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Abstract: C-X-C chemokine receptor type 4 (CXCR4), also known as fusin or CD184, is a
7-transmembrane helix G-protein-coupled receptor that is encoded by the CXCR4 gene. Involved
in various physiological processes, CXCR4 could form an interaction with its endogenous part-
ner, chemokine ligand 12 (CXCL12), which is also named SDF-1. In the past several decades, the
CXCR4/CXCL12 couple has attracted a large amount of research interest due to its critical functions
in the occurrence and development of refractory diseases, such as HIV infection, inflammatory
diseases, and metastatic cancer, including breast cancer, gastric cancer, and non-small cell lung cancer.
Furthermore, overexpression of CXCR4 in tumor tissues was shown to have a high correlation with
tumor aggressiveness and elevated risks of metastasis and recurrence. The pivotal roles of CXCR4
have encouraged an effort around the world to investigate CXCR4-targeted imaging and therapeutics.
In this review, we would like to summarize the implementation of CXCR4-targeted radiopharmaceuti-
cals in the field of various kinds of carcinomas. The nomenclature, structure, properties, and functions
of chemokines and chemokine receptors are briefly introduced. Radiopharmaceuticals that could
target CXCR4 will be described in detail according to their structure, such as pentapeptide-based
structures, heptapeptide-based structures, nonapeptide-based structures, etc. To make this review a
comprehensive and informative article, we would also like to provide the predictive prospects for the
CXCR4-targeted species in future clinical development.

Keywords: CXCR4; chemokine receptor; CXCL12; radiopharmaceuticals; metastatic cancer

1. Introduction
1.1. Chemokines

The chemokines (chemotactic cytokines) are a series of small, mostly secreted proteins
that consist of about 60 to 90 amino acids (8-10 kDa in mass) with an N terminal and a C
terminal. At the N terminals of these proteins, there are two or four cysteine residues. In the
biological environment, the primary function of chemokines is to induce cell migration [1].

Up until now, there have been about 50 kinds of chemokines with different combi-
nations of amino acids. These structures could be divided into four groups (CC, CXC,
CX3C, and XC chemokines) according to the spacing of the first two cysteine residues at
the N terminals. For example, there are two adjacent cysteine residues at the N terminals
of CC chemokines; there are two cysteine residues that are separated by one other amino
acid in CXC chemokines; there are two cysteine residues that are separated by three other
amino acids in CX3C chemokines; there is only one cysteine residue at the N terminal of
XC chemokines, and another cysteine residue is lacking [2].
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1.2. Chemokine Receptors

The chemokine receptors are endogenous partners of chemokines, and they could
form interactions with their partners to signal in a series of biological processes. They are
7-transmembrane helix G-protein-coupled receptors. Just as with chemokines, chemokine
receptors could also be divided into four subgroups, including CCR, CXCR, CX3CR, and
XCR [3]. Table 1 briefly shows the combinations of chemokines and their receptors.

All these chemokine receptors mediate chemokine functions in their target cells.
Chemokine receptor activation will lead to protein kinase activation and intracellular
Ca?* mobilization. It is worth mentioning that the interaction between chemokines and
their receptors is associated with various functions of normal cells, such as cell proliferation,
differentiation, activation and polarization of blood cells, regulation of intracellular calcium
levels, chemotaxis, and gene transcription [4]. Overall, the function of chemokines is essen-
tial for the induction of the migration of immune cells. Furthermore, the overexpression
of chemokine receptors in different types of autoimmune diseases, such as rheumatoid
arthritis, systemic lupus erythematosus, multiple sclerosis, Alzheimer’s disease, stroke,
HIV, and metastatic cells, can be used as excellent candidates to provide comprehensive
data for the diagnosis and treatment of diseases in vivo and in vitro.

Table 1. Chemokines and their receptors 1

Chemokine Receptor Chemokine
CCR1 CCL1, CCL3, CCL4, CCL5, CCLS8, CCL14, CCL15, CCL16
CCR2 CCL2, CCL7, CCLS8, CCL12, CCL13, CCL16
CCR3 CCL5, CCL7, CCL8, CCL11, CCL13, CCL15, CCL23, CCL24,
CCL26, CCL28
CCR4 CCL17, CCL22
CCR5 CCL3, CCL4, CCL5, CCL7, CCLS8, CCL13, CCL16
CCR6 CCL20, CCL21
CCR7 CCL19, CCL21
CCRS8 CCL1, CCLS8, CCL18
CCR9 CCL25
CCR10 CCL27, CCL28
CXCR1 CXCL6, CXCL8
CXCR2 CXCL1, CXCL2, CXCL3, CXCL5, CXCL6, CXCL7, CXCL8
CXCR3 CXCL9, CXCL10, CXCL11
CXCR4 CXCL12
CXCR5 CXCL13
CXCR6 CXCL16
CXCR7 CXCL11, CXCL12
CXCR9 CXCL16
CX3CR1 CX3CL1, CCL26
XCR1 XCL1, XCL2

1 This table is summarized according to references [5-7].

1.3. CXCR4

C-X-C chemokine receptor type 4 (CXCR4), also known as fusin or CD184, is a
7-transmembrane helix G-protein-coupled receptor that is encoded by the CXCR4 gene.
One surface of CXCR4 is rich in aspartate and glutamate residues, which could bind firmly
to transition metals. CXCR4 is an HIV coreceptor that mediates HIV infection [8]. Over-
expression of CXCR4 is present in the majority of cancers [9]. This phenomenon is often
correlated with an aggressive tumor phenotype, elevated risks of metastasis and recurrence
of the primary tumor, and a poor prognosis of the disease.

Involved in various physiological processes, CXCR4 could form an interaction with
its endogenous partner, chemokine ligand 12 (CXCL12), which is also named SDF-1 [10].
In the past several decades, the CXCR4/CXCL12 couple has attracted a large amount
of research interest due to its critical functions in the occurrence and development of
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refractory diseases, such as HIV infection, inflammatory diseases, and metastatic cancer,
including breast cancer, gastric cancer, and non-small cell lung cancer [11]. The CXCR4-
CXCL12 axis could promote angiogenesis and recruit myeloid bone marrow-derived cells
to facilitate tumor recurrence and metastasis, thus mediating resistance to conventional
as well as targeted therapies. Neutralization of CXCR4/CXCL12 chemotaxis using anti-
CXCR4 antibodies, peptide antagonists, or small molecule antagonists could significantly
reduce the metastasis.

The pivotal role of CXCR4 has encouraged researchers around the world to investigate
CXCR4-targeted imaging and therapeutics [12]. Figure 1 illustrates the schematic diagram
of CXCR4, which showed up as a 7-transmembrane helix protein. The CXCR4 crystal
structure is present in the published literature [13].

