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Abstract: In this study, a Z-Scheme WO3/CoO p-n heterojunction with a 0D/3D structure was
designed and prepared via a simple solvothermal approach to remove the combined pollution of
tetracycline and heavy metal Cr(VI) in water. The 0D WO3 nanoparticles adhered to the surface of the
3D octahedral CoO to facilitate the construction of Z-scheme p-n heterojunctions, which could avoid
the deactivation of the monomeric material due to agglomeration, extend the optical response range,
and separate the photogenerated electronhole pairs. The degradation efficiency of mixed pollutants
after a 70 min reaction was significantly higher than that of monomeric TC and Cr(VI). Among them,
a 70% WO3/CoO heterojunction had the best photocatalytic degradation effect on the mixture of
TC and Cr(VI) pollutants, and the removing rate was 95.35% and 70.2%, respectively. Meanwhile,
after five cycles, the removal rate of the mixed pollutants by the 70% WO3/CoO remained almost
unchanged, indicating that the Z-scheme WO3/CoO p-n heterojunction has good stability. In addition,
for an active component capture experiment, ESR and LC-MS were employed to reveal the possible
Z-scheme pathway under the built-in electric field of the p-n heterojunction and photocatalytic
removing mechanism of TC and Cr(VI). These results offer a promising idea for the treatment of the
combined pollution of antibiotics and heavy metals by a Z-scheme WO3/CoO p-n heterojunction
photocatalyst, and have broad application prospects: boosted tetracycline and Cr(VI) simultaneous
cleanup over a Z-scheme WO3/CoO p-n heterojunction with a 0D/3D structure under visible light.

Keywords: photocatalysis; Z-scheme; WO3/CoO; 0D/3D; p-n heterojunction; tetracycline and Cr(VI)

1. Introduction

Since the 1940s, tetracycline (TC) has been recognized as an excellent antibiotic and has
been widely used in human therapy, veterinary medicine, agriculture, and other fields [1–3].
However, the abuse of TC leads to its accumulation in the water environment [4]. Due to the
fact that it is highly toxic, resistant, and difficult to biodegrade, TC accumulates in water for
long periods, creating potential environmental stress [5–7]. In addition, heavy metals often
coexist with antibiotic contaminants in water environments and cause irreversible damage
to humans and other organisms [8–10]. The most typical is Cr (VI) contamination in water,
which can be carcinogenic and cause lasting harm to the environment when ingested by
humans [11,12]. Unfortunately, the combined toxicity of antibiotics and heavy metals is
much higher than that of a single contaminant [13–15]. Antibiotic molecules contain a large
number of carboxyl, hydroxyl, amino, heterocyclic, and other groups or electron donors,
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which can be complexed with heavy metal ions to change the environmental behavior
and toxicological effects of pollutants in the complex pollution system, and may produce
synergistic and antagonistic complex toxicological effects on micro-organisms, animals, and
plants [16]. Therefore, seeking a new efficient, straightforward technology free of secondary
pollution is essential for treating TC and Cr (VI) residues in water [17–19]. Semiconductor
photocatalysis is an advanced redox technology that uses clean solar power as a power
source to treat organic pollutants and heavy metal pollution in water [20–22]. Photocatalysis
offers many advantages over conventional methods, including a simple preparation process,
wide application range, good catalytic effect, and no secondary pollution [23,24], and it is
considered by many researchers to be a superior and environmentally friendly purification
technology [25–28].

