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Abstract: β-amyloid cleaving enzyme 1 (BACE1) is regarded as an important target of drug design
toward the treatment of Alzheimer’s disease (AD). In this study, three separate molecular dynamics
(MD) simulations and calculations of binding free energies were carried out to comparatively deter-
mine the identification mechanism of BACE1 for three inhibitors, 60W, 954 and 60X. The analyses
of MD trajectories indicated that the presence of three inhibitors influences the structural stability,
flexibility and internal dynamics of BACE1. Binding free energies calculated by using solvated inter-
action energy (SIE) and molecular mechanics generalized Born surface area (MM-GBSA) methods
reveal that the hydrophobic interactions provide decisive forces for inhibitor–BACE1 binding. The
calculations of residue-based free energy decomposition suggest that the sidechains of residues
L91, D93, S96, V130, Q134, W137, F169 and I179 play key roles in inhibitor–BACE1 binding, which
provides a direction for future drug design toward the treatment of AD.

Keywords: BACE1; Alzheimer’s disease; molecular dynamics simulations; SIE; MM-GBSA

1. Introduction

Alzheimer’s disease (AD) is the most common chronic neurodegenerative disease, and
is characterized by early clinical manifestations of memory impairment [1,2]. As the disease
progresses, patients endure various neuro-psychiatric symptoms, including language
disorders, emotional disturbances, motor impairments, visuospatial skill impairments, and
even personality and behavioral changes, which seriously affect social, occupational, and
daily life, leading to a gradual loss of body functions and ultimate death [3]. Previous
reports indicated that the development and deterioration of AD are closely related to
two major pathological features, involving amyloid plaques containing the amyloid-β
(Aβ) peptide and neurofibrillary tangles (NFTs) rich in tau [4–6]. The formation of the
Aβ peptide with a 38−43 amino acid length and subsequent aggregation is the culprit
responsible for AD, as it blocks the transmission between neurons, ultimately leading
to neuronal death [7,8]. Toxic amyloid-β peptides are yielded through the procession
of the β-amyloid precursor protein (APP) with β-amyloid cleaving enzyme 1 (BACE1)
and γ-secretase [9,10]. Therefore, effective inhibition of the activity of BACE1 is a useful
approach toward the treatment of AD.

In recent years, the pathway for inhibiting the activity of BACE1 through the design
of small molecules has been paid widespread attention [11–16]. Several potential BACE1
inhibitors have been designed by different groups and tested in clinical trials [17–19].
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Unfortunately, the efficiency of inhibitors is greatly limited due to their side effects. To
resolve this issue, many works, involved in obtaining insights into the factors affecting
inhibitor–BACE1 binding, have been performed to determine efficient schemes for the
design of potent inhibitors [17,20–24]. Currently, it is still a great challenge to designing
potent BACE1 inhibitors toward the treatment of AD. Although some BACE1 inhibitors
are proposed, the molecular mechanism of inhibition of BACE1 activity is not insufficient,
which imposes a heavy limit to the development of clinically available BACE1 inhibitors.
Therefore, it is highly necessary to explore the mechanisms of binding between inhibitors
and BACE1 at atomic levels for designing efficient BACE1 inhibitors toward the treatment
of AD.

Multiple computational technologies, such as molecular dynamics (MD) simula-
tions [25–30], calculations of binding free energies [31–34], principal component analysis,
(PCA) [35–38] etc., play significant roles in investigating the atomic-level mechanism of
binding between inhibitors and targets. Conventional MD simulations (cMD) are usually
used to obtain conformational samplings of inhibitor–target complexes, but multiple sepa-
rate MD (MSMD) simulations recently adopted by different work groups can reasonably
improve the sampling efficiency of conformations [39–45]. Binding free energy calcula-
tions are applied to evaluate the binding ability and modes of inhibitors to targets, which
are involved in molecular mechanics Poisson–Boltzmann/generalized Born surface area
(MM-PB/GBSA) [46–48], solvated interaction energy (SIE) [49], thermodynamic integration
(TI) [50–52] and free energy perturbation (FEP) [53–56]. Although FEP and TI methods
can provide more accurate results, they are extremely time-consuming and require suf-
ficient statistical samplings. Compared to the FEP and TI methods, MM-PB/GBSA and
SIE methods can obtain fast and rational results in predictions of binding free energies.
Interestingly, MD simulations and binding free energy calculations have been utilized to
investigate the inhibitor–BACE1 binding mechanism [16,57–60]. For instance, Chen et al.
applied Gaussian accelerated molecular dynamics simulations and MM-GBSA calculations
to study the effect of pH-dependent protonation on inhibitor-BACE1 binding and their
results revealed that pH-dependent protonation strongly affected the structural flexibility
and correlated motions of BACE1 [61]. Hatmal and coworkers combined MD simulations
and ligand–receptor contact analysis to develop valid pharmacophore models and their
work rationally guided pharmacophore design [62]. Despite these successful studies, it is
still of high significance to deeply investigate the molecular mechanism of inhibitor–BACE1
binding for the design of clinically available drugs for treatment of the AD.

In this work, three inhibitors, 60W, 954 and 60X [63], indicated by using their iden-
tity document (ID) in the protein data bank (PDB), were selected to explore the binding
mechanism of inhibitors to BACE1 at atomic levels. The topological structure of the
inhibitor–BACE1 complex and binding pocket are depicted in Figure 1A,B, respectively.
The structures of 60W, 954 and 60X are separately displayed in Figure 1C–E. As shown in
Figure 1C–E, three inhibitors share a similar molecular scaffold and have a small structural
difference. The inhibition constants, Ki, of 60W, 954 and 60X on BACE1 are 1, 45 and 48 nM,
respectively. Insights into the effect of a tiny structural difference in three inhibitors on
conformational changes of BACE1 will be of importance for the design of potent inhibitors,
which is the reason why we selected these three inhibitors. To achieve our goal, MSMD
simulations, MM-GBSA, SIE, PCA, dynamics cross-correlation maps (DCCMs) and free
energy landscapes (FELs) were combined together to clarify the identification mechanism
of BACE1 for inhibitors, which includes the following contents. (1) The changes in confor-
mations and free energy profiles were revealed through PCA and constructions of FELs,
(2) binding free energies were estimated by using the MM-GBSA and SIE methods to evalu-
ate the inhibitor–BACE1 binding ability and (3) hot interaction hotspots of inhibitors with
BACE1 were identified through calculations of residue-based free energy decomposition.
This work is also expected to provide useful information and theoretical guidance for the
design of efficient inhibitors against BACE1.
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Figure 1. Molecular structures: (A) inhibitor–BACE1 complex, in which BACE1 is shown in cartoon
and surface forms, while the inhibitor is displayed in stick form; (B) binding pocket of inhibitor to
BACE1; (C–E) correspond to 60W, 954 and 60X, respectively, in which three inhibitors are displayed
in line form. In this figure, the shaded areas indicate the groups of inhibitors that possibly produce
hydrophobic interactions with BACE1.

