exerting neuroprotective effects. Similar to nuciferine, tetrahydropalmatine can also play
an antioxidant role by increasing the levels of SOD, GSH, and CAT and reducing the level
of MDA, effectively reducing the oxidative stress injury to nerve cells [109].
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3.3. Neuroprotection towards Regulating Autophagy

Autophagy is a cellular process of massive degradation of proteins and organelles
in cells, which can lead to non-apoptotic programmed cell death called autophagic cell
death [110]. The traditional theory holds that after neuronal damage leads to apopto-
sis, autophagy mediated by lysosomes, as the main organelles, will be induced and en-
hanced [111]. However, new studies have shown that although autophagy is associated
with various cellular damage mechanisms, much apoptosis caused by enhanced autophagy
will greatly weaken the autophagy function, leading to the aggravation of damage. This
is a dynamic process in neuronal damage [112]. Therefore, the regulation of autophagy
function is essential for the protection of neurons. As shown in Figure 4, in a mouse model
of traumatic brain injury (TBI), the levels of malondialdehyde (MDA), glutathione (GSH),
and glutathione peroxidase 4 (GPX4) in brain tissue were detected by enzyme-linked im-
munosorbent assay (ELISA). The levels of Beclin 1, light chain 3 (LC3) II/I, p62, GPX4, and
ferritin heavy chain 1 (FTH1) were detected by Western blotting (WB) and immunofluo-
rescence. It has been found that tetrandrine could reduce MDA content and increase the
GSH content during the period after TBI. It can also reverse the changes in the expression
levels of the above autophagy-related proteins after TBI and promote autophagy. Through
antioxidative damage and regulation of autophagy, it effectively exerts neuroprotective
effects and improves neurological function and reduces brain edema after TBI in mice [113].

In addition, other studies have shown that tetrahydropalmatine can also play a role
in autophagy regulation. Studies have found that the expression of Beclin-1 and LC3II/I
increased after I/R injury in rats, while the expression of p62 decreased, which confirmed
that autophagy was activated after I/R injury. Further studies have found that this is related
to the inhibition of the PI3K/AKT/mTOR pathway. Tetrahydropalmatine can reactivate
this pathway and reduce the level of autophagy [114]. Nuciferine also has an autophagy
regulatory effect. Through the study of the rat pMCAO model, it was found that the
levels of autophagy markers decreased, and the accumulation of autophagy substrates
was reduced in the early stages of cerebral ischemia. This is related to the inhibition of the
autophagy–lysosomal (ALP) pathway mediated by transcription factor EB (TFEB) [115]. In
addition, other studies have shown that nuciferine can increase the expression of TFEB and
activate the ALP pathway, making the above autophagy markers and autophagy substrates
approach normal levels [116]. Although this study only showed that nuciferine regulates
autophagy, we believe that regulating autophagy is also an important basis for nuciferine
to exert neuroprotective effects.



Molecules 2023, 28, 4797 9 of 18Molecules 2023, 28, x FOR PEER REVIEW 9 of 18 
 

 

 
Figure 4. Isoquinoline alkaloids exert neuroprotective effects by regulating autophagy. 

In addition, other studies have shown that tetrahydropalmatine can also play a role 
in autophagy regulation. Studies have found that the expression of Beclin-1 and LC3II/I 
increased after I/R injury in rats, while the expression of p62 decreased, which confirmed 
that autophagy was activated after I/R injury. Further studies have found that this is re-
lated to the inhibition of the PI3K/AKT/mTOR pathway. Tetrahydropalmatine can reacti-
vate this pathway and reduce the level of autophagy [114]. Nuciferine also has an autoph-
agy regulatory effect. Through the study of the rat pMCAO model, it was found that the 
levels of autophagy markers decreased, and the accumulation of autophagy substrates 
was reduced in the early stages of cerebral ischemia. This is related to the inhibition of the 
autophagy–lysosomal (ALP) pathway mediated by transcription factor EB (TFEB) [115]. 
In addition, other studies have shown that nuciferine can increase the expression of TFEB 
and activate the ALP pathway, making the above autophagy markers and autophagy sub-
strates approach normal levels [116]. Although this study only showed that nuciferine 
regulates autophagy, we believe that regulating autophagy is also an important basis for 
nuciferine to exert neuroprotective effects. 