Since Fujishu and Honda reported in 1972 that TiO2 has an excellent photocatalytic ef-
fect under ultraviolet light irradiation, traditional photocatalysis such as TiO2 and ZnO has
been extensively studied [29]. However, TiO2 and ZnO have a wide band gap, extremely
low visible light utilization, and fast electron–hole recombination, severely limiting their
photocatalytic activity and effective utilization of visible light [30]. The p-type semicon-
ductor cobalt oxide (CoO) is an excellent photocatalytic material with a smaller band gap
of 2.2–2.6 eV, efficiently utilizing visible light [28,31]. However, the photocatalytic activity
of pure CoO was limited by the high recombination rate of separate electron–hole pairs
and inactivation due to agglomeration [32]. Fortunately, the construction of heterojunction
nanocomposites can effectively solve the above problems and improve their photocatalytic
efficiency [33,34]. In addition, three-dimensional octahedral CoO has the advantages of
good stability, easy preparation, and good stability of its electrochemical reactions, and
good prospects for the construction of heterojunctions [35–37]. For example, Zou et al.
present a novel 3D/3D composite structure in which the 3D CoO acts as an active and stable
ion diffusion channel. At the same time, the hollow NiCo LDH provides abundant redox
sites. Chen et al. [38] reported the oxygen-vacancy-induced construction of the CoO/h-TiO2
Z-scheme heterostructures, which can be used for photocatalytic hydrogen production
from water decomposition. Wang et al. [39] designed a novel one-dimensional/two-
dimensional (1D/2D) core-shell cobalt monoxide/nickel-cobalt layered double hydroxide
(CoO/Nico-LDH) heterojunction, which can avoid agglomeration, promote the transfer
of photogenerated carriers, and expand the light absorption range, effectively enhancing
the photocatalytic performance. As a conventional photocatalytic material, WO3 has a
band gap of about 2.5–2.8 eV [40], can absorb visible light at nearly 500 nm, and has good
photocatalytic performance in visible light [41–43]. Cao et al. [44] reported the electron
transfer mechanism of noble-metal-free WO3@ZnIn2S4 S-scheme heterojunction photocata-
lysts. This provides a new idea for improving the photocatalytic efficiency of WO3 through
the formation of heterojunctions [45]. Consequently, Z-scheme p-n heterojunctions can be
constructed using WO3 as 0D nanoparticles attached to 3D octahedral CoO [46–48]. This
can not only broaden the visible light response range of the monomeric material but also
effectively improve the separation efficiency of the photogenerated carriers and the stability
of the material [49–51].

In this article, Z-scheme WO3/CoO p-n heterojunctions were designed and synthe-
sized via a simple solvothermal approach. The XRD, TEM, XPS, and UV-vis measurement
were chosen to characterize the microstructure, surface chemistry, and photoelectrochemical
properties of WO3/CoO p-n heterojunctions. In addition, the reusability and stability of the
Z-scheme WO3/CoO p-n heterojunctions were tested by five cycles. Finally, the potential
photocatalytic mechanisms in the photocatalytic degradation of TC were elaborated.

2. Results and Discussion
2.1. XRD Analysis

X-ray diffraction (XRD) was used to study the phase structure of the as-synthesized
WO3, CoO, and various WO3/CoO heterojunctions. As indicated in Figure 1, the diffrac-
tion peaks of pure WO3 at 2θ = 23.12◦, 23.59◦, 24.38◦, 33.26◦, 33.57◦, 34.15◦, and 49.95◦
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corresponded to the (002), (020), (200), (022), (−202), (202), and (140) crystal planes of the
monoclinic phase (JCPDS card NO. 43-1035), respectively [52,53]. Moreover, the character-
istic peaks at 36.48◦ and 42.37◦ in pure CoO and different WO3/CoO heterojunctions are
normalized to the (111) and (200) planes of cubic phase CoO (JCPDS 71-1178) [54,55]. With
the construction of the WO3/CoO heterojunction, the characteristic peak of WO3 increased
with the increase of content, and no other obvious peaks were found, indicating that no
impurities were observed during the recombination process. It was worth noting that the
prominent diffraction peaks of WO3 and CoO had slightly shifted to the middle, which can
be ascribed to the metal ion bonding in creating heterojunctions between WO3 and CoO.
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Figure 1. XRD patterns of CoO, WO3, and WO3/CoO heterojunctions.