2. Results and Discussion
2.1. Dynamics Equilibrium and Structural Fluctuation

To check the structural stability of BACE1 during three separate MD simulations,
root-mean-square deviations (RMSDs) of backbone atoms in BACE1 relative to the initially
optimized structures were calculated based on three separate MD trajectories and the
results are provided in the Supporting Information, Figure S1. It is noted that all four
systems reached the equilibrium after 300 ns of three separate MD simulations and showed
stable structural fluctuations. To better reveal the target sites, the RMSDs of the binding
pocket, namely residues away from the 7 Å of the mass center of inhibitors, were calculated
relative to the initially optimized structures and their probability distributions are depicted
in Figure 2A. It was found that binding of inhibitors decreases the RMSDs of the BACE1
binding pocket, implying that residues around 7 Å of the mass centers of inhibitors may
possibly be used as target sites of drug design toward the treatment of AD.

To examine an inhibitor’s binding-mediated impacts on the structural flexibility of
BACE1, root-mean fluctuations (RMSFs) were computed by using the coordinates of the
Cα atoms kept at the SMT (Figure 2C). It was found that the apo and bound states of BACE1
share similar flexible and rigid regions. Meanwhile, structural regions D1–D6 showed
stronger flexibility and these flexible regions are possibly involved in significant functions
of BACE1. To clarify the influences of inhibitors on the flexible regions of BACE1, the RMSF
difference between the apo and bound states was also calculated by utilizing the equation
∆RMSF = RMSFbound − RMSFapo, in which ∆RMSF, RMSFbound and RMSFapo represent
the RMSF difference, and the RMSFs of the bound and apo states (Figure 2D). The presence
of the three inhibitors weakens the structural flexibility of regions D1 (residues 110–123)
and D4 (residues 178–202), which makes these two regions more rigid than those of the apo
BACE1 (Figure S2). However, the binding of the three inhibitors strengthens the structural
flexibility of the regions D2 (residues 146–153) and D3 (residues 164–178) relative to that
of the apo BACE1 (Figures 2D and S2). The presence of 60W and 60X totally enhances the
structural flexibility of region D5 (residues 217–245) but the binding of 954 weakens that of
this region relative to the apo BACE1 (Figure 2D). In comparison to that in the apo BACE1,
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the binding of 60W increases the structural flexibility of region D6 (residues 363–387) while
the presence of 954 and 60X slightly weakens that of this region (Figures 2D and S2).
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Figure 2. Frequency of RMSDs and RMSFs: (A) probability distributions of RMSDs for the binding
pockets of the apo BACE1, 60W-, 954- and 60X-bound ones, (B) probability of RMSDs for three
inhibitors, (C) RMSFs of the apo and bound states of BACE1 and (D) the difference in RMSFs between
the apo BACE1 and the inhibitor-bound ones.

To access alterations of secondary structures for BACE1, a combination of the program
CPPTRAJ and DSSP second structure analysis [64] were used to investigate the changes
in the second structure of BACE1 from the apo and bound states in three separate MD
simulations. The time evolutions of the secondary structures for the apo, 60W-, 954- and
60X-bound BACE1 are displayed in Figures 3A–C and S3–S5, individually. It is observed
that the secondary structure of the apo BACE1 hardly changes through three separate MD
simulations (Figure 3A,B). In comparison to the apo BACE1, the secondary structures of
the 60W-, 954- and 60X-bound BACE1 did not generate obvious changes (Figures S3–S5),
indicating that binding of inhibitors hardly affects the stability of the secondary structures
of BACE1. To understand the influences of inhibitor binding on the structure-compact
components of BACE1, the gyrations of BACE1 in the apo and bound states were estimated
based on the SMT and their probability distributions are depicted in Figure 3D. The gyration
of the apo BACE1 was distributed at two peaks of 20.87 and 21.02 while the ones of the
60W-, 954- and 60X-associated BACE1 were separately populated at the single peaks of
21.17, 20.99 and 20.99 Å. Furthermore, the distribution shapes of gyrations for BACE1
in the three bound states totally moved toward the right with regard to the apo BACE1
(Figure 3D). In comparison to the apo BACE1, inhibitor binding only brought on a slight
effect on the compact components of BACE1.
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Figure 3. Stability of secondary structures and structure-compact components of BACE1; (A) time
evolution of secondary structure for the apo BACE1 in simulation 1, (B) time evolution of secondary
structure for the apo BACE1 in simulation 2, (C) time evolution of secondary structure for the apo
BACE1 in simulation 3 and (D) the frequency distribution of the BACE1 gyration.

Based on the current analyses, the binding of the three inhibitors affects structural
fluctuations in BACE1 but hardly changes the compact components and stability of the
secondary structures for BACE1. The RMSDs of the binding pocket are obviously reduced
because of inhibitor binding, implying that residues around 7 Å away from the mass center
of inhibitors can be used as target sites. The difference in structures of 60W, 954 and 60X
also leads to their different stability in the binding pocket of BACE1. Meanwhile, the
binding of inhibitors generates an obvious effect on the structural flexibility of BACE1 and
changes the flexibility of some structural regions of BACE1, which also indicates possible
hot spots of inhibitor–BACE1 interactions and can provide guidance for future drug design.
These current results basically agree with those of a previous work [16].

2.2. Conformational Changes in BACE1 and Free Energy Profiles

To clarify inhibitor-mediated changes in the correlated motions of BACE1, DCCMs
were computed by means of the coordinates of the Cα atoms in BACE1 and the results are
exhibited in Figure 4. The color bar coded by different colors was employed to embody
the contents of the correlated motions between residues of BACE1. For the apo BACE1,
several strongly correlated motions were observed: (1) region R1 describes strong PCMs of
the N-terminal from BACE1 relative to itself (Figure 4A), (2) region R2 reflects the strong
ACMs of residues 206–265 relative to residues 115–158 and region R3 characterizes strong
ACMs between residues 278–331 and 146–200, (3) region R4 embodies the strong ACMs of
residues 347–418 relative to the N-terminal of BACE1 and (4) region R5 describes the strong
PCMs of residues 266–328 relative to themselves (Figure 4A). Compared to that in the apo
BACE1, the binding of the three inhibitors highly weakened the PCMs occurring at regions
R1 and R5 (Figure 4B,D). Meanwhile, the binding of 60W, 954 and 60X also reduced the
ACMs of regions R2 and R3 with regard to those of the apo BACE1 (Figure 4B,D). Differently,
the binding of 60W and 954 obviously abated the ACMs of region R4 in comparison to that
in the apo BACE1 (Figure 4B,C) but the presence of 60X slightly strengthened the ACMs of
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region R4 (Figure 4D). The changes in correlated motions in the aforementioned regions,
R1–R5, only reflect the different motion behaviors between the local structure regions and
these regions are possibly involved in hot spots of the interaction of inhibitors with BACE1.
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Figure 4. DCCMs calculated using the coordinates of the Cα atoms from BACE1; (A) the apo BACE1,
(B) the 60W-bound BACE1, (C) the 954-bound BACE1 and (D) the 60X-bound BACE1. In this figure,
the color bar is used to reflect the extents of correlated motions between the regions of BACE1.