& cXCcL12

N terminal

CXCR4 C terminal

Figure 1. Schematic diagram of CXCR4.

2. Radiopharmaceuticals Based on CXCR4

The structures of CXCR4-based small molecule antagonists have been influenced by
the structures of the corresponding peptide drugs to some extent. Specifically, a highly
potent (3-sheet-like 14-mer peptide (T140) was originally designed based on the structures of
CXCR4 and CXCL12 [14]. A structure-activity relationship study of this 14-peptide showed
that four of the amino acid residues (Arg2, Nal3, Tyr5, and Argl4) are indispensable for the
activity of the 14-peptide.

Thus, after a series of structural optimizations, researchers obtained a pentapeptide
compound, FC131, which is also a peptide compound with a high affinity for CXCR4 [15].
In this pentapeptide compound, any of the amino acid residues are very important, except
for Arg2, which is less important. Taking this feature into consideration, CPCR4-2 has been
further developed on the basis of FC131.

As for small molecules, a series of small molecule structures have been optimized
according to the structure-activity relationship, such as pentapeptide-based antagonists,
indole-based antagonists, tetrahydroquinoline-based antagonists, para-xylyl-enediamine-
based antagonists, guanidine-based antagonists, quinoline-based antagonists, pyrimidine-
based antagonists [13], benzenesulfonamide-based antagonists [16], etc. However, only a
few of these small molecules were translated into the radiopharmaceutical field.

In 2009, Kiesewetter et al. [17] imply ®*Cu-AMD3100 (Figure 2) for the first time in
PET imaging of CXCR4-expressing tumors and proved that this radiotracer is useful in
CXCR4-targeted imaging and therapies. They modified the synthetic route of AMD3100
in high yield and achieved **Cu-AMD3100 in high radiochemical yield and with high
radiochemical purity. In the binding affinity assay, **Cu-AMD3100 exhibited an ICs( value
of 62.7 uM towards Jurkat T-cells (CXCR4-positive). This value is much higher than the
ICs59 of AMD3100, verifying that the incorporation of the Cu(Il) ion enhances the binding
of AMD3100 to CXCR4. In the biodistribution studies, ®*Cu-AMD3100 was observed
accumulating in immune-related organs, such as the spleen (13%, 1 h post-injection), lymph
nodes (10%, 1 h post-injection), and bone marrow (14%, 1 h post-injection). Other organs,
such as the liver and kidney, also shared a large amount of the radiotracers [17].
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Figure 2. Structures of AMD3100, CB-Bicyclam, and AMD3465.

In 2010, Nimmagadda et al. evaluated the kinetics and biodistribution of
[6*Cu]AMD3100 in subcutaneous brain tumor xenografts [18]. In a cell binding assay,
they found [**Cu]AMD3100 could bind specifically to glioblastoma cell lines (U87-stb-
CXCR4) and breast cancer cell lines (DU4475) with high CXCR4 expression levels. In
subcutaneous tumor xenografts, this specificity was also validated [18]. In a later work in
2011, Farber et al. evaluated the extensive dosimetry in mice and established the feasibility
of this radiotracer in the human body [19].

In order to bind firmly with the CXCR4 receptor, AMD3100 adopts several binding
modes with the cooperation of several residues of CXCR4. One of the possible geometries
is contributed by ASP171, ASP262, and GLU288, with one cyclam of AMD3100 binding to
ASP171 and another cyclam binding to ASP262 and GLU288. Another possible geometry is
in the form of residues ASP262 and GLU288 binding to the bicyclam rings and residues
PHE189 and TYR190 binding to the methylene linker. For more binding mode information
about AMD3100 and AMD3465, which is beyond the scope of this review, readers could
refer to the published elegant papers [20-23]. After transition metal complex formation,
the binding modes switch from electrostatic bonds between the protonated cyclam primary
amine groups and aspartate residue carboxylic acid groups (ASP171 and ASP262) to
coordinate bonds [24].

Except for 64Cy, other radioisotopes, such as 9ImTe 67Ga, and ©2Zn [25-27] were also
used in the development of AMD3100-based radiopharmaceuticals, though they might
possess certain shortcomings. For example, *™Tc-based radiotracers are used in SPECT
imaging rather than PET imaging, and [**™Tc]AMD3100 showed substantially reduced
binding affinity toward the receptor compared with [**Cu]AMD3100, which might be due
to the deviations in the planar structure of the cyclam caused by the introduction of a
relatively large metal ion [25]; the radiolabeling time of [67Ga]AMD3100 is about 2 h, which
is not suitable for the development of 68Ga-based radiotracers; besides, 2Zn is a seldom
used isotope in labeling or imaging studies.

In 2009, Archibald et al. developed CB-Bicyclam, a cross-bridged analog of AMD3100
with a specific structure, to reinforce the interaction between the bicyclam and the aspartate
residues on one surface of CXCR4 [28]. Crystal structure and computational studies con-
firmed the shortened and stronger interactions between the complexes and the carboxylates
compared to unconstrained macrocycle complexes in AMD3100 [29]. In 2020, the same
group labeled this small molecule with the radionuclide ®*Cu to form the mono-copper
species ®*Cu-CuCB-bicyclam. Compared with AMD3100, CuCB-bicyclam reduced the up
to six configurations to only one configuration when it formed the copper(Il) complex. This
rendered ®*Cu-CuCB-bicyclam with higher affinity and specific binding towards CXCR4-
expressing cells (U87.CXCR4 cells). Liver uptake could also be observed but could be
blocked by Cu,CB-bicyclam [30].

In 2009, Fricker et al. investigated the pharmacology of AMD3465 [31]. In the het-
erologous competition binding assay, AMD3465 was used to inhibit 2°I-SDF-1a ligand
binding to CCRF-CEM cells (CXCR4 positive), with a Ki value of 41.7 & 1.2 nM (n = 3). In
the following assays, the authors claimed that compared with AMD3100, which possesses
ICsp values of 651 £ 37 nM (ligand binding), 27 + 2.2 nM (GTP binding), 572 £+ 190 nM
(calcium flux), and 51 + 17 nM (chemotaxis), AMD3465 could inhibit SDF-1x-mediated
cell signaling with ICsq values of 10.38 &= 1.99 nM (n = 5) (GTP binding), 12.07 £ 2.42 nM
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(n = 5) (calcium flux), and 8.7 = 1.2 nM (n = 3) (SDF-1x-mediated chemotaxis). They also
find that AMD3465 is a specific inhibitor of CXCR4, with an ICsy value against CXCR4
approximately 400-fold higher than that of AMD3465 against CCR1, CCR2b, CCR4, CCR5,
CCR7, and CXCR3 [31].