2.2. Morphology

SEM was employed to observe the morphology of the WO3, CoO, and 70% WO3/CoO
heterojunction, and shown in Figure S1. As illustrated in Figure S1a, CoO possessed an
octahedral form with a smooth surface and an average size of about 200 nm. WO3 appeared
as a nanosheet structure of agglomeration with a side length of about 350 nm. In Figure
S1c, the morphology and particle size of the WO3/CoO heterojunction was very similar
to that of pure CoO, indicating that the addition of WO3 had no significant change in
the morphology and particle size of CoO. After the combination of WO3 and CoO, WO3
nanoparticles adhered to the surface of the octahedral CoO, indicating that WO3/CoO
heterojunction was well-constructed, whereafter the specific morphology of the WO3, CoO,
and the 70% WO3/CoO heterojunction was further analyzed by TEM. Figure 2a clearly
showed that the octahedral CoO was stacked together and the size was in accord with the
above SEM results. As shown in Figure 2b, WO3 presented the nanosheet structure with
accumulation and in agreement with the morphology of SEM. As shown in Figure 2c,d,
it can be seen that the CoO composite material still presented a representative octahedral
shape, and WO3 changed from sheet to granular during preparation and deposited on the
surface of the octahedral CoO. Figure 2e showed the HR-TEM images of the 70% WO3/CoO
heterojunction material for a lattice study. It can be seen from the figure that the 0.25 nm
lattice fringe spacing corresponded to the (111) plane of the CoO composite material based
on JCPDS 71-1178, while the 0.21 nm lattice spacing corresponded to the (202) plane of the
WO3 material according to the standard card (JCPDS 43-1035) [52,55].
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2.3. XPS

The surface chemical states, chemical composition, and molecular structure of the
as-prepared photocatalysts were examined by XPS spectroscopy. As shown in Figure S2,
the XPS survey spectrum of 70%WO3/CoO consists of Co, W, and O, with all characteristic
peaks of WO3 and CoO, and no impurities other than carbon were found in the spectrum
element, consistent with the XRD results. The C1s peak observed at 284.4 eV can be
attributed to the signal from carbon during the subsequent processing of the measurement
of the scanning spectrum. Figure 3a displays the high-resolution Co 2p spectrum. As shown
in the figure, the two main peaks were located at 780.2 and 796.3 eV, while the two satellite
peaks were located near 786.2 eV and 802.9 eV, which correspond to Co 2p1/2 and Co 2p3/2,
manifesting the occurrence of Co2+ [56]. As depicted in Figure 3b, two peaks of 35.4 eV and
37.4 eV are attributed to W4 f7/2 and W4 f5/2 in WO3, respectively, belonging to the W6+

in WO3. After the combination of CoO and WO3, the W 4f7/2 and W 4f5/2 of WO3/CoO
drift to 35.2 eV and 37.0 eV, which were slightly lower than the W 4f7/2 and W 4f5/2 of pure
WO3 [57]. On the contrary, the Co 2p peaks of WO3/CoO were slightly higher than those of
pure CoO. The above results indicated that electrons were transferred from the CB of WO3
to the VB of CoO with the following Z-scheme pathway, meaning the Z-scheme WO3/CoO
heterostructure had been successfully constructed [58,59]. Furthermore, the O 1s spectrum
of WO3/CoO could be resolved as triple peaks at 530.0 eV, 531.0 eV, and 532.0 eV, as shown
in Figure 3d. Among them, the formation of the characteristic peak at 530.0 eV was due
to the typical lattice oxygen in CoO and WO3 [60,61], while the characteristic peaks were
also observed at 531.0 eV and 532.0 eV, possibly due to the combination of O in H2O on the
surface of WO3/CoO with active species (•OH and •O2

−) [62,63].

