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Abstract: Polyphenols have attracted great interest as potent antioxidant compounds and nutraceu-
ticals; however, their antioxidant properties represent a multifaceted phenomenon, including pro-
oxidant effects under particular conditions and complex behavior when multiple polyphenols are
simultaneously present. Moreover, their intracellular behavior cannot always be predicted from their
ability to counteract the production of ROS in acellular assays. The present work aimed to study the
direct intracellular redox activity of two polyphenols, resveratrol and quercetin, singly and in mixture
in a cellular short-term bioassay under both basal and pro-oxidant conditions. The study was carried
out by spectrofluorimetric assessment of the intracellular fluorescence of CM-H2DCFDA-charged
HeLa cells under either basal conditions, due to the reactive species associated with the normal
cellular oxidative metabolism, or pro-oxidant conditions induced by H2O2 exposure. Under basal
conditions, the obtained results showed a significant antioxidant effect of quercetin and a weaker
antioxidant effect of resveratrol when used singly, while antagonism of their effect was detected
in their equimolar mixtures at all the concentrations used. Under exposure of the cells to H2O2,
quercetin exhibited a dose-dependent intracellular antioxidant activity whereas resveratrol mani-
fested a pro-oxidant intracellular activity, while their equimolar mixtures showed an intracellular
interaction between the 2 polyphenols, with additive effects at 5 µM and synergic at 25 µM and
50 µM. Thus, the results clarified the direct intracellular antioxidant/pro-oxidant activity of quercetin
and resveratrol alone and in their equimolar mixtures in the cell model HeLa cells and highlighted
that the antioxidant properties of polyphenols in mixtures at the cellular level depend not only on the
nature of the compounds themselves but also on the type of interactions in the cellular system, which
in turn are influenced by the concentration and the oxidative status of the cell.
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1. Introduction

Oxidative stress is recognized as an important factor in the genesis of several patho-
logical conditions, particularly chronic and degenerative diseases [1]. This justifies the
great interest in antioxidant compounds and their protective effects against oxidative
damage. In particular, polyphenols have attracted great interest in the last decades as
potent antioxidants; they have catalyzed attention in the research field of functional foods
and nutraceuticals within the wide research area of food chemistry. Naturally occur-
ring polyphenols are the most abundant group of antioxidant compounds in the human
diet. This class of molecules, which has more than 8000 structural variants, includes
various secondary metabolites of plants characterized by the presence of aromatic rings
with 1 or more phenolic functionalities [2]. Their antioxidant activity can be expressed
through several pathways involving the direct capacity to scavenge reactive oxygen species
(ROS) [3,4] and, in addition, the ability to stimulate the biosynthesis of antioxidant en-
zymes [5] and to modulate the expression and/or activity of ROS-producing enzymes [6]
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and endogenous antioxidant-synthesizing enzymes [7]. Their direct antioxidant activity is
related to reactions with ROS and reactive nitrogen species to produce unreactive prod-
ucts and the chelation of transition metal ions to prevent in turn hydroxyl radical (•OH)
formation [8].

Polyphenols are classified into flavonoids and nonflavonoids. Flavonoids share a
common structure formed by two aromatic rings, indicated as A and B, linked together
by three carbon atoms forming an oxygenated heterocycle, the C ring. They show a
high antiradical activity and transition metal chelation activity, particularly those, such
as quercetin, characterized by the presence of a catechol group (3′,4′-dihydroxy) in the B
ring, a double bond between carbon 2 and carbon 3 of the C ring conjugated with the keto
group at position 4, and a hydroxyl group in position 3 of ring C or in the carbon 5 of the
A ring [9] (Figure 1). Nonflavonoids represent a heterogeneous group including phenolic
acids, stilbenes, and lignans as the main subgroups. Resveratrol is one of the most known
nonflavonoid polyphenols, characterized like all the other stilbenes by 2 phenyl moieties
linked together by a 2-carbon methylene group with phenyl groups substituted at positions
3, 5, and 4′ by hydroxy groups (Figure 1).

The antioxidant properties of polyphenols represent a multifaceted phenomenon,
and some aspects deserve particular attention. For instance, although the antioxidant
properties of polyphenols are well recognized, some pro-oxidant effects have also been
described as often associated with their proapoptotic activity in various cell types [10].
Phenolic compounds are known to act as pro-oxidants under certain conditions, de-
pending on concentration, pH, and the presence of transition metals [11,12]. Their pro-
oxidant activity is based on the formation of a labile aroxyl radical that can react with
oxygen, forming superoxide ions [13]. In the presence of transition metals, their pro-
oxidant activity is mediated by Fenton and Fenton-like reactions involving the reduction of
metal ions. Another aspect to consider carefully is the interaction among polyphenols in
a mixture. In the case of mixtures of antioxidants, the occurrence of antagonistic or syner-
gistic interactions among the compounds means that the overall antioxidant activity of the
mixture does not always correspond to higher values of antioxidant activity of the single
components [14,15]. This is particularly important for vegetables and fruits which contain
several polyphenols with different degrees of antioxidant and pro-oxidant activities.
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Figure 1. Structural formula of quercetin and resveratrol.