In 2011, Nimmagadda et al. performed the preclinical evaluation of *4Cu-AMD3465
for the detection of CXCR4-expressing tumors [32]. In flow cytometric analysis, 2%, 30%,
and 95% of U87 cells, HT-29 cells, and U87-stb-CXCR4 cells were CXCR4 positive. PET
studies showed ID% values with the same sequence, showing this radiotracer could be
used to delineate variable levels of CXCR4-expressing tumors. However, compared with
AMD3100, #*Cu-AMD3465 exhibited superior specificity, target selectivity, and tumor-to-
muscle ratios [32].

Although both [(*Cu]AMD3465 and [**Cu]AMD3100 exhibited significant tumor
uptake, they both showed considerable uptake in other organs, such as the kidneys, liver,
and spleen. The liver uptake has been hypothesized to be partly due to transchelation
of ®4Cu, or it might be due to the relatively high lipophilicity of both compounds. It is
worth mentioning that [**Cu]AMD3465 exhibited advanced pharmacokinetic properties
compared with [**Cu]AMD3100, which could be attributed to the hydrophilic property of
[#*Cu]AMD3465 compared with [**Cu]AMD3100.

In 2018, Zhang, Lu, and Du et al. developed a ™ Tc-labeled antagonist based on the
AMD3465 structure [33]. They evaluated the stability, binding property, and SPECT/CT
performance of the complex. In a stability study, *™Tc-AMD3465 could remain stable
in saline and mouse serum for up to 4 h. In in vitro cellular studies, M9MTe- AMD3465
exhibited radioactivity accumulation in the order CHO-CXCR4 > MCF-7 > CHO, which
is in the same order as their CXCR4 expression level. In the biodistribution study, **™Tc-
AMD3465 showed a relative high tumor/background ratio and significant tumor uptake
of 2.07 £ 0.39% ID/g, which could be blocked by AMD3465-6HBr to some extent. In
SPECT/CT imaging studies, ™ Tc-AMD3465 exhibited a higher tumor uptake in CXCR4-
positive MCE-7 tumor xenografts compared with those in CXCR4-negative CHO tumors.
The uptake could be blocked by the nonradioactive species AMD3465-6HBr. However,
the tumor/muscle ratio of this radiotracer was also higher in MCF-7 tumors (1.4 and
3.9 at 30 and 60 min, respectively) than in CHO tumors (1.1 and 1.5 at 30 and 60 min,
respectively) [33].

In 2014, Vries et al. developed a [!'C]Methyl-labelled CXCR4 antagonist based on
AMD3465 [34]. N—[llC]Methyl-AMD3465 was prepared within two steps with around
60% yield, and the total synthesis time is about 50 min. In the stability assay, more than
99% of N-[“C]Methyl-AMD3465 remained intact after 2 h of incubation in human liver
microsomes/rat plasma, showing the good stability of this radiotracer. In the binding
affinity assay, N-Methyl-AMD3465 showed decreased binding affinity compared with
AMD3465 but increased binding affinity compared with AMD3100. Furthermore, both
biodistribution and PET studies demonstrated high and specific binding of N-['!C]Methyl-
AMD3465 in C6 tumors, whereas the accumulation of the radiotracer in other organs, such
as the liver and spleen is still high [34].

Other radioisotopes, such as 76Br and 131, were also labeled based on the AMD3465
and AMD3100 structures. The modification of the phenyl ring did not show an obvious
change in binding affinity toward the CXCR4 binding target. Among the six studied
radioligands, 7°Br-HZ270-1 (Figure 3) exhibited the best performance for the imaging of
CXCR4 expression in s.c.-located tumors rather than CNS-located tumors [35].

In 2014, Prof. Nimmagadda and his colleagues [36] developed a facile synthetic route
to RAD1-24 and RAD1-52, which are cross-bridged analogs of cyclams, to evaluate their
radiochemical properties. The author also tried to synthesize the side-bridged cyclam
analogs. However, the trial was unsuccessful due to the instability of its exposure to oxygen
peptides. In binding affinity studies, Cu(II)-coordinated compounds of RAD1-24 and RAD1-
52 showed increased affinity compared to the parent cold compounds. This is largely due to
the enhanced interactions between the configurationally restricted coordinated compound
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76Br-HZ270-1

and the aspartate residue in the receptor binding pocket. Furthermore, high radiolabeling
yields, high affinity, high tumor-to-background ratios, and prolonged target tissue residence
were approved. [**Cu]RAD1-24 and [**Cu]RAD1-52 showed a higher uptake in CXCR4-
positive tumors than in control tumors. The author also tried to synthesize RAD1-39,
a carboxylic acid analog, in order to improve the image contrast of the cross-bridged
AMD3465 analogs. However, this molecule showed neither CXCR4-specific in vitro affinity
nor in vivo uptake in the tumors. This may partly be due to steric hindrance or electrostatic
repulsion caused by the introduction of the carboxyl group [36].

RAD1-24 RAD1-52

['®FJMCFB

Figure 3. Structures of 7°Br-HZ270-1, RAD1-24, RAD1-52, [\8F]RPS-544, ['8F]RPS-534, ['8F]RPS-547,
and ['8F]MCFB.

In 2018, Babich et al. developed [\8F]RPS-544, a ['8F]-labeled CXCR4 antagonist based
on the structure of AMD3465 [37]. [{8F]RPS-544 is the first high affinity '®F-labeled CXCR4-
targeted radiotracer. In a competitive binding assay, PC3-CXCR4 cells were used to evaluate
the binding ability of this new tracer. As a result, the IC5p of RPS-544 is 4.9 £ 0.3 nM, which
is located between the values of AMD3100 (50 + 9 nM) and AMD3465 (2.7 + 0.7 nM). In
in vivo studies, ['8F]RPS-544 displayed a tumor uptake of 3.4 + 1.2% ID/g at 1 h post-
injection in the PC3-CXCR4 tumor and 1.1 £ 0.5% ID/g in the PC3-WT tumor. However,
['8F]RPS-544 still exhibited significant accumulation in the liver and intestines [37].

In 2019, to further improve tumor uptake and normal tissue kinetics based on [\8F]RPS-
544, Babich et al. screened more than 200 fluorine-containing structural derivatives of AMD-
3465 using Schrodinger software (v.2014-3, Schrodinger, New York, NY, USA) and found
that cyclam compounds containing fluoroethyltriazole groups could achieve relatively high
docking scores [38]. Among these candidates, [\8F]RPS-534 and [8F]RPS-547 exhibited
superior properties compared with ['8FJRPS-544. To be specific, tumor uptake of ['* FJRPS-
547 (3.09 £+ 0.52% ID/g) was comparable to ['8FIRPS-544 (3.4 &+ 1.2% ID/ g), and the
rapid clearance of ['8F]RPS-547 led to higher tumor/background ratios. When it comes
to ['8F]RPS-534, the tumor uptake (7.2 4 0.3% ID/g) and tumor/background ratios were
even greater than [\8F]RPS-544 and comparable to [(8Ga]Pentixafor [38].