2.4. UV-Vis

UV-Vis diffuse reflectance spectroscopy was employed to investigate the optical ab-
sorption characteristics, band gaps, and energy levels of the CoO, WO3, and WO3/CoO
heterojunctions. In Figure 4a, since pure WO3 had a narrow band gap width of 2.9 eV, it
had an absorption edge at approximately 466 nm and strong light absorption properties
in both the UV and visible spectra [42,45,48]. However, the light absorption intensity of
CoO decreased significantly with increasing wavelength, which limited the photocatalytic
performance, which was also consistent with the previous studies. The difference was that
pure CoO could effectively use UV and visible light [64]. Compared with pure WO3, the
absorption spectra of the WO3/CoO heterojunctions showed a red shift and a significant
enhancement of the absorption band edge, indicating that the constructed WO3/CoO het-
erojunctions could effectively enhance the light absorption performance and thus improve
the photocatalytic activity [31,41]. As shown in Figure 4b, the forbidden bandwidths of
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pure WO3 and CoO were 2.90 eV and 2.34 eV, respectively, as calculated by the Tauc plot
equation (Formula 1). Meanwhile, as shown in Figure 5c,d, the flat-band potentials of
pure WO3 and CoO were determined using electrochemical Mott–Schottky and displayed
at −0.45 V and 0.87 V (vs. NHE), respectively. Due to the negative slope of CoO and
positive slope of WO3, CoO and WO3 were p-type and n-type semiconductors, respectively.
Therefore, we can deduce that the potentials of the VB of CoO and the CB of WO3 were
0.97 eV and −0.55 eV (vs. NHE), respectively. In summary, the WO3 VB potential was
2.35 eV, and the CoO CB potential was −1.37 eV (vs. NHE). In conclusion, it is proven that
CoO and WO3 could construct Z-scheme WO3/CoO p-n heterojunctions in this situation.

Ahν = A(hν − Eg)1/n (1)

α, h, V, Eg, and A are the absorption coefficient, Planck’s constant, incident light
frequency, band gap energy, and constant, respectively. The value of N determines the
characteristics of transitions in semiconductors, with values equal to 1/2 and 2 representing
indirect and direct transitions, respectively.
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WO3/CoO heterojunction.

2.5. Photocatalytic Activites

Figure 5 illustrated the photocatalytic performance of pure CoO, pure WO3, and
10–90% WO3/CoO heterojunctions for the degradation of two monomeric pollutants of TC
and Cr(VI) and a mixture of TC and Cr(VI) under the illumination of visible light. Under
natural conditions, only 5% of the TC was degraded, as shown in Figure 5a, indicating that
it was difficult to achieve the self-degradation of TC in water, while the increase of light
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time after the photocatalyst injection significantly decreased the concentration of TC. The
pure CoO and WO3 degraded 38.7% and 34.2% of the TC after 70 min of the photocatalytic
reaction. In contrast, 10–90% of the WO3/CoO degraded 70.7%, 76.1%, 82.7%, 93.8%, and
81.6% of the TC, respectively. This proved that constructing WO3/CoO heterojunctions
could effectively improve photocatalytic activity. Among them, 70% WO3/CoO heterojunc-
tions exhibited the best performance of the photocatalyst. As shown in Figure 5b, based on
the Langmuir–Hinshelwood kinetic model, the kinetic curve had good linear characteris-
tics, indicating that the photocatalytic oxidation of TC follows the quasi-first-order kinetic
model. In Figure 5c, it can be seen that, during the degradation of TC, the 70% WO3/CoO
reaction rate constant is 0.0386 min−1, which is 6.26 times and 6.82 times higher than pure
CoO (0.00617 min−1) and WO3 (0.00566 min−1), further proving that 70% WO3/CoO has
the best photocatalytic degradation efficiency for TC. As shown in Figure 5d, the removal
of Cr(VI) by pure CoO, WO3, and 10–90% WO3/CoO after 70 min of reaction was 18.7%,
37.4%, 40.0%, 44.1%, 34.7%, 31.0%, and 21.8%, respectively. Figure 5e shows that the kinetic
curve exhibits good linear characteristics, indicating that the photocatalytic removal of Cr
(VI) follows a quasi-first-order kinetic model. For other mass ratios of WO3/CoO, the reac-
tion rate constant (0.00819 min−1) of 70% WO3/CoO(Figure 5f) is still the highest, which is
2.95 times and 2.43 times higher than pure CoO (0.00278 min−1) and WO3 (0.00337 min−1),
respectively. Considering the coexistence of TC and Cr(VI) in real wastewater, the pho-
tocatalytic simultaneous cleanup of TC and Cr(VI) in the mixed solution were measured.
Figure 5g demonstrated that the degradation efficiency of pollutants mixed after a 70 min
reaction was significantly greater than that of a single TC and Cr(VI). Figure 5h shows that
removing TC and Cr (VI) mixed pollutants also follows a quasi-first-order kinetic model.
The degradation rate of TC and Cr(VI) increased from 93.8% and 44.13% to 95.35% and
70.2%, respectively, after five cycles, demonstrating that the WO3/CoO heterojunction had
excellent stability (Figure 5i).
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Figure 5. The photocatalytic activity of (a) TC, (d) Cr(VI), and (g) TC and Cr(VI) of the as-
prepared samples; first-order reaction kinetics of photocatalytic degradation of (b) TC, (e) Cr(VI), and
(h) TC and Cr(VI); the reaction rate constant of photocatalytic activity to (c) TC and (f) Cr(VI); and
(i) five-cycle curve of 70% WO3/CoO sample for TC and Cr(VI) degradation.