To reveal the impacts of inhibitor binding on the concerted movements of structural
domains in BACE1, PCA was carried out using the CPPTRAJ in Amber 20. The first
eigenvector from the PCA was visualized by means of the software VMD [65] and the
results were depicted Figure 5. It can be observed that inhibitor binding has evident
influences on the collective motions of α helix α1 and loop L2 (Figure 5). In the apo BACE1,
the α1 and L2 generated a parallel concerted motion with the same direction (Figure 5A).
Compared to the apo BACE1, the binding with 60W enhanced the concerted motion of α1
and L2 and obviously altered the direction of the concerted motion for L2 (Figure 5B). In
comparison to the apo BACE1, the presence of 954 not only led to a completely opposite-
motion direction of α1 and L2 but also inhibited the motion amplitude of L2, which created
a tendency for L2 to move away from α1 (Figure 5C). With regard to the apo BACE1, binding
with 60X not only changed the concerted-motion direction of α1 and L2 but also apparently
weakened the concerted motion of L2 (Figure 5D). The binding of 60W and 954 slightly
inhibited the concerted movement of loop L1 relative to that in the apo BACE1 but the
presence of 60X slightly strengthened the concerted motion of this loop (Figure 5B,D). In
addition, the binding of the three inhibitors weakened the concerted motion of loop L3
compared to that in the apo BACE1 (Figure 5B,D).

To unveil the free energy profiles of the BACE1 conformation changes caused by
inhibitor binding, FELs were created using the projections (PC1 and PC2) of the SMT on
the first two eigenvectors as reaction coordinates (RCs), and the presentative structures
relating to the free energy profiles are depicted in Figures 6 and S6. The projections of MD
trajectories can rationally reflect conformational changes in BACE1, which is the cause for
our selection of them as RCs.
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Figure 5. Concerted motions of structural domains from BACE1 revealed by PCA: (A) the apo BACE1,
(B) the 60W-bound BACE1, (C) the 954-bound BACE1 and (D) the 60X-bound BACE1.

In the case of apo BACE1, three separate MD simulations captured three free energy
valleys (EVs), including EV1, EV2 and EV3 (Figure S6A). According to the color bar, three
EVs were located at the valley bottoms of the same depth (Figure S6A). Three presentative
structures of apo BACE1 in EV1–EV3 were superimposed together (Figure S6B). The results
suggest that domains D4–D6 underwent deviations from each other. Structure domains D1
and D3 generated slight deviations and D2 produced slight shifts (Figure 6B)

Compared to the apo BACE1, the binding of 60W and 954 only resulted in two EVs
(Figure 6A,D), which is less than the number of energy states in the apo BACE1. This result
implies that the binding of 60W and 954 induces a conformational arrangement of BACE1
relative to the apo BACE1. The representative structures of the 60W- and 954-bound BACE1
situated at EV1 and EV2 were superimposed together to investigate structural difference
(Figure 6B,E). In comparison to the apo BACE1 state, the binding of 60W and 954 reduced
the structural deviations of structural domains D1, D3, D4 and D5 (Figures 6B,E and S6B).
Although the binding of 60W weakened the structural deviation of D2 and D6 relative
to the apo BACE1 state, the association of 954 led to a great deviation of D2 and D6
(Figures 6B,E and S6B). As shown via the structural alignment of inhibitors 60W and
954 falling within EV1 and EV2 (Figure 6C,F), 60W and 954 produce slight shifts between
the two energy states, which possibly affects the binding of these two inhibitors to BACE1.
As for the 60X-bound BACE1 state, three EVs were detected throughout the entirety of the
MD simulations (Figure 6G). Although the binding of 60X does not alter the number of
the EVs relative to the apo BACE1 state, the presence of 60X enhances the energy barrier
between the EV3 and other two states, EV1 and EV2, with regard to the apo BACE1 state
(Figures 6G and S6A), which correspondingly increases the difficulty of the transitions
between EV3, EV1 and EV2. According to the structural superimposition of the 60X-bound
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BACE1 trapped in EV1–EV3 (Figure 6H), except for the structural domains D1, D3, D4 and
D5, the binding of 60X evidently increased the deviation of D2 and D6 within the three
EVs compared to the apo BACE1. The structural alignment of 60X falling into the EV1–EV3
indicates that 60X undergoes slight deviations within the three energetic states (Figure 6I).
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Figure 6. Free energy landscapes and the representative structures; (A) free energy landscape of
the 60W-bound BACE1, (B) structural superimpositions of the 60W-bound BACE1 located at EV1
and EV2, (C) structural alignment of 60W falling into EV1 and EV2, (D) free energy landscape
of the 954-bound BACE1, (E) structural alignment of the 954-bound BACE1 situated at EV1 and
EV2, (F) structural superimposition of 954 located at EV1and EV2, (G) free energy landscape of the
60X-bound BACE1, (H) superimposition of the 60X-bound BACE1 and (I) structural alignment of
60X trapped at EV1–EV3.

Based on the aforementioned calculations of DCCMs, PCA and analyses of FELs, the
binding of inhibitors changes the correlated motions between residues, affects the concerted
movements of the structural domains and the alters free energy profiles of BACE1. Some of
the structural domains affected by inhibitor binding are located near the binding pocket,
and hence conformational changes caused by binding of inhibitors in turn alter the activity
of BACE1. In fact, several previous works also detected similar results [20,61], which are in
basic agreement with our current work.

2.3. Comparative Calculations of Binding Free Energies

To access the binding ability of 60W, 954 and 60X to BACE1, the SIE method was applied
to calculate the binding affinities of the three inhibitors to BACE1 by using 500 snapshots
extracted from the equilibrated section of the three separate MD simulations, namely for
the SMT, in a time interval of 1.8 ns. The calculated results are listed in Table 1. It can be
observed that the rank of binding affinities predicted via the SIE method is consistent with
that indicated by the experimental values, which indicates that our current free energy
analyses are rational and reliable.
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Table 1. Binding free energies of inhibitors to BACE1 calculated using SIE method a.

Components 60W-BACE1 954-BACE1 60X-BACE1
Average StdErr Average StdErr Average StdErr

∆EvdW −54.53 0.50 −42.68 0.97 −42.50 0.43
∆EC −16.18 0.35 −12.55 0.42 −15.22 0.29
∆GR 24.77 0.37 21.27 0.57 22.80 0.37
γ× ∆MSA −10.63 0.09 −8.14 0.18 −8.05 0.06
C −2.89 0.00 −2.89 0.00 −2.89 0.00
b ∆Gbind −8.82 0.07 −7.30 0.11 −7.39 0.05
c ∆Gexp −12.3 −10.0 −11.4

a All energy components are scaled in kcal·mol−1; b ∆Gbind = α×
[
Ec + ∆GR + EvdW + γ× ∆MSA

]
+ C; c ∆Gexp

is obtained using ∆G = −RTlnKi with the experimental value of Ki [63].