In 2019, Aboagye et al. developed a radiotracer named ['8FIMCEFB based on the struc-
ture of AMD3465 due to its superior binding affinity and selectivity toward CXCR4 [39]. To
avoid defluorination of the 2-fluoropyridine and 4-fluoropyridine, fluorobenzene was
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taken into consideration as a design strategy. The logDoctanol/pBs Of ['8FIMCFB was
—1.64 £ 0.06, which was moderate among the other reported radiotracers. In the bind-
ing assay, ['?FIMCFB showed an ICs, value of 111.3 nM, which is comparable to that of
AMD3465 (89.8 nM). In in vitro binding studies, both U2932 (higher CXCR4 expression)
and SuDHLS (lower CXCR4 expression) cell lines were used. The uptake of ['8FIMCFB
in the U2932 cell line was higher than in the SuDHLS cell line. However, the addition
of AMD3465 will lead to partial inhibition of the binding, which means the existence of
partial nonspecific binding. Even though the specific uptake was sensitive to the CXCR4
expression level, knockdown of CXCR4 in the MDA-MB-231 shCXCR4 cell line with shRNA
decreased the ['® FIMCFB uptake, which is consistent with the decrease in the CXCR4 ex-
pression level. In PET studies, ["* FJMCFB showed almost two-fold higher uptake in the
U2932 tumor than in the SuDHLS tumor, which is consistent with the CXCR4 expression
level. In biodistribution studies, tumor uptake in U2932 was still higher than SuDHLS.
However, bone uptake was relatively low, showing a low possibility of defluorination [39].

The first ®®Ga-labeled CXCR4 imaging probe was published by Wester and his collab-
orators. In 2011, Wester et al. developed CPCR4-2 (Pentixafor), a small cyclic pentapeptide-
based molecule, to chelate with ®®Ga®* through the interaction with the DOTA moiety
(Figure 4) [40]. In the binding assay, the indium complex of CPCR4-2 exhibited an affinity
of 44 + 4 nM towards Jurkat cells (CXCR4-positive), while the binding affinities of the
gallium complex were 5 £ 1 nM, which is comparable to the unmodified pentapeptide
FC131. In in vivo studies carried out in nude mice bearing human small cell lung cancer
tumor xenografts, ®Ga%*-labeled CPCR4-2 showed CXCR4-specific tumor uptake, fast
renal excretion, and high tumor-to-muscle ratios.

OH
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Figure 4. Structures of CPCR4-2 (Pentixafor), NOTA-pentixather, and NODA-NCS-pentixather.

In 2011, the same group carried out further pharmacologic studies of CPCR4-2. In
the lipophilicity assay, ®®Ga-CPCR4-2 (®3Ga-Pentixafor) displayed enhanced hydrophilicity
with a 10gPctanol/pBs Of 22.90 + 0.08, which is much higher than that of '2°I-FC131. Com-
petition binding studies and biodistribution studies showed that ®¥Ga-CPCR4-2 possesses
high and specific tumor accumulation and low uptake in the nontumor region, leading to
high-contrast images of tumors in small-animal PET studies [41].
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In order to evaluate the PET imaging property of ®®Ga-Pentixafor in patients with
solid tumors, Vag et al. (2016) performed PET imaging experiments on 21 patients with his-
tologically proven pancreatic cancer, laryngeal cancer, non-small cell lung cancer (NSCLC),
prostate cancer, etc. [42]. Moreover, BE_FDG was also used in 10 out of 21 patients with a
total of 27 lesions as a comparison. This comparison between *®Ga-Pentixafor and ¥F-FDG
demonstrates that ¥ F-FDG is superior to ®®Ga-Pentixafor. For example, among the 27 le-
sions evaluated, only 19 of the 27 lesions could be detected with 68Ga-Pentixafor, whereas
8E_FDG could detect all 27 lesions. However, among all measured lesions, I8E-FDG demon-
strated significantly higher SUVnax and T/B ratios compared with ®Ga-Pentixafor [42].

In 2019, Li et al. further evaluated the performance of ®*Ga-Pentixafor and '8F-FDG
PET/CT in newly diagnosed multiple myeloma [43]. 30 patients were enrolled, and among
them, %Ga-Pentixafor (28/30, 93.3%) showed a higher positive rate than '®F-FDG (16/30,
53.3%) in the PET/CT study. In ®Ga-Pentixafor PET/CT, 18 patients showed intense
radioactivity uptake (SUVpax of 17.0 & 15.1) in the bone marrow, and 10 patients showed
moderate uptake (SUVax of 5.8 + 1.3). In 8F-FDG PET/CT, only 15 patients showed
moderate bone marrow uptake (SUVax of 7.1 £ 4.9) [43].

In addition, ®®Ga-pentixafor has also been studied by researchers in other types of
tumors, such as multiple myeloma [44-48], leukemia [49,50], adrenocortical carcinoma [51],
glioblastoma [52], small-cell lung cancer [53,54], non-small-cell lung cancer [55], lympho-
proliferative diseases [56], neuroendocrine tumors [57,58], extranodal marginal zone lym-
phoma (a subtype of non-Hodgkin’s lymphoma) [59], and esophageal adenocarcinoma [60].
Readers who are interested could refer to this literature.

Based on the structure of pentixafor, Poschenrieder et al. [61] developed the other
two pentapeptide-based structures, NOTA-pentixather and NODA-NCS-pentixather. Both
molecules were synthesized and labeled with Al["'F], while only [18F]AlF—NOTA—pentixather
was evaluated in vitro and in vivo. The logPoctanol /water Value of [18F]AlF—NOTA—pentixather
was —1.4, which is a little higher than [®*Ga]pentixafor (—2.9). This could be due to the
one less carboxylate group in NOTA compared with DOTA. As a result, [(*FJAIF-NOTA-
pentixather showed increased accumulation in the gall bladder and intestines. In the binding
affinity assay, ["*F]AIF-NOTA-pentixather showed 1.4-fold higher CXCR4 affinity compared
with ["*Ga]pentixafor. Both [18F]AlF—NOTA—pentixather and [68Ga]pentixafor were evalu-
ated in a biodistribution study conducted in Daudi xenograft-bearing mice. In accordance
with the hydrophilic trend, ['*F]JAIF-NOTA-pentixather showed delayed blood clearance.
Furthermore, relatively high bone activity levels were observed, which was attributed to the
defluorination phenomenon. However, both high CXCR4-specific in vivo uptake and high
contrast in PET imaging were observed, and thus this molecule once again demonstrates the
excellent properties of pentapeptide (FC131)-based radiotracers [61].