2.6. Electrochemical Test

To further investigate and explore the reasons for the improved photocatalytic perfor-
mance of WO3/CoO heterojunctions, the photocurrent- response, electrochemical impedance,
photoluminescence spectra, and time-resolved photoluminescence decay curves were used
to probe the carrier capture, migration, and electron–hole pair separation efficiency. In
Figure 6a,b, the apparent current density of 70% WO3/CoO was greater than pure CoO
and WO3, while the EIS arc radius of 70% WO3/CoO arc was the smallest. The above
results showed that the construction of the WO3/CoO heterojunction can significantly
improve the separation efficiency and charge the transfer capability of photogenerated
carriers. Subsequently, the 70% WO3/CoO heterojunction showed the lowest PL intensity
peak in Figure 6c, manifesting that, after successfully constructing the WO3/CoO p-n
heterostructure, the recombination of electron–hole pairs was effectively suppressed. More-
over, PL lifetimes of photogenerated electron–hole pairs were determined by time-resolved
phosphor spectroscopy. The 70% WO3/CoO heterojunction revealed a longer lifetime than
those of pure CoO and WO3 (Figure 6d), which further indicated that the construction of
WO3/CoO heterojunctions can effectively extend the lifetime of photogenerated carriers
and thus restrain the recombination of photogenerated e− and h+, which was conducive to
improving the photocatalytic performance.
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2.7. Radical Trapping and ESR

Active species capture and ESR experiments were performed for determining the
significant active species involved in the reaction system and their contribution. EDTA-2Na,
BQ, and IPA were selected as scavengers. As shown in Figure 7a, the TC degradation
rate reduced from 93.8% to 24.5%, 29.2%, and 36.7%, respectively, indicating that e−

and •O2
− contributed significantly in the reaction, while •OH was also involved in the

photocatalytic reaction. To further verify the existence of free radicals, the ESR analysis
was performed under visible light. As shown in Figure 7b, no ESR signal regular of DMPO-
•O2

− and DMPO-•OH was observed under dark conditions. However, a series of obvious
characteristic peaks was received under light conditions, indicating that •O2

− and •OH
free radicals were involved and played critical roles in photocatalytic reactions.