According to Table 1, the components of binding affinities predicted via the SIE method
mainly consist of intermolecular Coulomb interactions (∆EC), the van der Waals (∆EvdW),
reaction energy (∆GR) and energy changes in the molecular surface area upon binding
(γ× ∆MSA). The energy contributions favoring the binding of inhibitors are those from
the van der Waals interactions between binding partners (−42.50 to −54.53 kcal·mol−1),
the intermolecular Coulomb interactions (−12.55 to −16.18 kcal·mol−1) and the energy
contributions relating to changes in the molecular surface (−8.05 to −10.63 kcal·mol−1).
The reaction energies fluctuate within a range from 21.27 to 24.77 kcal·mol−1 and this
component provides an unfavorable force for inhibitor bindings, which was also revealed
by the previous work [49,66,67]. On the basis of Table 1, the unfavorable reaction energies
of three inhibitor–BACE1 complexes are partially compensated for by the favorable inter-
molecular Coulomb interaction. Meanwhile, the intermolecular van der Waals interactions
also contribute partial compensation to this unfavorable effect. Among the three inhibitors,
60W showed the strongest binding ability to BACE1 (−8.82 kcal·mol−1) while 954 had the
weakest binding ability to BACE1 (−7.30 kcal·mol−1), which suggests that a small structure
difference among the three inhibitors impacts their binding ability to BACE1.

To comparatively study the binding strength of 60W, 954 and 60X to BACE1, the
MM-GBSA method was adopted to predict the binding free energies of the three inhibitor–
BACE1 complexes based on 500 snapshots extracted from the equilibrated section of three
separate MD simulations, namely for the SMT, in a time interval of 1.8 ns. Because of the
high time costs of the entropy calculation, 100 snapshots taken from the above-mentioned
500 snapshots were employed to perform the calculation of the entropy contributions to
inhibitor–BACE1 binding. The MM-GBSA calculations are possibly involved in multiple
generalized Born (GB) models. To understand the influences of different GB models on the
predicted results, four GB models, indicated by IGB = 1, IGB = 2, IGB = 5 and IGB = 66,
were chosen to estimate the binding free energies of the three inhibitors to BACE1. The
empirical parameters involved in the calculations of four GB models are given in Table 2,
which includes two empirical parameters, γ and β, together with the radii types. The
binding free energies and their components computed by the MM-GBSA method are listed
in Table 3.

Table 2. The parameters used in MM-GBSA calculations with different generalized Born models.

Parameters IGB = 1 IGB = 2 IGB = 5 IGB = 66
a γ 0.0072 0.005 0.005 0.005
a β 0.00 0.00 0.00 0.00

b radii mbondi mbondi2 mbondi2 bondi
a Two empirical parameters used calculations of MM-GBSA. b Radius type used in selections of GB model,
including mbondi, mbondi2 and bondi.
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Table 3. Binding free energies calculated using MM-GBSA method with different GB models a.

Energy
60W 954 60X

IGB = 1 IGB = 2 IGB = 5 IGB = 66 IGB = 1 IGB = 2 IGB = 5 IGB = 66 IGB = 1 IGB = 2 IGB = 5 IGB = 66

∆Eele −36.23 −36.23 −36.23 −36.23 −28.25 −28.25 −28.25 −28.25 −33.88 −33.88 −33.88 −33.88
∆EvdW −54.58 −54.58 −54.58 −54.58 −42.36 −42.36 −42.36 −42.36 −42.31 −42,031 −42.31 −42.31
∆Ggb 46.47 54.13 11.96 69.01 35.94 42.71 5.57 55.77 40.06 46.70 6.31 56.78

∆Gsur f −7.21 −5.00 −5.00 −5.00 −5.64 −3.92 −3.92 −3.92 −5.71 −3.96 −3.96 −3.96
b ∆Gpol 10.24 17.9 −24.27 32.78 7.69 14.46 −22.98 27.52 6.18 12.82 −27.57 22.9

c ∆Ghydro −61.79 −59.58 −59.58 −59.58 −48 −46.28 −46.28 −46.28 −48.02 −46.27 −46.27 −46.27
d ∆H −51.55 −41.68 −83.85 −26.8 −40.31 −31.82 −69.26 −18.76 −41.84 −33.45 −73.84 −23.37
−T∆S 22.52 18.60 18.94
∆Gbind −29.03 −19.16 −61.33 −4.28 −21.71 −13.22 −50.66 −0.16 −22.9 −14.51 −54.9 −4.43

e ∆Gexp −12.3 −10.0 −11.4

a All free energy components are in scaled in kcal/mol. b ∆Gpol = ∆Eele + ∆Ggb which is used to describe polar
interactions of inhibitors with BACE1. c Ghydro = ∆EvdW + ∆Gsur f which is utilized to signify hydrophobic
interactions of inhibitors with BACE1. d ∆H = ∆Gpol + ∆Ghydro which is adopted to indicate the enthalpy effect
during bindings of inhibitors to BACE1. e ∆Gexp is obtained via ∆G = −RTlnKi with the experimental value of
Ki [63].

Binding free energies are mainly composed of five components, including van der
Waals interactions (∆EvdW), electrostatic interactions (∆Eele), polar solvation free energy
(∆Ggb), non-polar solvation free energy (∆Gsur f ) and entropy contributions (−T∆S), which
are shown in Table 3. From the free energy components, ∆EvdW , ∆Eele and ∆Gsur f are
favorable for inhibitor–BACE1 binding but ∆Ggb and −T∆S impair inhibitor–BACE1
associations (Table 3). The hydrophobic interactions (∆Ghydro) formed by the sum of ∆EvdW
and ∆Gsur f are favorable for inhibitor–BACE1 binding. The polar interactions (∆Gpol)
formed by the sum of ∆Eele and ∆Ggb provide a force of a different type for inhibitor–BACE1
association. In detail, the ∆Ggb predicted via the models IGB = 1, IGB = 2 and IGB = 66
was unfavorable for inhibitor–BACE1 binding while that predicted by model IGB = 5
contributed favorable forces to the inhibitor–BACE1 associations (Table 3). The sum of
three components, ∆EvdW , ∆Eele, and ∆Ggb makes up the enthalpy contributions (∆H) to
inhibitor–BACE1 binding. Based on Table 3, the GB models used for calculations of MM-
GBSA only produced evident impacts on polar solvation free energies and the selection of
the empirical parameters γ and β obviously affected the calculations of non-polar solvation
free energies. Comparing the four GB models, the GB model IGB = 5 led to the weakest
polar solvation free energies for all inhibitors but IGB = 66 yielded the strongest polar
solvation free energies (Table 3). Correspondingly, the GB model IGB = 5 generated the
strongest enthalpy contributions to inhibitor–BACE1 association but IGB = 66 produced
the weakest enthalpy contributions to inhibitor–BACE1 binding. As a result, the selection
of the GB models brought on a vital impact on the predictions of inhibitor–BACE1 binding
free energies.