[®8Ga]Pentixafor ([®3Ga]CPCR4-2) holds its selectivity only for human chemokine
receptor 4 (hCXCR4) instead of murine chemokine receptor 4 (mCXCR4). To solve this
problem, Schottelius et al. [62] developed ['2°TJCPCR4.3 (Figure 5) based on the structure of
CPCR4-2, which could be used in in vitro and in vivo targeting of hCXCR4 and mCXCR4.
In human cancer cell lines with different endogenous hCXCR4 expression levels, such as
Jurkat, Daudi, HT-19, MCF-7, SH-5YSY, and LNCaP, ['2°TJCPCR4.3 exhibited 2.4 to 11 fold
increased binding compared with [®3Ga]Pentixafor. Furthermore, in cancer cell lines with
different mCXCR4 expression levels, such as Ep-myc 1080 and 4 T1, [12T]CPCR4.3 showed
strong and specific binding. In comparison, [**Ga]Pentixafor showed virtually no binding
to mCXCR4. Taking the biodistribution study into consideration, [!2°IJCPCR4.3 still holds
promise in the development of preclinical models expressing mCXCR4, even though high
accumulation levels could be observed in the liver and intestine [62].
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Figure 5. Structures of ['2TJCPCR4.3, DOTA-r-a-ABA-CPCR4, DOTA-r-a-ABA-iodoCPCR4, ™ Tc-
CXCR4-L, 177Lu-CXCR4-L, and MKO007.

With the development of [®8Ga]Pentixafor and [*®Ga]Pentixather and their clinical
achievements, researchers tend to modify the fine chemical structures of these two trac-
ers to further improve the ligand-receptor interaction. In 2020, Schottelius et al. [63]
replaced the AMBA-linker in [(8Ga]Pentixafor and [*8Ga]Pentixather with a series of
new linkers. After scrutinizing affinity data and cellular uptake studies among these
new tracers labeled with ["Ga], ["Lu], [*tY], and ["@Bi], DOTA-r-a-ABA-CPCR4 and
DOTA-r-a-ABA-iodoCPCR4, labeled with [*8Ga] for PET imaging and [Y7Lu] for ther-
apeutic application, were selected for further evaluation. In the internalization study,
both ["77Lu]DOTA-r-a-ABA-CPCR4 and ['7”Lu]DOTA-r-a-ABA-iodoCPCR4 showed more
than 4-fold total cellular uptake than [V77Lu]Pentixather, which is identical with their
affinity results. In the lipophilicity assay, due to the cationic nature of the r-a-ABA struc-
ture, the introduction of the r-a-ABA linker led to a generally reduced lipophilicity of
[®¥Ga /1”7 Lu]DOTA-r-a-ABA-CPCR4 and [**Ga/!”’Lu]DOTA-r-a-ABA-iodoCPCR4 com-
pared with the reference ligands [¢8Ga]Pentixafor and [1””Lu]Pentixather. In the biodistribu-
tion study, ['”’Lu]DOTA-r-a-ABA-CPCR4 and ['”/Lu]DOTA-r-a-ABA-iodoCPCR4 exhibited
superior tumor accumulation and retention up to 48 h post-injection compared with the
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reference tracer [17“Lu]Pentixather, which is consistent with their affinity trend and cel-
lular uptake properties. However, in the PET study, both [®®Ga]DOTA-r-a-ABA-CPCR4
and [®Ga]DOTA-r-a-ABA-iodoCPCR4 showed inferior imaging quality compared with
[*Ga]Pentixafor, which might be due to the enhanced background signal [63].

In 2020, Ferro-Flores and Jiménez-Mancilla et al. [64] developed PmTe and 77Lu
labeled pentapeptide-based CXCR4 targeted radiotracer pairs, ™ Tc-CXCR4-L and 7" Lu-
CXCR4-L, for theranostic purposes. In molecular docking calculations, the theoreti-
cal affinity of HYNIC-CXCR4-L (—10.9 kcal/mol) was comparable with that of CVX15
(—9.2 kcal/mol, cyclopeptide co-crystallized with CXCR4 monomer downloaded from
the RCSB Protein Data Bank). In the study in cancer cells, the uptake of ””Lu-CXCR4-L
in DU-4475 and C6 cells (CXCR4-positive) was significantly higher than that of *™Tc-
CXCR4-L in the same cells. However, in the aspect of internalization, 1771 4-CXCR4-L
showed a lower value than ™ Tc-CXCR4-L, which might be due to the chemical effect of
the DOTA structure in ”7Lu-CXCR4-L. In biodistribution studies, 2™ Tc-CXCR4-L showed
2.5% ID/g after 3 h post-injection, whereas 1”7 Lu-CXCR4-L showed 1.5% ID/g after 96 h
post-injection. Micro-SPECT/CT images of the same animal injected with *™Tc-CXCR4-L
at day 0 and '””Lu-CXCR4-L at day 2 clearly showed the tracer uptake in the CU-4475
and the C6 tumors, demonstrating the possibility of this radiotracer pair as a theranos-
tic pair [64]. Further, nine patients with evidence (MRI) of brain tumors were screened
with SPECT after ™Tc-CXCR4-L injection, and seven of them were diagnosed as grade I
oligodendroglioma, grade IV glioblastoma, grade IV gliosarcoma, metastasis, or diffuse
astrocytoma. The other two negative SPECT patients were diagnosed with reactive gliosis,
confirmed with immunohistochemistry [65].

Due to its superior binding property toward CXCR4, the pentapeptide moiety (CPCR4)
was introduced into other imaging methods, such as NIR (near-infrared) fluorescence
imaging. In 2022, Quante et al. [66] developed MKO007, in which the CPCR4 structure
was conjugated to the sulfo-Cy5 moiety with the help of a linker. The lipophilicity was
determined to be —1.83 + 0.02 using ['I]MKO007. This new fluorescence probe was
determined to be a superior probe for NIR fluorescence imaging [66].