3.4. Neuroprotection Towards Calcium Overload 
As an essential signaling molecule and cell function regulator, Ca2+ has made sub-

stantial progress in the study of function and mechanism [117]. It is also accepted that an 
imbalance in Ca2+ homeostasis is closely linked to the development of various human pa-
thologies, including neurodegenerative diseases. Calcium homeostasis is closely related 
to neurodegeneration, neurotoxicity, neuroinflammation, autophagy, and mitochondrial 
function changes [118]. As shown in Figure 5, studies have confirmed that methampheta-
mine (MA) can affect the mitochondrial calcium ATPase responsible for pumping Ca2+ into 
the internal space of mitochondria for storage, directly produce neurotoxicity to cortical 
cells, and induce cell death with an increase in calcium load. A low dose of morphine can 
reduce calcium overload induced by MA in PC12 and U87 cells, and significantly im-
proves cell viability by reducing cytotoxicity, caspase-3 activity, and intracellular calcium 
concentration. The neuroprotective effect of low-dose morphine may also be related to the 

Figure 4. Isoquinoline alkaloids exert neuroprotective effects by regulating autophagy.

3.4. Neuroprotection towards Calcium Overload

As an essential signaling molecule and cell function regulator, Ca2+ has made sub-
stantial progress in the study of function and mechanism [117]. It is also accepted that
an imbalance in Ca2+ homeostasis is closely linked to the development of various hu-
man pathologies, including neurodegenerative diseases. Calcium homeostasis is closely
related to neurodegeneration, neurotoxicity, neuroinflammation, autophagy, and mito-
chondrial function changes [118]. As shown in Figure 5, studies have confirmed that
methamphetamine (MA) can affect the mitochondrial calcium ATPase responsible for
pumping Ca2+ into the internal space of mitochondria for storage, directly produce neu-
rotoxicity to cortical cells, and induce cell death with an increase in calcium load. A low
dose of morphine can reduce calcium overload induced by MA in PC12 and U87 cells,
and significantly improves cell viability by reducing cytotoxicity, caspase-3 activity, and
intracellular calcium concentration. The neuroprotective effect of low-dose morphine may
also be related to the reduction of inflammatory injury after calcium overload [119]. Berber-
ine also inhibits intracellular calcium overload. Excitatory amino acid toxicity damage
leads to the destruction of intracellular calcium balance. Calcium overload is a trigger for
oligodendrocyte death. In vitro, the OGD/R ischemia model found that berberine can pre-
vent intracellular calcium accumulation in a concentration-dependent manner, protecting
OLN-93 oligodendrocytes from excitotoxicity-induced cell damage [120].