For our used GB models, the binding free energies of 60W, 954 and 60X to BACE1
estimated with the GB model IGB = 2 were mostly close to the experimental values. Differ-
ently, the binding free energies of the three inhibitors to BACE1 calculated through the GB
models IGB = 1, 5 and 66 highly deviated from the experimental results. Meanwhile, the
rank for the binding free energies of 60W, 954 and 60X in the four GB models was also in
good agreement with that from the experimental values, verifying that our current results
are reliable and rational. Based on the aforementioned analyses, the results calculated via
GB model IGB = 2 were utilized to determine the binding difference between the three
inhibitors to BACE1. The electrostatic interactions of 60W and 60X with BACE1 were,
respectively, strengthened by 7.98 and 5.63 kcal/mol relative to those of 954 with BACE1
but unfavorable polar solvation free energies of the 60W- and 60X-BACE1 complexes were
raised by 11.42 and 3.99 kcal/mol kin comparison to those of the 954-BACE1 complex.
On the whole, the polar interaction of 60W with BACE1 was increased by 3.44 kcal/mol
relative to that of 954 with BACE1 while the polar interaction of 60X with BACE1 was
reduced by 1.64 kcal/mol. The hydrophobic interaction of 60W with BACE1 strengthened
by 13.3 kcal/mol compared to that of 954 with BACE1, but the hydrophobic interaction
of 60X with BACE1 hardly changed relative to that of 954 with BACE1. As a result, the
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enthalpy contributions to the 60W- and 60X-BACE1 binding were improved by 9.86 and
1.63 kcal/mol relative to those of 954-BACE1 binding. In addition, the unfavorable entropy
contributions to the 60W- and 60X-BACE1 binding increased by 3.92 and 0.34 kcal/mol
relative to 954-BACE1 binding. In summary, the binding ability of 60W and 60X to BACE1
was strengthened by 5.94 and 1.29 kcal/mol compared to that of 954 to BACE1 (Table 3).
Therefore, although the structural difference between the three inhibitors is tiny, their
binding ability to BACE1 produces a bigger difference according to our current calculations,
which could be due to the conformational changes caused by their binding.

Via a combination of the SIE and MM-GBSA calculations, it was found that hydropho-
bic interactions provide a key contribution to inhibitor–BACE1 binding, which agrees
well with the results from the previous report [16]. Thus, the rational optimization of
inhibitor–BACE1 hydrophobic interactions is of high significance for the successful de-
sign of clinically available inhibitors for binding with BACE1. Based on this issue, more
attention should be paid to the hydrophobic interactions of inhibitors with BACE1.

2.4. Analyses of Inhibitor–BACE1 Interaction Networks

To obtain atomic-level insights into the interaction modes of inhibitors with BACE1,
the residue-based free energy decomposition method was applied to estimate the inhibitor-
residue interaction spectrum of three inhibitor–BACE1 complexes (Figure 7). The contribu-
tions from the sidechains and backbones of residues to the inhibitor–BACE1 associations
are provided in Table 4. The hydrogen bonding interactions (HBIs) between inhibitors
and residues of BACE1 were analyzed using the program CPPTRAJ and the results are
listed in Table 5. The geometric information regarding inhibitor–residue interactions is
depicted in Figure 8. Meanwhile, the probability distributions of the distances related to
inhibitor–residue interactions were also calculated and the results are displayed in Figure 9.
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Figure 7. Interactions of inhibitors with BACE1; (A) interaction spectrum of 60W with separate
residues of BACE1, (B) interaction spectrum of 954 with each residue of BACE1, (C) interaction spec-
trum of 60X with separate residues of BACE1 and (D) key residues in inhibitor–BACE1 interactions.
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Table 4. Contributions of the side chains and backbones to inhibitor–residue interactions a.

Inhibitor Residue SvdW BvdW TvdW Sele Bele Tele Sgb Bgb Tgb ∆G

60W

L91 −1.35 −0.07 −1.42 0.06 −0.18 −0.12 −0.05 −0.00 −0.05 −1.72
D93 −0.59 −0.19 −0.78 −16.62 −0.45 −17.08 15.42 0.51 15.93 −2.04
S96 −1.69 −0.36 −2.05 1.39 −0.24 1.15 −0.47 0.37 −0.10 −1.13

V130 −1.43 −0.11 −1.54 −0.03 −0.09 −0.12 0.03 0.07 0.10 −1.75
Y132 −0.04 −0.07 −0.11 −0.02 0.15 0.13 0.03 −0.02 0.01 0.03
Q134 −2.96 −0.74 −3.70 −0.26 −0.76 −1.02 0.99 1.52 2.51 −2.58
W137 −1.34 −0.04 −1.38 −0.06 0.03 −0.03 0.59 −0.03 0.56 −0.93
F169 −0.69 −0.14 −0.83 0.11 −0.14 −0.03 0.20 0.25 0.45 −0.45
I179 −1.81 −0.21 −2.02 0.17 −0.05 0.12 −0.11 −0.12 −0.23 −2.26

954

L91 −0.95 −0.05 −1.00 0.07 −0.23 −0.16 −0.04 0.15 0.11 −1.14
D93 −0.37 −0.10 −0.47 −12.67 −0.32 −12.99 12.51 0.28 12.79 −0.77
S96 −1.47 −0.34 −1.81 1.09 0.22 1.31 −0.13 0.00 −0.13 −0.78

V130 −0.72 −0.09 −0.81 −0.02 −0.03 −0.05 0.04 0.13 0.17 −0.77
Y132 −2.32 −0.11 −2.43 −0.99 0.08 −0.91 1.70 0.01 1.71 −1.88
Q134 −0.23 −0.06 −0.29 −0.36 −0.04 −0.40 0.39 0.06 0.45 0.27
W137 −1.66 −0.04 −1.70 −0.38 0.03 −0.35 1.14 −0.02 1.12 −1.04
F169 −1.44 −0.32 −1.76 −0.46 −0.63 −1.09 0.57 0.96 1.52 −1.44
I179 −1.64 −0.13 −1.77 0.13 −0.02 0.11 −0.12 −0.04 −0.16 −1.91

60X

L91 −0.75 −0.05 −0.79 0.10 −0.19 −0.09 −0.06 0.11 0.05 −0.90
D93 −0.30 −0.11 −0.41 −15.06 −0.44 −15.5 14.33 0.44 14.77 −1.23
S96 −1.71 −0.35 −2.06 1.34 −0.04 1.30 0.07 0.24 0.31 −0.61

V130 −1.14 −0.11 −1.25 −0.06 0.06 0.00 0.07 0.03 0.10 −1.28
Y132 −2.52 −0.13 −2.65 −0.61 −0.12 −0.73 1.47 0.18 1.65 −2.00
Q134 −0.12 −0.05. −0.17 −0.20 −0.04 −0.24 0.24 0.07 0.31 −0.13
W137 −1.55 −0.04 −1.59 −0.86 0.06 −0.80 1.25 −0.05 1.20 −1.29
F169 −1.04 −0.21 −1.25 −0.10 −0.30 −0.40 0.35 0.47 0.82 −0.90
I179 −1.91 −0.24 −2.15 0.19 −0.11 0.08 −0.11 −0.01 −0.12 −2.31

a All energy components are scaled in kcal/mol. SvdW and BvdW separately indicate contributions of the side
chains and backbones to van der Waals interactions (TvdW ) of inhibitors with residues. Sele and Bele respectively
correspond to contributions of the side chains and backbones to electrostatic interactions (Tele) of inhibitors with
residues. Sgb and Bgb individually represent contributions of the side chains and backbones to inhibitor–residue
polar solvation free energies.

Table 5. Hydrogen bonds formed between inhibitors and residues analyzed using the CPPTRAJ.