In 2021, Scala and Lastoria et al. [67] developed another two cyclic peptide radiotrac-
ers ([®®Ga]-4 and [®®Ga]-5, herein referred to as [68Ga]heptapeptide—based molecule-1 and
[®Ga]heptapeptide-based molecule-2, Figure 6) based on a previously constructed hep-
tapeptide structure. This heptapeptide structure is derived from CXCL12 through a series
of modifications. In binding assays, heptapeptide-based molecule-1 (203 &= 78 nM) and
heptapeptide-based molecule-2 (42 &= 19 nM) exhibited decreased affinity compared with
their parent peptide (5.1 &= 3.8 nM), due to the introduction of bulky structures DOTA and
NOTA. However, formation of complexes with ["3Ga] rendered them with compensation
of affinity (49 £ 15 nM for ["Ga]heptapeptide-based molecule-1 and 15.6 + 4.2 nM for
["'Ga]heptapeptide-based molecule-2). In the lipophilicity study, ["**Ga]heptapeptide-
based molecule-1 and ["*Ga]heptapeptide-based molecule-2 showed similar partition
coefficient data (—1.51 vs. —1.60). Biodistribution studies and PET imaging studies
were performed in CHO-hCXCR4-bearing CD1 mice and Daudi lymphoma-bearing SCID
mice. In CHO-hCXCR4-bearing CD1 mice, both [®Ga]heptapeptide-based molecule-1
and [®®Ga]heptapeptide-based molecule-2 exhibited rapid clearance and low accumula-
tion levels in background tissues. Compared with [*¥Ga]heptapeptide-based molecule-1,
[°8Ga]heptapeptide-based molecule-2 showed a higher specific accumulation level in the
tumor region and a higher tumor/background ratio, which is consistent with the affinity
trend [67].
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Figure 6. Structures of heptapeptide-based molecule-1, heptapeptide-based molecule-2, FRM001,
BLO01, BL08, BL09, and NOTA-CP01.

LY2510924 is another cyclic peptide structure suitable for CXCR4 targeting and with
potent antitumor activities [68]. In 2019, Suzuki et al. [69] developed FRMO001 based on
the structure of LY2510924 conjugated with the DOTA (1,4,7,10-tetraazacyclododecane-
1,4,7,10-tetraacetic acid) moiety. In the binding affinity assay, the ICsy value of FRM001
(1.78 £ 0.15 nM) was similar to that of its parent peptide, LY2510924 (1.37 4 0.10 nM).
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Complexation with Ga®*, Lu®*, and Y3* did not change the IC5q value of FRM001 too
much. As a comparison, FC131, AMD3465, and AMD3100 showed almost 10 times higher
ICsp values. In the internalization assay, FRM001 was labeled with ®’Ga to determine
the internalization activity, and the majority of [’ Ga]JFRM001 was found to remain at the
cell membrane rather than be internalized. A biodistribution study of [¢”Ga]FRM001 was
performed in CCRF-CEM tumor-bearing mice, and [*’Ga]FRM001 showed a high tumor-to-
blood ratio of 59 at 4 h post-injection. Similar to other CXCR4-targeted radiotracers, the
hepatic accumulation was still high to some extent. However, co-injection with AMD3100
will reduce this accumulation. A similar phenomenon was observed in the PET image
acquired at 1 h post-injection [69].

As LY2510924 is a potent peptide antagonist of CXCR4, in 2019, Bénard and Lin et al. [70]
developed BLO1 based on the structure of this cyclic nonapeptide. Radionuclides ®*Ga and
177Lu were used to form complexes with BLO1, and assays such as affinity and biodistribution
were conducted on the tracers. In binding affinity assays, the ICsy values of LY2510924, Ga-
BLO01, and Lu-BLO1 are 27.8 £ 7.4, 21.2 + 159, and 7.1 £ 1.7 nM, respectively. These data
demonstrate that the introduction of the DOTA moiety and complex formation, especially the
Lu3*-based complex formation, contribute to the increased binding affinity. The logD values
of Ga-BLO01 and Li-BLO1 are —3.36 & 0.09 and —3.34 £ 0.10, respectively, demonstrating
the dominant renal clearance pathway. In the PET/CT study, [*Ga]Ga-BLO01 uptake could
be observed in tumors, the liver, kidneys, and bladder. The tumor region could be clearly
observed, and preinjection of LY2510924 could significantly reduce tumor uptake (Figure 7).
In a biodistribution study, preinjection of LY2510924 could significantly reduce the uptake of
[¢8Ga]Ga-BLO01 and ['”Lu]Lu-BL01 in tumors. For ["”Lu]Lu-BL01in 1 h post-injection, tissue
uptake was 12.95 + 1.27% ID/g (lung), 11.55 4= 1.78% ID/ g (spleen), and 14.00 = 1.12% ID/g
(tumor), respectively. At 4 h post-injection, the tumor-to-blood and tumor-to-muscle ratios of
['77Lu]Lu-BLO1 were 92.9 4 24.7 and 105 4- 24.8, respectively. At 24 h post-injection, these
ratios increased to 229 4 32.9 and 131 =+ 27.7, respectively. At 24 h and 72 h post-injection,
tumor uptake of ['”/Lu]Lu-BLO1 was 10.09 + 1.41 and 3.62 + 0.68% ID/g, respectively [70].

2 hp.i.

Ll o]

Figure 7. PET/CT and PET alone maximal intensity projections of [*Ga]Ga-BL01 at 1 and 2 h postin-
jection in mice bearing Daudi Burkitt’s lymphoma xenografts. The blocking study was performed by
injection of LY2510924 15 min before tracer administration. The scale bar is in units of %ID/g from
0 to 1.2 x 10 (t = tumor; 1 = liver; k = kidney; bl = bladder). Reprinted with permission from [70].
Copyright © 2019 American Chemical Society.

However, [®®Ga]Ga-BL01 and ['”/Lu]Lu-BLO01 showed relatively high peripheral tis-
sue accumulation. In such a scenario, the author continued to develop LY2510924-based
antagonists and achieved 18F_labeled radiotracers ['8F]BLO8 and ['®F]BL09. In binding
affinity assays, ['8F]BLO8 (11.6 + 7.0 nM) and ['®F]BL09 (13.4 + 2.3 nM) showed much
improved binding affinity compared with [®®Ga]Ga-Pentixafor (24.8 4- 2.5 nM). The parti-
tion coefficients of these two radiotracers are comparable to those of [®8Ga]Ga-Pentixafor
(—2.90), and among these two tracers, ['8F]BL08 (—3.45 + 0.33) was more hydrophilic
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than ['8F]BL09 (—2.49 + 0.19). PET/CT and biodistribution studies showed that both
['8F]BL08 and ['®F]BL09 exhibited specific uptake in Daudi xenograft-bearing mice ([*8F]BLOS:
7.60 & 1.38% ID/g, ['8F]BL09: 6.61 + 2.07% ID/g). In blocking experiments (Figure 8), the
tumor uptake data decreased to 1.17 4 0.71% ID/g (['®F]BL08) and 0.79 + 0.65% ID/g
(['®FIBL09). Furthermore, both radiotracers showed little uptake in the peripheral organs.
For example, tumor/muscle ratios at 2 h are 339.0 & 81.4 for ['8F]BLOS and 238.6 + 72.0 for
['8F]BL09, while in the previous work the same ratio was 52.87 + 2.26 for [#8Ga]Ga-BLO1 at
the 2 h timepoint. Moreover, compared with ['8F]BLO8 and ['8F]BL09, [*®Ga]Ga-Pentixafor
exhibited a relatively lower tumor/background ratio [71].