3.5. Neuroprotection towards Mitochondrial Dysfunction

Energy metabolism is the foundation of cellular life activities. Mitochondria, known
as the engine of human energy conversion, play a major role in cell life activities [121]. A
variety of evidence has shown that energy metabolism disorders and neuronal damage
caused by mitochondrial dysfunction are the pathological basis of various degenerative
neurological diseases, including cerebral ischemia, Alzheimer’s disease, and Parkinson’s
disease [122]. Weiyi Li et al. used several cell ischemic injury apoptosis models in their
study, including a serum deprivation cell model, a glutamate-induced RGC-5 cell death
model, and a hydrogen peroxide (H2O2)-induced RGC-5 cell death model, as well as an
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astrocyte-derived neuron-like RGC-5 cell model. It was found that tetrandrine treatment
protected staurosporine-induced RGC-5 cells from serum deprivation-induced cell death,
significantly increased the relative number of cells cultured with 1 mM H2O2, and signifi-
cantly prevented 25 mM glutamic acid-induced cell death in a dose-dependent manner. It
has a protective effect on a variety of cells. Further studies have shown that the protective
effect of tetrandrine is related to the reduction of mitochondrial transmembrane potential
(δψm), improvement of mitochondrial function, inhibition of caspase-3 activation induced
by ischemia/reperfusion injury, and reduction of bcl-2 expression [123]. Morphine can also
play a similar role in mitochondrial protection. The decrease in mitochondrial membrane
potential means that the permeability of mitochondria increases after dysfunction, leading
to the release of caspase and nuclease-activating protein. This is a major cause of apoptosis.
Studies have shown that morphine can alleviate nicotine-induced mitochondrial dysfunc-
tion in PC12 cells and reduce caspase-3 release. As shown in Figure 5, this neuroprotective
effect is also associated with a reduction in intracellular calcium levels [124]. There is a
complex interaction between calcium overload, mitochondrial damage, and apoptosis [125].
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In addition, studies on the zebrafish model of Parkinson’s disease, showed that berber-
ine could easily penetrate the blood–brain barrier. Subcellular localization studies have
shown that berberine rapidly and specifically accumulates in the mitochondria of PC12
cells, inhibited the accumulation of Pink1 protein and inhibited the overexpression of LC3
protein in 6-OHDA-injured cells. It is confirmed that mitochondria are the potential sites of
berberine in the brain, and berberine may improve the nerve injury caused by Parkinson’s
disease by regulating mitochondrial function [126].

3.6. Neuroprotective Effects of Promoting Vascular Endothelial Proliferation and
Neuronal Regeneration

More and more studies have shown that isoquinoline alkaloids play a significant role
in promoting the proliferation of vascular endothelial cells and the regeneration of neurons.
By inducing the angiogenesis of endothelial cells and accelerating the recovery of damaged
neuronal cell structure and function, it can rapidly improve memory and cognitive dysfunc-
tion caused by neuronal damage and improve the prognosis of ischemic stroke [127]. This is
still of great significance for the treatment of neurodegenerative diseases by promoting the
repair and regeneration of damaged neurons. Based on the clinical experience of traditional
Chinese medicine, molecular docking was performed on tetrahydropalmatine and VEGFR2
to demonstrate their binding potential. Metabolomics analysis showed that it can increase
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the expression of VEGFR2, which is a trigger for angiogenesis and has the potential to
promote angiogenesis and exert neuroprotective effects [128]. Studies have also shown
that tetrandrine has a role in promoting angiogenesis. Vascular endothelial growth factor
A (VEGF-A), which belongs to the same family as VEGFR2, plays an important role in
angiogenesis. It has been observed that tetrandrine can increase the expression of VEGF-A
mRNA in H9C2 cells. Tetrandrine treatment can increase the synthesis of new VEGF-A
mRNA but has no impact on the stability of VEGF-A mRNA. This can enhance the angio-
genesis activity of endothelial cells and improve blood flow recovery and capillary density
after ischemic limb injury. This is associated with increased VEGF-A expression [129]. It
is not only limited to the recovery of ischemic diseases but also of great significance for
promoting neuronal repair and regeneration.