Compound a Hydrogen bonds Distance (Å) Angle (◦) b Occupancy (%)

60W-BACE1

A93–OD1 . . . 60W-H3–N1 3.0 157.1 91.1
A93–OD2 . . . 60W-H1–N 2.8 163.3 82.4
A93–OD2 . . . 60W-H3–N1 3.2 147.8 54.1
A93–OD1 . . . 60W-H1–N 3.1 143.8 46.7

954-BACE1

A93–OD2 . . . 954-H4–N2 3.1 150.1 76.7
A93–OD1 . . . 954-H4–N2 3.1 149.5 75.6
A93–OD1 . . . 954-H2–N1 2.8 159.6 49.2
A93–OD2 . . . 954-H2–N1 2.9 158.5 46.9

60X-BACE1

A93–OD2 . . . 60X-H5–N4 3.1 150.4 89.1
A93–OD1 . . . 60X-H5–N4 3.1 149.3 84.4
A93–OD1 . . . 60X-H1–N3 2.8 161.6 62.7
A93–OD2 . . . 60X-H1–N3 2.9 157.7 48.7

a Hydrogen bonding interactions are recognized by an acceptor···donor distance of <3.5 Å and acceptor···H donor
angle of >120◦. b Occupancy (%) is defined as the percentage of the simulation time that a specific hydrogen
bond exists.



Molecules 2023, 28, 4773 13 of 23

Molecules 2023, 28, x FOR PEER REVIEW  10  of  11 
 

 

 

 

Figure 8. Geometric information of inhibitor–residue interactions; (A) the hydrophobic interact ions 

of 60W with residues, (B) the 60W-BACE1 HBIs, (C) the hydrophobic interactions between 954 and 

residues, (D) the 954-BACE1 HBIs, (E) the hydrophobic interactions of 60X with residues and (F) the 

60X-BACE1 HBIs. 

   

Figure 8. Geometric information of inhibitor–residue interactions; (A) the hydrophobic interact ions
of 60W with residues, (B) the 60W-BACE1 HBIs, (C) the hydrophobic interactions between 954 and
residues, (D) the 954-BACE1 HBIs, (E) the hydrophobic interactions of 60X with residues and (F) the
60X-BACE1 HBIs.

For the 60W-BACE1 complex, 60W produced interactions stronger than −1.0 kca/mol
with six residues of BACE1, including L91, D93, S96, V130, Q134 and I179 (Figure 7A,D). The
three residues D93, S96 and V130 were situated near hydrophobic rings R1 and R2 of 60W
(Figure 8A). Hence, D93 formed the CH-O interactions with these two rings, S96 generates
the CH-π and CH-O interactions with ring R1 and V130 yields the CH-π interaction with
ring R1 of 60W (Figure 8A). According to Table 4, the energetic contributions of S96 and
V130 to 60W-BACE1 binding mostly arose from the sidechains of these two residues.
Additionally, the carbonyl of D93 generated four HBIs with ring R2 of 60W and their
occupancy was higher than 46.7% (Table 5 and Figure 8B); meanwhile, the favorable 60W-
D93 interaction mainly came from the electrostatic interaction of the sidechain of D93
(Table 4). On the whole, D93, S96 and V130 provided energy contributions of −2.04, −1.13
and −1.75 kca/mol to 60W-BACE1 binding, respectively (Figure 7A,D and Table 4). The
distances for the mass centers of the sidechains of V130 and S96 from those of ring R1
were respectively distributed at 4.03 and 4.03 Å (Figure 9A), which verifies the interactions
of these two residues with 60W. The distance between the mass center of the carbonyl
of D93 and that of ring R2 in 60W was greatest at 6.09 Å, which agrees with the weak
CH-O interaction of D93 with 60W (Figure 9A). Residues Q134 and I179 were next to
ring R3 of 60W and these two residues formed the CH-π interactions with ring R3 of
60W (Figures 7A,D and 8A). As shown in Table 4, the van der Waals interactions of the
sidechains from Q134 and I179 with ring R3 of 60W contributed the greatest forces to the
60W-BACE1 association. The distance of the carbon atom from Q134 and that of the mass
center of the alkyl group in I179 from mass center of ring R3 in 60W were situated at 4.03
and 3.66 Å, respectively (Figure 9A). As a result, the two residues, Q134 and I179, separately
provided the interaction energies of −2.58 and −2.26 kcal/mol for the binding of 60W
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to BACE1 (Figure 7A,D). The interaction energy of L91 with 60W was −1.72 kcal/mol
(Figure 7A,D), which structurally stemmed from the CH-π interaction between the alkyl
group of L91 and ring R4 of 60W (Figure 8A). More interestingly, the energy contribution
of L91 was mainly provided by the van der Waals interactions between the sidechain of
L91 and ring R4 of 60W (Table 4). The distance between the mass center of the alkyl group
from L91 and that of ring R4 in 60W was great at 3.84 Å (Figure 9A), which demonstrates
the existence of the CH-π interaction between 60W and L91.
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With respect to the 954-BACE1 compound, five residues were involved in interactions
stronger than −1.0 kcal/mol with inhibitor 954 and these residues included L91, Y132,
W137, F169 and I179 (Figure 7B,D). The interaction energies of Y132 and W137 with 954 were
−1.88 and −1.04 kcal/mol, individually, which structurally agree with the π–π interactions
of the phenyl group in Y132 with ring R2 of 954 and of the hydrophobic ring of W137 with
ring R1 of 954 (Figure 8C). The distances of the mass centers for the hydrophobic rings of
Y132 and W137 from rings R2 and R1 of 954 were located at 4.87 and 5.09 Å (Figure 9B),
which further supported the interactions of these two residues with 954. Based on Table 4,
the energy contributions of Y132 and W137 to 954-BACE1 binding are mostly provided
by the van der Waals interactions of the sidechains from Y132 and W137 with 954. The
hydrophobic groups L91, F169 and I179 were located near ring R4 of 954 (Figure 8C).
Therefore, the alkyl group of L91, the phenyl group of F169 and the alkyl group of I179
tend to generate the CH-π, π-π and CH-π interactions with R4 of 954. The distances of
the mass centers of the sidechains in L91, F169 and I179 from those of ring R4 in 954 were
respectively greatest at 4.86, 6.42 and 4.24 Å (Figure 9B), which verifies the hydrophobic
nature of interactions of these three residues with 954. On the whole, L91, F169 and I179
contributed the interaction energies of −1.14, −1.44 and −1.91 kcal/mol to 954-BACE1
binding (Figure 7B,D and Table 4). More importantly, the interaction energies of L91, F169
and I179 with 954 mostly originated from the van der Waals interactions of the sidechains
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in these three residues with 954 (Table 4). In addition, the carbonyl group of D93 formed
four HBIs with ring R3 of 954 and the occupancy of these four hydrogen bonds was higher
than 46.9% (Table 5 and Figure 8D). However, D93 only provided an energy contribution of
−0.77 kcal/mol (Figure 7B,D), which mainly stemmed from the electrostatic interaction
between the sidechain of D93 and 954 (Table 4).