A 1 Hour 2 Hour 1 Hour Blocked

o

o

B 1 Hour 2 Hour 1 Hour Blocked

C 1 Hour 1 Hour Blocked

Figure 8. Maximum intensity projections for PET/CT and PET aloneat1 h p.i,2h p.i.,and 1 hp.i.,
blocking (A) [8F]BL0S, (B) [*®F]BL09, and (C) [*®Ga]Ga-Pentixafor. The blocking was performed via
injection of LY2510924 15 min prior. The scales of the PET images of ['8F]BLOS and [!8F]BL09 are
0-9% ID/g, and the scale of the PET images of [®®Ga]Ga-Pentixafor is 0-6% ID/g. Reprinted with
permission from [71]. Copyright © 2021 American Chemical Society.



Molecules 2023, 28, 4707

14 of 21

NH HN

,Niz*] NH N [ N|2+j
p \N [ N|2+]

. o NH HN

In 2021, Jin et al. [72] developed an LY2510924-based radiopharmaceutical, [¢*Cu]NOTA-
CP01, which is conjugated with the NOTA moiety and labeled with *Cu. [**Cu]NOTA-CP01
was stable in saline and FBS within 12 h of incubation. In partition coefficient evaluation,
[**Cu]NOTA-CP01 showed a logP value of —3.44 4 0.12, which means a relatively high
hydrophilic property. Competitive binding studies showed that the binding of [**Cu]NOTA-
CP01 to CXCR4 was specific, and the calculated ICs value was 1.61 &= 0.96 nM. In a micro-
PET/CT imaging study and biodistribution study, [**Cu]NOTA-CP01 was injected into
EC109 tumor-bearing mice (CXCR4-positive). Among the PET images captured during
0.5-24 h, the image at 6 h was the best due to the uptake of [¢*Cu]NOTA-CP01 in the EC109
tumor. At the 6 h timepoint, the tumor/blood and tumor/muscle ratios of the radiotracer are
4.79 & 0.06 and 15.44 + 2.94, respectively. However, the liver uptake of [6*Cu]NOTA-CP01
was still high, though the blood clearance was fast due to the hydrophilic property of the
molecule [72].

In 2016, to overcome the high liver uptake of 64Cu-AMD3100, Denat et al. [73] de-
veloped three radiotracers, AMD3100-DOTA, AMD3100-NODAGA, and AMD3100-ph-
NODAGA, based on the AMD3100 moiety and DOTA/NODAGA chelators, using PEG3
as a linker (Figure 9). The PEG3; linker was introduced to reduce the high lipophilicity
of ##Cu-AMD3100, and the DOTA/NODAGA moiety was introduced to avoid the metal
release phenomenon. However, to avoid radiolabeling of cyclam with ®Ga, Ni?* ions were
used as blocking reagents because the Ni?* /cyclam complex was stable even in strong
acidic solutions and the only method to remove Ni** ions from cyclam was to form cyanide
at high temperature.
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Figure 9. Structures of DOTA-AMD3100, NODAGA-AMD3100, and NODAGA-ph-AMD3100.

The ICsq values of "tGa-AMD3100-DOTA, "tGa-AMD3100-NODAGA, and "Ga-
AMD3100-ph-NODAGA are 516, 1485, and 121 nM, respectively. The affinities of these
complexes are all lower than those of AMD3100, which are 14 nM. A flow cytometry
assay confirmed this tendency. Binding and internalization assays demonstrated that
8Ga-AMD3100-ph-NODAGA possesses higher total cell uptake (1.77 & 0.10%) compared
with %Ga-AMD3100-DOTA (0.61 4 0.22%), indicating that ®®Ga-AMD3100-ph-NODAGA
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might be suitable for the biodistribution study and PET imaging. Unfortunately, in H69
xenograft (CXCR4 positive) bearing nude mice, ®*Ga-AMD3100-ph-NODAGA showed
lower accumulation of the radioactivity in the tumor than *4Cu-AMD3100, with comparable
accumulation in immune-related organs [73].

In 2016, Blasberg et al. developed an '8F-labeled pyrimidine-pyridine amine as a
radiotracer for the detection of CXCR4 receptors in gliomas (['®F]RPS-510). It belongs to a
para-xylyl-enediamine-based structure. However, it showed no specific binding toward
CXCR4-overexpressing U87 cells [74]. Another para-xylyl-enediamine-based radiotracer
named ['FIMSX-122F was developed by Shim et al. in 2012 [75]. However, there was no
in vivo data collected by the authors [75].

In 2020, Shim et al. [76] developed a benzenesulfonamide-based radiotracer (com-
pound 5, herein referred to as ['8F]benzenesulfonamide-based molecule-1) according to the
optimizing result of the Schrodinger Suite. The optimization process has considered each
atom’s contribution to the entire benzenesulfonamide-based molecule developed by the
author previously. As a result, the negatively contributing moiety was replaced to introduce
the radionuclide F-18. The formed ['8F]benzenesulfonamide-based molecule-1 is shown
in Figure 10. In an in vitro binding assay, it showed an IC5( of 6.9 nM to block TN14003,
which is a CXCR4-targeted peptide. At the same condition, AMD3100 showed an ICs
of 66 nM. In in vivo imaging studies, ['®F]benzenesulfonamide-based molecule-1 showed
significantly higher radioactivity in the lesion of paw edema, which demonstrates its ability
to visualize y-carrageenan-induced inflammation. Furthermore, ['8F]benzenesulfonamide-
based molecule-1 exhibited preferential accumulation in the lesion of orthotopic xenograft
SCCHN (4.00 £ 0.28% ID/g) and metastatic tumors arising in the lung (1.66 = 0.14% ID/g),
though the uptake in bone marrow was also specific [76].

N= —
Stay 4
</:N\>_NH % }\j 1£F </:N\>_NH }\l 1;:
=N =N

['®F]MSX-122F ['®FIRPS-510

N~
0 N
& O
O/\/18F

['®F]benzenesulfonamide based molecule-1
Figure 10. Structures of [*8F]RPS-510, ["8FIMSX-122F, and ['®F]benzenesulfonamide-based molecule-1.

3. Current Clinical and Marketing Information [77]

At present, there are about 76 potential small molecular and peptide drugs (including
chemical drugs and radiopharmaceuticals) targeting the CXCR4 preclinical and clinical
stages, but only one drug (AMD3100, Plerixafor, MOZOBIL) has been approved for mar-
keting. The number of related drugs filed in China is about 36. In the field of CXCR4, there
are about 200 clinical studies in progress worldwide, of which less than 10 are in China.