2.8. LC-MS

Liquid chromatography–mass spectrometry (LC-MS) was used to validate intermedi-
ates to further determine the photocatalytic degradation pathway of TC. The mass spectrum
resulting from the degradation of the original TC and corresponding intermediates after
70 min was shown in Figure S3. The protonated tetracycline molecule was represented
by the single peak of the original TC sample at m/z = 445 [65–69]. The degradation of
TC into many intermediates was observed after 70 min when the MS peak at m/z = 445
was significantly reduced, and several new peaks appeared at m/z = 416, 318, 279, 218,
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173, 150, 118, and 111. Based on the combination of the previous studies and the above
mass spectra, the structural information of the potential intermediates produced in the
photocatalytic process was presented in Table S1. Therefore, Figure 8 shows the potential
pathways of TC degradation. Firstly, TC lost two methyl groups to obtain P1 (m/z = 416).
Following this, there are three pathways in further transformation. For Pathway 1, P2
(m/z = 279) was produced from P1 (m/z = 416) by ring opening and decarboxylate, and
the formation of P3 (m/z = 173) was formed by ring opening and demethylation from P2
(m/z = 279), then P4 (m/z = 118) was achieved through product P3 by ring opening. For
Pathway 2, P5 (m/z= 318) was generated from product P1 (m/z = 416) by the cleavage
of the double bond and the removal of the carboxyl group and amino group. Following
this, P6 (m/z = 218) was converted from P5 (m/z= 318) via ring opening, deamination, and
double-bond oxygen. Subsequently, P7 (m/z = 149) was obtained by ring opening. For
the third pathway, the product P8 (m/z = 318) was converted from P1 by dehydroxylation,
deaminationring, cleavage of bond, and ring opening. Then, the product P9 (m/z = 218)
was obtained by the oxidation of the double bond to the single bond and dehydroxylation.
Subsequently, product P10 (m/z = 111) was converted from product P9 by dehydroxylation,
double-bond cleavage, and ring opening. In summary, P4, P7, and P10 were partially
mineralized into CO2, H2O, NH4

+.
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2.9. Photocatalytic Mechanism

On the basis of the above analysis and results, the degradation mechanism of the TC
and Cr(VI) of the Z-scheme WO3/CoO p-n heterojunction under visible light was proposed
with the following, as shown in Figure 9. In terms of the Mott–Schottky diagram, CB and
VB are shown in Figure 9a. It is clear that the band gap positions of WO3 and CoO can form
type II heterojunctions [70,71]. Electrons transferred to the CB of WO3 and CoO, and h+ was
generated at the VB of WO3 and CoO when WO3/CoO was irradiated with visible light.
Because a p-n heterojunction was formed, photogenerated electrons from the CB of CoO
were transferred to the CB of WO3 under the influence of the potential difference, while h+

from the VB of WO3 could be transferred to the VB of CoO. However, the CB potential of
WO3 (−0.55 eV vs. NHE) is smaller than that of the superoxide radical O2/•O2

−(−0.33 eV
vs. NHE), and the VB potential of CoO (0.97 eV vs. NHE) is smaller than that of the
hydroxyl radical (E(•OH/OH−) = +1.99 eV vs. NHE). [6,72–74]. This indicated that •O2

−

could be produced during photocatalysis without •OH, which apparently contradicted
the ESR results. Therefore, based on the above results and previous literature, a p-n
heterojunction that follows the Z-scheme path mechanism was proposed. As shown in
Figure 9b, when the p-type CoO made contact with the n-type WO3, the electrons on WO3
diffused to the CoO surface and suppressed the agglomeration of CoO. At the same time,
the Fermi energy of the WO3/CoO tended to be balanced due to the electric field created
among WO3 and CoO. Under visible light irradiation, photogenerated electrons migrated
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from the CB of WO3 to the VB of CoO according to the Z-scheme pathway, preserving
the significant redox currents of the CB of CoO and the VB of WO3 [75–77]. In this case,
the main active species produced by the Z-scheme mechanism are •O2

− and •OH, in
agreement with the ESR results. TC decomposes into small molecule substances such
as CO2, H2O, and NH4

+ under the synergistic action of •O2
−, •OH, and h+ [5,51,78,79].

Under the act of e− and •O2
− at the CB of WO3, Cr(VI) is reduced to Cr(III). In addition, e−

plays a significant role as an electron donor in the photocatalytic reduction of Cr(VI), and
the photocatalytic degradation of TC can effectively consume excessive h+, thus inhibiting
the recombination of the photogenerated e− and h+, and ultimately further improving the
photocatalytic efficiency of the synergistic removal of Cr (VI) and TC [80,81]. In summary,
the Z-scheme WO3/CoO p-n heterojunctions could effectively facilitate the separation of
photogenerated carriers and improve photocatalytic activity.
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3. Materials and Methods
3.1. Chemicals and Materials

Anhydrous ethanol is purchased from Tianjin Yongda Chemical Reagent Co., Ltd.
(Tianjin, China). Sodium tungstate, N-octanol, and cobalt acetate are supplied by Tianjin
Damao Chemical Reagent Factory (Tianjin, China), and tetracycline is purchased from
Shanghai Baoman Biotechnology Co (Shanghai, China). Nitric acid was purchased from
China National Pharmaceutical Group Chemical Reagent Co., Ltd. (Shanghai, China). All
experimental water is pure water, and the chemical substances used in the experiment,
except for nitric acid, are analytically pure and can be used without further purification.