With regard to the 60X-BACE1 complex, 60X yielded interactions stronger than
−1.0 kcal/mol with five residues, D93, V130, Y132, W137 and I179, in BACE1 (Figure 7C,D).
The hydrophobic groups of I179 and Y132 were adjacent to ring R2 of 60X (Figure 8E), hence
the formation by the alkyl group of I179 of CH-π interactions with ring R2 of 60X and the
generation by the phenyl group of Y132 of the π-π interaction with the R2 of 60X (Figure 8E).
The distances of the mass centers for the hydrophobic groups of Y132 and I179 from those
of ring R2 in 60X were, respectively, greatest at 4.52 and 5.13 Å (Figure 9C), which further
supports the interactions of Y132 and I179 with 60X. Y132 and I179 separately contribute
interaction energies of −2.0 and −2.31 kcal/mol to 60X-BACE1 binding (Figure 7C,D).
Furthermore, they mostly came from the van der Waals interactions of the sidechains in
Y132 and I179 with ring R2 of 60X (Table 4). Two residues, V130 and W137, produced
interactions of −1.28 and −1.29 kcal/mol with 60X (Figure 7C,D), which is in good agree-
ment with the CH-π interaction of the alkyl group from V130 and the π–π interaction of
the hydrophobic ring of W137 with ring R3 of 60X (Figure 8E). The distances of the mass
centers for the sidechains of V130 and W137 from those of ring R3 in 60X were separately
distributed at 4.32 and 6.13 Å (Figure 9C), implying the existence of the interactions of
V130 and W137 with 60X. More importantly, the energy contributions of V130 and W137
to the 60X-BACE1 association were mainly provided by the van der Waals interactions of
the sidechains of V130 and W137 with 60X (Table 4). Additionally, the carbonyl group of
residue D93 not only produced the CH-O interactions with ring R1 of 60X but also formed
four HBIs with an occupancy higher than 48.7% with ring R2 of 60X (Figure 8F and Table 5).
The distance between the mass center of the carbonyl group of D93 and that of ring R2 in
60X was distributed at 4.72 Å (Figure 9C), implying the existence of the CH-O interactions
of D93 with 60X. The above revealed residues are also involved in interactions of the other
inhibitors with BACE1 [16,20,63], which is in agreement with our current results.

Based on the aforementioned description, three inhibitors form hydrophobic interac-
tions with L91, S96, V130, Q134, W137, F169 and I179 and the energy contributions of these
residues to inhibitor binding mostly come from the interactions of their sidechains with
inhibitors. Residue D93 produces four HBIs with inhibitors and these HBIs are formed
between the carbonyl group (the sidechain) of D93 and inhibitors. It is concluded that
the sidechains of the above-mentioned residues play key roles in the binding of inhibitors
to BACE1. More importantly, the CH-π, CH-O, π-π interactions and HBIs between the
sidechains of these eight residues and inhibitors are identified as the main inhibitor–BACE1
binding modes, which should be paid special attentions. Therefore, it is of high significance
to rationally optimize the interactions of inhibitors with the sidechains of key residues in
BACE1 for design of efficient inhibitors toward BACE1.

3. Materials and Methods
3.1. Construction of Initial Systems

The initial structures of 60W-, 954- and 60X-BACE1 complexes were obtained from
the PDB. The ID 5HDU, 5HDZ and 5HE7 respectively correspond to the 60W-, 954- and
60X-BACE1 complexes [63]. The apo BACE1s without the associations of inhibitors were
obtained by cutting 60W from the crystal structure 5HDU. The missing residues in three
crystal structures were repaired by using the program Modeller [68]. All of the crystal
water and non-inhibitor molecules were deleted from the initial model. The protonated
states of residues from BACE1 were checked through the program H++ 3.0 [69]. Then, the
following tasks were accomplished with the help of the module Leap in Amber 20 [70,71]:
(1) the force field parameters of BACE1 were assigned by employing the ff19SB force
field [72], (2) three disulfide bonds were established between C176 and C380, C238 and
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C403, and C290 and C340, respectively, (3) an octahedral TIP3P water molecule periodic
box with a buffer of 10.0 Å was constructed to solve four BACE1-related systems, and
(4) counter ions were added within the systems in a 0.15 M salt environment to neutralize
each system, in which the force parameters of sodium ions (Na+) and chloride ions (Cl−)
were derived from the work of Joung and Cheatham [73,74]. The molecular structures
of the three inhibitors, 60W, 954 and 60X, were optimized at a semiempirical AM1 level,
and then, the BCC charges [75,76] were given to each atom of the inhibitors using the
Antechamber module in Amber [77]. The general Amber force field (GAFF2) [78,79] was
adopted to generate the force field parameters of the three inhibitors, 60W, 954 and 60X.

3.2. MD Simulations

To remove possible high-energy contacts between atoms formed during the initial
process of four simulated systems and relieve the instability of the systems, two-step
energy minimizations were implemented before a real MSMD simulation, composed
of a 50,000-step steepest-descent optimization and a 50,000-step conjugate-gradient one.
Subsequently, all systems were provided a slow heating process from 0 to 300 k in 1 ns
in the canonical ensemble (NVT), in which all non-hydrogen atoms in BACE1 and the
inhibitors were constrained to a weak harmonic restriction of 2 kcalmol−1·Å2. Then, a
2 ns equilibrium phase was executed on four BACE1-related systems at 300 K under
the isothermal−isobaric ensemble (NPT) to further optimize the systems. Finally, 600 ns
MD simulations were conducted on each system to deeply relax the systems. The above
mentioned simulation processes were repeatedly performed three times, and the initial
atomic velocities were produced by means of the Maxwell distribution. As a result, three
separate MD simulations were completed. Through the aforementioned simulation stages,
the Langevin thermostat [80] was utilized to adjust the system temperature and meanwhile
the collision frequency was set as 2 ps−1. The shake algorithm [81] was applied to constrain
all the chemical bonds involved in the hydrogen atoms. The long-range electrostatic
interactions between atoms were estimated with the particle mesh Ewald algorithm [82]
with a cutoff value of 9 Å. At the same time, this cutoff was also employed to calculate
van der Waals interactions between atoms. The equilibrium phases of three separate
MD trajectories were connected in a single MD trajectory (SMT) to facilitate the post-
processing analysis. For this work, all simulations were performed by employing the
program pmemd.cuda in Amber 20 [83,84].

3.3. Calculations of Solvated Interaction Energy

The SIE method can be used to quickly and rationally predict the binding free energies
of inhibitors to targets. The SIE function for calculating inhibitor–BACE1 binding free
energy can be expressed with the following equation, Equation (1):

∆Gbind(ρ, Din, α, γ, C) = α×
[

Ec(Din) + ∆GR + EvdW + γ× ∆MSA(ρ)
]
+ C (1)

in which Ec and EvdW indicate the intermolecular Coulomb and van der Waals interac-
tion energies between atoms in the bound state, respectively, and they were calculated
using Amber molecular mechanics force field ff19SB. The component ∆GR represents the
alteration in the reaction field energy caused by the binding of inhibitors to BACE1 and
was calculated by solving the Poisson equation using the boundary element method BRI
BEM [85,86] together with a variable-radius solvent probe [87]. The term γ× ∆MSA is
used to reflect the change in free energies related to the molecular surface area caused by
inhibitor binding. The parameters ρ, Din, γ and C represent the Amber van der Waals
radii’s linear scaling coefficient, the solute interior dielectric constant, the molecular surface
area coefficient and a constant, respectively. The parameter α indicates the global propor-
tionality coefficient related to the loss of conformational entropy upon binding [88]. The
optimized values of the aforementioned parameters are α = 0.1048, ρ = 1.1, Din = 2.25,
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γ = 0.0129 kcal·mol−1·Å−2 and C = −2.89 kcal·mol−1 [49]. The SIE calculations were
implemented by means of the program Sietraj [67].