In the aspect of chemical drugs, the small molecular drugs entering clinical trials on
the Chinese mainland are those based on the structure of AMD3100 (Plerixafor), which is
generally used for the treatment of non-Hodgkin’s lymphoma or multiple myeloma. Phase
III clinical trials of AMD3100 have been completed on the Chinese mainland (registration
date: July 2014, for the treatment of non-Hodgkin’s lymphoma), sponsored by Genzyme
Corporation (Cambridge, MA, USA), Patheon UK Ltd. (Wiltshire, UK), and Labcorp drug
development (Beijing, China) Co., Ltd., at the Peking University People’s Hospital. While the
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study for the treatment of multiple myeloma with AMD3100 has entered Phase IV in China
at the First Affiliated Hospital of Soochow University, with a registration date of July 2021.

Internationally, small molecules and peptides that entered clinical trials were also
dominated by the structure of AMD3100 (Plerixafor) in the US, EU (European Union),
Australia, Japan, and many other countries and regions.

In addition, a large number of other drugs, such as AMD3465, TN14003, and GSK812397,
are also in preclinical studies. LY2510924 is in clinical phase I for metastatic pancreatic cancer,
metastatic rectal cancer, and advanced solid tumors; Burixafor is in clinical phase II for
the treatment of non-Hodgkin’s lymphoma, multiple myeloma, acute myeloid leukemia,
Hodgkin’s disease, haematological neoplasms, etc.; Motixafortide is in registration period
for the treatment of multiple myeloma, haematological neoplasms, etc.; Balixafortide is in
clinical phase III for the treatment of recurrent metastatic breast cancer, multiple myeloma,
metastatic breast cancer, acute myocardial infarction, myocardial infarction, HIV infection,
acute myeloid leukaemia, HER2-negative breast cancer, etc.

Small molecules and peptides targeting CXCR4 are currently limited to Plerixafor
injection in international markets, which was first marketed in the US in 2008, then in the
EU in 2009, in Canada in 2012, and in China in recent years (2019-2022), with companies,
such as Sichuan Huiyu Pharmaceutical Co., Ltd. (Neijiang, China), Hefei Yifan Biophar-
maceutical Co., Ltd. (Hefei, China), and Hunan Wuzhoutong Pharmaceutical Co., Ltd.
(Xiangtan, China) being approved to produce it.

Compared with the field of chemical drugs, in the field of radiopharmaceuticals, there
are few types of drugs that have reached the clinical trial stage.

Radiopharmaceuticals that target CXCR4 are mainly *®Ga-Pentixafor, which has entered
Phase II clinical trials in the US and EU with PentixaPharm GmbH as the sponsor and has
entered Phase I clinical trials in China with several sponsors, including First Affiliated Hos-
pital of Fujian Medical University, Peking Union Medical College Hospital, and Zhongnan
Hospital of Wuhan University. Furthermore, this drug has also entered the clinical phase in
Australia, with Royal Brisbane and Women’s Hospital as the sponsor. The drug is mainly
used for PET imaging and can be used to diagnose hematological tumors, secondary CNS
lymphomas, multiple myeloma, lymphomas, primary CNS lymphomas, etc.

In addition, ®®Ga-Pentixather, 212Pb-Pentixather, 17’ Lu-Pentixather, and *°Y-Pentixather
are also in the clinical phase.

There are currently no drugs targeting CXCR4, either internationally or on the Chinese
mainland, that are available on the market in the radiopharmaceutical field.

MOZOBIL’s worldwide sales figures show an annual average sale of approximately
200 million euros over the last five years, with year-on-year growth [77].

Considering the paramount role of CXCR4 in the human body, we anticipate that
with the development of CXCR4-targeting radiopharmaceuticals in preclinical research
and clinical trials, CXCR4-targeting radiopharmaceuticals will have a prosperous future.

4. Perspective Development

CXCR4-based radiopharmaceuticals are likely to have two main development direc-
tions in the future:

On the one hand, compared to CXCR4-based chemotherapeutics, CXCR4-based radio-
pharmaceuticals are currently receiving attention within only a few molecular structures,
e.g.,, AMD3100, Pentixafor, Pentixather, etc. In recent years, LY2510924, a peptide that was
radionuclide-labeled, has also undergone certain preclinical studies. However, there are
still a large number of chemical drug structures that have reached the clinical study stage
but have not been radionuclide-labeled for further adequate study, and there are also still
potential molecular structures that have not yet been designed and molecular docking
simulated. The successful translation of these potential radiopharmaceutical precursors
will not only enable a more comprehensive range of CXCR4-based radiopharmaceuticals,
which will help the drugs be effective against a wider range of cancer types, but will also
hopefully address the shortcomings of existing CXCR4-based radiopharmaceuticals with
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high hepatotoxicity. Therefore, radiopharmaceutical practitioners should not only pay at-
tention to the progress of the development and marketing of popular radiopharmaceutical
precursors, such as AMD3100 and Pentixafor, for generic drug development but also pay
attention to and try to develop other novel structures for innovative drug research.

On the other hand, the rise of multimodal technologies has made it possible to combine
the technical means of PET and SPECT, on which radiopharmaceuticals are based, with
other technical means, such as photothermal therapy and chemotherapy [66,78,79]. Such
research has helped to deepen our understanding of the underlying mechanisms and
intermolecular interactions and has also helped to promote the creation of new instruments
and assays. However, such technologies are currently largely confined to universities and
research institutes, with less attention paid to them by for-profit companies.

The application prospects of CXCR4-targeted radionuclide therapy are very promis-
ing. According to the existing literature, in the early detection of multiple myeloma, the
radiotracer ®Ga-Pentixafor showed a higher positive rate than the commonly used radio-
pharmaceutical '8F-FDG. In addition, in the aspect of radionuclide labeling, it is difficult to
modify the structure of '8F-FDG to realize the application of radiotherapy. In contrast, ®*Ga-
Pentixafor could realize radiotherapy through structural modification (}””Lu-Pentixather).
On the other hand, in terms of metabolism in the body, polypeptide drugs are more benefi-
cial to radiotherapy than small molecules such as '8F-FDG. In general, CXCR4-targeted
radiopharmaceutical research is conducive to the development of integrated diagnosis
and treatment. In addition, CXCR4 is not limited to the diagnosis and treatment of mul-
tiple myeloma. Since it is overexpressed on the surface of more than 23 types of human
cancer cells, including non-Hodgkin lymphoma, multiple myeloma, chronic lymphocytic
leukemia, and acute myeloid leukemia, it will also make progress in the detection and
treatment of other types of tumors.

5. Conclusions

Overall, the development of CXCR4-based radiopharmaceuticals is still on the rise and
requires the concerted efforts of researchers around the world, as well as the collaboration
of staff from companies, universities, and research institutes.
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