These issues have mainly been investigated in in vitro acellular assays [16–18], based
on cell-free systems. These assays allow a deeper analysis of the antioxidant/pro-oxidant
behavior of a polyphenol alone and/or in a mixture and the underlying mechanisms in
a wide range of experimental conditions, but they do not provide any information about
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the capability of a molecule to cross the plasma membrane and about its real behavior
inside the cell.

Our work aimed to study the direct intracellular antioxidant/pro-oxidant activity
of two known polyphenols, quercetin (3,3′,4′,5,7-pentahydroxyflavone) and resveratrol
(3,5,4′-trihydroxytrans-stilbene), alone and in their equimolar binary mixtures in the
cell model HeLa cells charged with the cell-permeable ROS-sensitive probe 5-(and-6)-
chloromethyl-20,70-dichlorodihydrofluorescein diacetate (CM-H2DCFDA) under either
basal or pro-oxidant conditions in order to develop a cellular-based short-term assay use-
ful for the cellular assessment of the behavior of antioxidant compounds, singly and in
a mixture.

Quercetin and resveratrol are polyphenolic nutraceuticals due to their biological
properties. Quercetin is a polyphenolic flavonoid compound in various fruits and veg-
etables. Several biological activities and health benefits have been ascribed to quercetin,
such as antioxidant activity [19], anti-carcinogenic properties [20], antiviral effects [21],
antidiabetic activity [22], anti-inflammatory effects [23], anti-aging power [24], angiopro-
tective features [25], neuroprotective activity [26], and anti-obesity activity [27]. Moreover,
quercetin is a known apoptotic inducer through the mitochondrial-mediated pathway by
activating p53, increasing pro-apoptotic molecules such as Bax, caspase-3, caspase-9,and
decreasing anti-apoptotic agents such as survivin and Bcl-2. Resveratrol is a phytoalexin
belonging to the stilbene group present naturally in grapes, blackberries, and peanuts
as well as medicinal plants such as Polygonum cuspidatum [28]. Several biological activ-
ities are ascribed to resveratrol such as anti-cancer, anti-inflammatory, and antidiabetic
activities, hepato-protection, and inhibition of platelet aggregation [29–34]. Moreover,
its application as a biologically active ingredient in functional foods has received ex-
tensive attention. Quercetin and resveratrol have been recently used in combination in
several studies, and a variety of combined effects are reported in the literature [35] such
as cell growth inhibition, DNA damage, and cell cycle arrest in cancer cells [36], enhance-
ment of the individual effects of these molecules on triacylglycerol metabolism in white
adipose tissue [37], and attenuation of high-fat-diet-induced obesity and associated in-
flammation in rats via the AMPKα1/SIRT1 signaling pathway [38]. However, despite
the extensive research, the direct antioxidant/pro-oxidant behavior of resveratrol and
quercetin and their interactions when present in a mixture have mainly been investigated
in acellular systems [16,39,40]. To the best of our knowledge, the present work is one of
the few studies addressing the direct antioxidant/pro-oxidant activity of resveratrol and
quercetin and their interactions in a cellular short-term bioassay focusing on both basal and
pro-oxidant conditions.

2. Results
2.1. Dose-Dependent Effect of Quercetin and Resveratrol Singly and in Mixture on the Basal ROS
Production of HeLa Cells

HeLa cells were exposed for 1 h to different concentrations (5, 25, 50 µM) of quercetin,
resveratrol, and a mixture of the 2 compounds at equimolar concentrations, and then they
were charged with the cell-permeable ROS-sensitive probe CM-H2DCFDA to investigate
the effects of these compounds and their mixture on the intracellular oxidative status of the
cells. Figure 2A–C show the effect size in the different experimental conditions expressed as
a percentage variation in the fluorescence emitted by the cells after 1 h exposure calculated
with respect to unexposed cells (control). The percentage variation with respect to the
control was calculated according to the formula: (treated − control)/control × 100.