4. Summary and Outlook

Finally, we comprehensively analyzed the neuroprotective mechanisms of isoquinoline
alkaloids and the key targets of their regulation. As shown in Figure 6, we found that
the same alkaloid component can exert direct or potential neuroprotective effects in many
different ways. These mechanisms are closely related to each other, such as calcium
overload, inflammation, and autophagy. There are both cascades and reciprocal causation.
This indicates that isoquinoline alkaloids can exert neuroprotective effects through multiple
links, multiple targets, and multiple pathways. Some existing studies have also confirmed
our idea [130]. We further found that because these isoquinoline alkaloids have a common
structural basis, they often reduce neuronal apoptosis through very similar mechanisms
of action, with similar or even the same targets. For example, berberine, nuciferine, and
tetrahydropalmatine, mentioned above, can increase SOD, GSH, and CAT in vivo to reduce
oxidative damage. Tetrandrine and morphine can reduce the release of the apoptotic factor
caspase-3. Both tetrahydropalmatine and tetrandrine can act on the same family of vascular
endothelial growth factors (VEGF) to promote angiogenesis and neuronal regeneration. In
the further analysis of the structural characteristics and pharmacological activities of these
alkaloids, we found that both the five isoquinoline alkaloids we discussed in detail, and
the dozens of isoquinoline alkaloids we listed in Table 1, have the following feature: the
isoquinoline nucleus itself contains a benzene ring, most of these drugs are connected to
multiple ether bonds on the benzene ring (most of them have three to four), and these ether
bonds have the potential to form hydroxyl groups. These structures themselves directly
contain a small number of hydroxyl groups, which means that their polarity is relatively
low, which is conducive to their passage through the blood–brain barrier. If they pass
through the blood–brain barrier, multiple ether bonds are converted into hydroxyl groups
connected to the benzene ring, then these aromatic hydroxyl groups are very effective
antioxidant structures. Based on this, we can even speculate that isoquinoline alkaloids
may play a neuroprotective role mainly by exerting antioxidant effects combined with
anti-inflammation, autophagy regulation, and inhibition of calcium overload. Of course,
this conjecture has serious limitations, and more experimental verification is needed in
order to provide a sufficient scientific foundation.

The neuroprotective isoquinoline alkaloids and their neuroprotective mechanisms
are not limited to those mentioned above. These active effects are the fundamental patho-
logical mechanisms shared by a variety of neurodegenerative diseases, indicating that
isoquinoline alkaloids may not only be effective for a single neurodegenerative disease
but also have therapeutic effects on a variety of neurodegenerative diseases. At the same
time, we also found that they have strong similarities in the mechanism of action, signaling
pathways, and target sites, and they share the same structural nucleus. Therefore, we
have the following interesting thoughts: (1) The very similar mechanisms and targets of
these alkaloids may be the basis for their combined use through different mechanisms to
exert neuroprotective effects and synergistic effects in the treatment of neurodegenerative
diseases. (2) The way these alkaloids exert neuroprotective effects is often multitarget and
multi-channel. Whether or not their properties are better than the current clinical use of
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single-effect neuroprotective drugs, they may have greater potential for development as
neuroprotective drugs. (3) They have the same isoquinoline core structure, which may help
to study their structure–activity relationship. Perhaps we can extend the investigation to
other components or derivatives with similar structures by studying the structure–activity
relationship of one or several drugs.
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However, a limiting factor for further research on isoquinoline alkaloids is the lack
of basic research on the active components of these alkaloids. Although research on these
alkaloids has gradually entered the field of vision of researchers, due to the many and
complex mechanisms of these components, basic research on them still lacks systematic and
comprehensive study. This undoubtedly brings difficulties for further research and clinical
studies on isoquinoline alkaloids. Therefore, we believe that the study of these compounds
should pay attention to their similarities and structural features. At the same time, we
also believe that strengthening the study of these compounds is helpful in applying the
advantages of multitarget and multi-pathway neuroprotective effects to the treatment of
neurodegenerative diseases as soon as possible.

Finally, we also hope that this review will enable more researchers to focus on the
neuroprotective effects of isoquinoline alkaloids and provide some ideas for conducting
more in-depth research in this field.
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19. Baska, A.; Leis, K.; Gałązka, P. Berberine in the Treatment of Diabetes Mellitus: A Review. Endocr. Metab. Immune Disord.-Drug
Targets 2021, 21, 1379–1386. [CrossRef]

20. Finkbeiner, S. The Autophagy Lysosomal Pathway and Neurodegeneration. Cold Spring Harb. Perspect. Biol. 2020, 12, a033993.
[CrossRef]

21. Habtemariam, S. Berberine pharmacology and the gut microbiota: A hidden therapeutic link. Pharmacol. Res. 2020, 155, 104722.
[CrossRef] [PubMed]