3.2. Characterization

The morphology was evaluated by scanning electron microscopy (SEM) with Phenom
ProX, and the microstructure and elements of the composites were analyzed. The trans-
mission electron microscope (TEM) photographs were taken using a transmission electron
microscope (FEI, Hillsboro, USA) to observe the structural characteristics of the composites.
X-ray diffraction (XRD) of the specimens was performed with Pert-ProMPD/max-γAX-ray
(Cu Ka radiation with λ = 1.5406A, 2θ: 10–80◦). X-ray photoelectron spectroscopy (XPS) was
performed on an Axis ultra-DLD photoelectron spectrometer (Manchester, Britain) to ana-
lyze the nature, content, valence, and state of the composite. A Lambda 750 (PerkinElmer,
Boston, MA, USA) spectrometer was used to obtain UV-Vis absorption spectra to reflect
the optical absorption properties. CoO and WO3 were used as a reference to discuss the
material’s electronic structure and the semiconductor’s band gap.

3.3. Synthesis of WO3, CoO, and WO3/CoO Heterojunctions

First, 5 mL of 65% concentrated nitric acid (HNO3) was slowly added into 25 mL
of deionized water, thus obtaining diluted nitric acid. Then, 0.519 g of sodium tungstate
(Na2WO4·2H2O) was dissolved in 10 mL of deionized water, and stirred until Na2WO4·2H2O
dissolved. Then, as-prepared diluted nitric acid was slowly added into above Na2WO4·2H2O
aqueous solution, and ultrasonic-stirred for 30 min. This process changed the sediment
from white to faint yellow. The resulting mixture was added to a 50 mL Teflon-lined
stainless-steel reactor and heated at a constant temperature of 180 ◦C for a period of 12 h.
At the end of the reaction, the samples were naturally cooled to room temperature, washed
alternately with deionized water and ethanol, and placed in a drying oven at 80 ◦C for 6 h
to obtain WO3.

The WO3/CoO heterojunction were prepared by facile and robust solvothermal syn-
thesis as follows: Take the 90 wt.% WO3/CoO heterojunction, for example: 1.84 g cobalt
acetate (Co(CH3COO)2·4H2O) was dissolved into the mixture solution of 64 mL octyl
alcohol and 16 mL ethanol and stirred for 2 h at room temperature. Then, we added
0.1466 g WO3 into the above mixture solution and stirred magnetically for 10 min. Then,
the suspension was poured into 100 mL Teflon-lined stainless-steel reactor and heated in
oven at 220 ◦C for 4 h. At the end of the reaction, the samples were naturally cooled to
room temperature, obtained by centrifugation, and washed three times alternately with
deionized water and ethanol, and finally taken to vacuum-drying oven at 70 ◦C for 6 h
to obtain 90 wt% WO3/CoO heterojunctions. Finally, WO3/CoO heterojunctions with
various mass ratios were produced by adding the corresponding mass ratio of WO3 to
the above mixed solution under the same conditions and labeled as 10% WO3/CoO, 30%
WO3/CoO, 50% WO3/CoO, 70% WO3/CoO, and 90% WO3/CoO. The fabrication scheme
of the WO3/CoO p-n heterojunction photocatalyst is presented in Figure 10.
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Figure 10. Schematic diagram of synthesis for as-prepared photocatalysts.