3.4. MM–GBSA Calculations

MM–PB/GBSA methods have been widely used to calculate inhibitor–target binding
free energies. Hou’s group performed a series of works to evaluate the performance of
these two methods [89–91]. According to their tests, the MM-GBSA method was selected to
calculate inhibitor–BACE1 binding free energies with the following equation, Equation (2):

∆Gbind = ∆Eele + ∆Evdw + ∆Ggb + ∆Gsur f − T∆S (2)

where ∆Eele and ∆Evdw, respectively, represent the electrostatic and van der Waals in-
teractions of inhibitors with BACE1, while ∆Gpol and ∆Gnonpol , respectively, indicate
the polar and nonpolar contributions to the solvent-free energy of the inhibitor–BACE1
complexes. The two components ∆Eele and ∆Evdw were obtained from the force of Am-
ber force field ff19SB. The term ∆Gsur f was estimated by using the empirical equation
∆Gsur f = γ× ∆SASA + β, in which ∆SASA denotes the solvent-accessible surface area.
∆Gpol was computed using the generalized Born (GB) model [92]. For this current study,
we selected different GB models that were individually represented by IGB = 1, 2, 5 and
66 [92,93] to calculate the ∆Ggb so that we could examine the impacts of different GB models
on the calculations of binding free energies. The type of GB model and the corresponding
parameters, including radius types, γ and β, are provided in Table 1. The last compo-
nent, T∆S, represents the contribution of the entropic change to the binding free energies
and was estimated through the mmpbsa_py_nabnmode program in Amber 20 [94]. In
our current work, 500 snapshots were extracted from the SMT to compute binding free
energies. Since the entropy calculation was too expensive, 100 snapshots picked from the
above-mentioned 500 snapshots were utilized to calculate the entropy contributions to
inhibitor–BACE1 binding.

3.5. Principal Component Analysis

PCA was helpful for our insights into the concerted motions of structure domains in
BACE1. Hence, PCA was executed to clarify how the binding of an inhibitor impacts the
concerted motions of BACE1. In this work, PCA was realized through the diagonalization
in a covariance matrix, C, constructed with the coordinates of the Cα atoms in BACE1
based on Equation (3):

C =
〈
(qi − 〈qi〉)

(
qj −

〈
qj
〉)T
〉

(3)

where, the terms qi and qj are the Cartesian coordinates of the ith and jth Cα atoms
in BACE1, respectively, while the terms 〈qi〉 and

〈
qj
〉

are their averaged positions on
conformational ensembles recorded at the SMT. In general, this average is computed by
performing a superimposition of the SMT with a referenced structure to abolish overall
translations and rotations by using a least-squares fitting procedure [95]. The eigenvalues
and eigenvectors stemming from the PCA are usually applied to respectively embody
the fluctuation amplitude along an eigenvector and the concerted motions of structural
domains. We completed the PCA through the program CPPTRAJ [96] in Amber 20 in
this study.

3.6. Dynamics Cross-Correlation Map

DCCMs are an efficient approach to exploring the internal dynamics of targets [97–99].
To clarify the influence of inhibitor binding on the internal dynamics of BACE1, DCCMs
were calculated using the coordinates of the Cα atoms in BACE1 saved at the SMT through
the following equation, Equation (4):
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Cij =

〈
∆ri·∆rj

〉(〈
∆r2

i
〉〈

∆r2
j

〉)1/2 (4)

in which the two components ∆ri and ∆rj are the displacement of the Cα atoms i and j
relative to their corresponding averaged positions. The angle brackets is an indicator of
ensemble averages on the snapshots kept at the SMT. The element values (Cij) of DCCMs
fluctuated at a range from −1 to 1. The positive and negative Cij values, respectively,
correspond to the positively correlated movements (PCMs) and the anti-correlated motions
(ACMs) between the Cα atoms i and j of BACE1. The color-coded bars were employed to
characterize the extent of correlated motions between residues of BACE1. In this study, the
calculations of DCCMs were finished by using the program in Amber 20.

4. Conclusions

BACE1 plays an important role in the production of the toxic amyloid–β peptides that
cause ADs. Insights into the inhibitor–BACE1 binding mechanism and conformational
changes of BACE1 due to inhibitor binding are significant for the development of efficient
drugs targeting BACE1. Three separate MD simulations with a total simulation time of
1.8 µs, each running for 600 ns, were respectively conducted on the apo, 60W-, 954- and
60X-bound BACE1. The analyses of RMSDs and RMSFs verified that inhibitor binding
not only affects structural stability but also changes the structural flexibility of BACE1.
The results from the calculations of DCCMs and PCA indicate that inhibitor binding alters
correlated motions between the structural domains and molecular dynamics behavior
of BACE1. Binding free energies calculated through the SIE and MM-GBSA methods
comparatively revealed that hydrophobic interactions drive inhibitor–BACE1 binding,
which should be paid special attention in future drug design targeting BACE1. Among the
three inhibitors used herein, 60W showed the strongest ability to bind to BACE1 and its
molecular structure should provide guidance for the design of efficient inhibitors targeting
BACE1. The inhibitor–residue spectrum from calculations of residue-based free energy
decomposition shows that residues L91, D93, S96, V130, Q134, W137, F169 and I179 were
identified as hot spots of interaction between inhibitors and BACE1. The results also
suggest that the sidechains of those eight residues provide the main energy contributions
for binding of inhibitors to BACE1. Thus, the optimization of the interactions of inhibitors
with the sidechains from those eight residues should be paid special attention to in the drug
design for the treatment of AD. This study is also expected to contribute useful information
to the development of potent inhibitors for interaction with BACE1.

Supplementary Materials: The following supporting information can be downloaded at https://www.
mdpi.com/article/10.3390/molecules28124773/s1. Figure S1: RMSDs of backbone atoms in BACE1
calculated by using three separate MD trajectories: (A) the apo BACE1, (B) the 60W-BACE1 complex,
(C) the 954-BACE1 complex and (D) the 60X-BACE1 complex; Figure S2: Structural domains corre-
sponding to the obvious changes in RMSFs due to inhibitor binding; Figure S3: Stability of secondary
structures for the 60W-bound BACE1 in three separate MD simulations: (A) the simulation 1, (B) the
simulation 2 and (C) the simulation 3; Figure S4: Stability of secondary structures for the 954-bound
BACE1 in three separate MD simulations: (A) the simulation 1, (B) the simulation 2 and (C) the simu-
lation 3; Figure S5: Stability of secondary structures for the 60X-bound BACE1 in three separate MD
simulations: (A) the simulation 1, (B) the simulation 2 and (C) the simulation 3; Figure S6: (A) Free
energy landscapes of the apo BACE1 constructed by using the PC1 and PC2 as reaction coordinates
and (B) structural superimposition of the apo BACE1 situated at the energy valleys EV1–EV3.
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