22. Shang, W.; Zhang, J.; Song, H.; Zhu, S.; Zhang, A.; Hua, Y.; Han, S.; Fu, Y. Mechanism of Tetrandrine Against Endometrial Cancer
Based on Network Pharmacology. Drug Des. Dev. Ther. 2021, 15, 2907–2919. [CrossRef] [PubMed]

https://doi.org/10.1016/j.tox.2016.01.007
https://www.ncbi.nlm.nih.gov/pubmed/26812399
https://www.ncbi.nlm.nih.gov/pubmed/22413500
https://doi.org/10.3390/ijms23010014
https://doi.org/10.1016/j.expneurol.2019.113112
https://www.ncbi.nlm.nih.gov/pubmed/31730762
https://doi.org/10.1016/j.cca.2021.08.009
https://doi.org/10.1515/hsz-2021-0413
https://doi.org/10.1016/j.jacc.2018.08.101
https://doi.org/10.1080/13880209.2019.1577466
https://doi.org/10.2147/DDDT.S342028
https://doi.org/10.1016/j.jep.2020.112995
https://doi.org/10.1016/j.pharep.2017.03.018
https://www.ncbi.nlm.nih.gov/pubmed/28623709
https://doi.org/10.1142/S0192415X22500616
https://doi.org/10.1016/j.biopha.2020.111014
https://www.ncbi.nlm.nih.gov/pubmed/33246225
https://doi.org/10.1080/10717544.2016.1261381
https://www.ncbi.nlm.nih.gov/pubmed/28165858
https://doi.org/10.1039/D2MO00158F
https://www.ncbi.nlm.nih.gov/pubmed/35894702
https://doi.org/10.1124/dmd.120.000215
https://doi.org/10.1002/ptr.6252
https://doi.org/10.2174/1568026620666201022144405
https://doi.org/10.1101/cshperspect.a033993
https://doi.org/10.1016/j.phrs.2020.104722
https://www.ncbi.nlm.nih.gov/pubmed/32105754
https://doi.org/10.2147/DDDT.S307670
https://www.ncbi.nlm.nih.gov/pubmed/34262258


Molecules 2023, 28, 4797 14 of 18

23. Wen, J.Y.; Zhang, J.; Chen, S.; Chen, Y.; Zhang, Y.; Ma, Z.Y.; Zhang, F.; Xie, W.M.; Fan, Y.F.; Duan, J.S.; et al. Endothelium-
derived hydrogen sulfide acts as a hyperpolarizing factor and exerts neuroprotective effects via activation of large-conductance
Ca2+-activated K+ channels. Br. J. Pharmacol. 2021, 178, 4155–4175. [CrossRef] [PubMed]

24. Wang, H.; Chen, L.; Wang, S.; Tian, X.; Zhang, L.; Li, H.; Li, C.; Xue, Y.; Wang, Q.; Fang, L.; et al. Tetrandrine promotes
angiogenesis via transcriptional regulation of VEGF-A. Vascul. Pharmacol. 2021, 141, 106920. [CrossRef]

25. Li, J.; Shi, M.; Liu, L.; Wang, J.; Zhu, M.; Chen, H. Tetrandrine Inhibits Skeletal Muscle Differentiation by Blocking Autophagic
Flux. Int. J. Mol. Sci. 2022, 23, 8148. [CrossRef]

26. Liu, J.; Yu, P.; Dai, F.; Jiang, H.; Ma, Z. Tetrandrine reduces oxidative stress, apoptosis, and extracellular matrix degradation and
improves intervertebral disc degeneration by inducing autophagy. Bioengineered 2022, 13, 3944–3957. [CrossRef]

27. Zhaleh, H.; Azadbakht, M.; Bidmeshki Pour, A. Low concentrations of morphine enhanced the neuroglia-like differentiation.
Bratisl. Lek. Listy 2020, 121, 271–277. [CrossRef]

28. Hussain, G.; Rasul, A.; Anwar, H.; Aziz, N.; Razzaq, A.; Wei, W.; Ali, M.; Li, J.; Li, X. Role of Plant Derived Alkaloids and Their
Mechanism in Neurodegenerative Disorders. Int. J. Biol. Sci. 2018, 14, 341–357. [CrossRef]