3.4. Measurement of Photocatalytic Activity

We separately added 30 mg of 10–90% WO3/CoO to the TC solution (50 mL, 40 mg/L)
and stirred for 30 min under dark conditions to ensure that the TC reaches adsorption
equilibrium on the photocatalyst surface. A group of pure TC solution without any photo-
catalyst was set as blank control, and its initial concentration was denoted as C0. A 300 W
xenon lamp with a λ > 420 nm cut filter was used as a visible light source to irradiation
solution, with continuous magnetic stirring at atmospheric pressure, and 3 mL of the
suspension was taken at 15 min interval and centrifuged to remove the photo catalyst.
The experimental temperature was kept at 25 ◦C to eliminate the effect of temperature on
the experiment. The supernatant was measured by setting the maximum wavelength of
the UV-Vis spectrophotometer to 357 nm. The degradation rate of the TC solution can be
calculated using the following equation:

Degradation(%) =

(
1 − C

C0

)
× 100%

C0 is the absorbance of the starting solvent, and C is the absorbance of the solvent
after the reaction. In order to test the stability of photocatalytic per form, the sample with
the best photocatalytic activity were selected for five cycles of experiment; that is, the
solution was recovered and centrifuged after the experiment, and cleaned with ethanol and
water for several times and dried again to obtain the available photocatalyst, and then the
degradation rate of TC was tested using the same method.

Similar to the photocatalytic degradation of the TC experiment, Cr (VI) solution
(30 mg/L) was used as the target pollutant. During the irradiation process, 3 mL of the
supernatant was taken out every 15 min, and the concentration of Cr (VI) was analyzed at
540 nm using a UV-visible spectrophotometer.

3.5. Reactive Radical Trapping Experiments

Similar to the above photocatalysis experiment, keep the original experimental process
unchanged. Before the reaction, 1 mmol ethylenediaminetetraacetic acid disodium salt
(EDTA-2Na), 1,4-Benzoquinone (BQ), and isopropanol (IPA) captors are added to the TC
solution to explore the contribution of superoxide anion radical (O2

−), hydroxyl radical
(OH), and hole (h+) in the process of photocatalysis experiment.

4. Conclusions

In conclusion, Z-scheme WO3/CoO p-n heterojunction photocatalysts were success-
fully prepared by a simple solvothermal method. XRD, SEM, TEM and UV-Vis were used to
study the morphology, crystal structure, composition, optical properties, and carrier trans-
fer mechanism. The results show that TC and Cr(VI) can be effectively dislodged by the 70%
WO3/CoO heterojunction photocatalyst. At the same time, after five cycles, the removal



Molecules 2023, 28, 4727 13 of 17

rate of the TC and Cr(VI) of the WO3/CoO p-n heterojunction was only slightly reduced,
indicating that the heterojunction had excellent stability. Moreover, the 70% WO3/CoO
heterojunction photocatalyst showed higher photocatalytic activity than pure CoO and
WO3, and the reaction rate constants of TC degradation are 6.26 times and 6.82 times that
of pure CoO and WO3, respectively, while the reaction rate constants of Cr(VI) degradation
are 2.95 times and 2.43 times that of pure CoO and WO3, respectively. Finally, the potential
route and photocatalytic process of the degradation of TC and Cr(VI) were determined
by an active species trapping experiment, ESR, and LC-ms spectrometry. In summary,
new perspectives are provided by these findings in the construction of high-performance
photocatalysts for p-n heterojunctions.

Supplementary Materials: The following supporting information can be downloaded at:
https://www.mdpi.com/article/10.3390/molecules28124727/s1, Figure S1 SEM images of (a) CoO,
(b) WO3, and (c) 70% CoO-WO3. Survey spectra of 70% WO3/CoO heterojunction. Figure S3 Mass
spectra of doxycycline hydrochloride of 70% WO3/CoO. Figure S4 Nitrogen adsorption desorption
isotherm and pore size distribution curve (a–e) 10–90% WO3/CoO, (f) CoO, (g) WO3; Dark adsorp-
tion experiment (h) TC, (i) Cr (VI). Figure S5 (a,b) TEM and HRTEM images of 70% WO3/CoO;
(c–f) EDX mapping of 70% WO3/CoO. Figure S6 (a) TEM images, (b) XRD of 70% WO3/CoO after the
photocatalytic process. Figure S7 10–90% WO3/CoO composite material bandgap. Table S1 Possible
intermediate products [82–85].
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