29. Magdy, S.; Gamal, M.; Samir, N.F.; Rashed, L. IκB kinase inhibition remodeled connexins, pannexin-1, and excitatory amino-
acid transporters expressions to promote neuroprotection of galantamine and morphine. J. Cell Physiol. 2021, 236, 7516–7532.
[CrossRef]

30. Amini, K.; Zhaleh, H.; Tahvilian, R.; Farnia, V. Low concentration of morphine protects against cell death, oxidative stress and
calcium accumulation by nicotine in PC12 cells. Bratisl. Lek. Listy 2019, 120, 256–262. [CrossRef]

31. Wang, B.; Su, C.J.; Liu, T.T.; Zhou, Y.; Feng, Y.; Huang, Y.; Liu, X.; Wang, Z.H.; Chen, L.H.; Luo, W.F.; et al. The Neuroprotection of
Low-Dose Morphine in Cellular and Animal Models of Parkinson’s Disease Through Ameliorating Endoplasmic Reticulum (ER)
Stress and Activating Autophagy. Front. Mol. Neurosci. 2018, 11, 120. [CrossRef] [PubMed]

32. Zhao, X.Y.; Li, J.F.; Li, T.Z.; Pan, C.X.; Xue, F.S.; Wang, G.Y. Morphine pretreatment protects against cerebral ischemic injury via a
cPKCγ-mediated anti-apoptosis pathway. Exp. Ther. Med. 2021, 22, 1016. [CrossRef] [PubMed]

33. Luzzati, M.; Coviello, C.; De Veye, H.S.; Dudink, J.; Lammertink, F.; Dani, C.; Koopmans, C.; Benders, M.; Tataranno, M.L.
Morphine exposure and neurodevelopmental outcome in infants born extremely preterm. Dev. Med. Child Neurol. 2023. Epub
ahead of print. [CrossRef] [PubMed]

34. Xie, W.; Xie, W.; Kang, Z.; Jiang, C.; Liu, N. Hydromorphone protects CA1 neurons by activating mTOR pathway. Neurosci. Lett.
2018, 687, 49–54. [CrossRef]

35. Gupta, S.; Iudicello, J.E.; Shi, C.; Letendre, S.; Knight, A.; Li, J.; Riggs, P.K.; Franklin DR, J.r.; Duarte, N.; Jin, H.; et al. Absence of
neurocognitive impairment in a large Chinese sample of HCV-infected injection drug users receiving methadone treatment. Drug
Alcohol Depend. 2014, 137, 29–35. [CrossRef]

36. Zhou, Z.Y.; Zhao, W.R.; Shi, W.T.; Xiao, Y.; Ma, Z.L.; Xue, J.G.; Zhang, L.Q.; Ye, Q.; Chen, X.L.; Tang, J.Y. Endothelial-Dependent
and Independent Vascular Relaxation Effect of Tetrahydropalmatine on Rat Aorta. Front. Pharmacol. 2019, 10, 336. [CrossRef]

37. Du, Q.; Meng, X.; Wang, S. A Comprehensive Review on the Chemical Properties, Plant Sources, Pharmacological Activities,
Pharmacokinetic and Toxicological Characteristics of Tetrahydropalmatine. Front. Pharmacol. 2022, 13, 890078. [CrossRef]

38. Zhang, C.L.; Huang, Q.L.; Zhu, Q.; He, J.; Chen, J.; Zhang, F.; Cao, Z.Y. Alkaloids from Corydalis decumbens modulate neuronal
excitability. Bioorg. Chem. 2020, 99, 103795. [CrossRef]

39. Liu, L.; Liu, M.; Zhao, W.; Zhao, Y.L.; Wang, Y. Levo-tetrahydropalmatine: A new potential medication for methamphetamine
addiction and neurotoxicity. Exp. Neurol. 2021, 344, 113809. [CrossRef]
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