Quercetin exerted a dose-dependent antioxidant activity increasing from 5 µM to
50 µM, as indicated by the negative percentage variation in the CM-H2DCFDA fluorescence,
representative of a decrease in basal ROS production. The antioxidant effect size of quercetin
was about 4% at 5 µM, reaching the value of about 20% at 50 µM. Moreover, resveratrol
showed a percentage reduction in the ROS basal levels, but the pattern was different. The
maximum effect (about 12%) was exerted at the lowest concentration tested (5 µM), while
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the decrease in the ROS basal production was reduced to 7% for the other 2 concentrations
tested (25 and 50 µM). When the cells were exposed to an equimolar mixture of the
two compounds, the percentage decrease in the basal ROS production overlapped with the
effect observed in the case of quercetin.
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variation in the CM-H2DCFDA calculated with respect to the control (unexposed cells). The statistical
significance of the data was analyzed by one-way ANOVA and Tukey’s multiple comparison test.
Data are expressed as mean ± SEM. ** p < 0.01; * p < 0.05.

2.2. Dose-Dependent Effect of Quercetin and Resveratrol, Singly and in Mixture, on Intracellular
ROS under An Exogenous Oxidative Challenge

To deepen the analysis of the intracellular antioxidant effects of quercetin and resvera-
trol single and in a mixture, the cells were exposed to an exogenous oxidative challenge
through H2O2 treatment. As shown in Figure 3, H2O2 at different concentrations (from
100 µM to 400 µM) hyperbolically increased the intracellular fluorescence of CM-H2DCFDA-
charged HeLa cells during 1 h observation, with the highest rate of increase observed within
the first 10 min. The effect was dose-dependent, with an increase in the fluorescence in
the range of 100 µM–300 µM, while a further increase to 400 µM did not exert any signif-
icant further fluorescence increase. Therefore, the concentration of 300 µM was chosen
for the following experiments under pro-oxidant conditions. The distribution of the probe
within the cell was assessed by confocal microscopy to detect the possible presence of
any compartmentalization. The confocal visualization of the cells (Figure 2B) showed the
intracellular fluorescence homogeneously distributed into the cytoplasm during the H2O2
exposure with no compartmentation of the dye. This suggests a cytosolic distribution of
the probe.
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Figure 3. (A,B) Effect of increasing concentrations of H2O2 on the fluorescence of HeLa cells loaded
with the CM-H2DCFDA probe. The effect was measured spectrofluorimetrically over 1 h. Con-
trol refers to cells loaded with the probe but not exposed to the peroxide. Data are expressed as
mean ± SEM. (B) Representative confocal images of HeLa cells charged with the probe before and
after the exposure to 300 µM H2O2.
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Figure 4 displays the fluorescence time course of HeLa cells preincubated for 1 h with
quercetin (A), resveratrol (B), or an equimolar mixture of the 2 polyphenols, loaded with
the CM-H2DCFDA probe, and then exposed to the oxidative challenge (H2O2 300 µM)
for 1 h. The initial velocities and the area under the curve of the fluorescence variation
of the time courses are reported in Table 1. The H2O2-induced fluorescence increase was
dose-dependently reduced by the preincubation with quercetin (Figure 4A), and either
the initial velocities or the area under the curve of the time courses showed a significant
dose-dependent reduction (Table 1). These results suggest a protective antioxidant effect of
quercetin on the H2O2-induced oxidative challenge. On the other hand, resveratrol exerted
a slight pro-oxidant effect at 5 µM and a more pronounced pro-oxidant effect at 25 and
50 µM, as indicated by the increased values of the initial velocity and the area under the
curve. In the case of the mixtures, the observed response was almost overlapping with the
quercetin results.

Table 1. Initial velocity (calculated as the first derivative f ’ at time = 0) and area under the curve of the
fluorescence variation time course of HeLa cells loaded with the CM-H2DCFDA probe and exposed
to an oxidative challenge (300 µM H2O2). The cells were preincubated with different concentrations
of quercetin, resveratrol, or an equimolar mixture of the two polyphenols. Data were analyzed by
one-way ANOVA and Tukey’s multiple comparison test. Different letters are used to show statistical
significance (p < 0.05).

Initial Velocity (∆F/F0 x min−1) Area under Curve (AUC)

300 µM H2O2 0.356 ± 0.017 a 200.3 ± 7.4 a

300 µM H2O2 + 5 µM quercetin 0.154 ± 0.008 b 128.9 ± 4.9 b

300 µM H2O2 + 25 µM quercetin 0.069 ± 0.004 c 74.40 ± 2.9 c

300 µM H2O2 + 50 µM quercetin 0.077 ± 0.004 c 84.39 ± 3.2 c

300 µM H2O2 0.326 ± 0.020 a 213.3 ± 7.9 a

300 µM H2O2 + 5 µM resveratrol 0.382 ± 0.019 a,b 245.7 ± 8.4 a,b

300 µM H2O2 + 25 µM resveratrol 0.429 ± 0.022 b 279.9 ± 9.2 b

300 µM H2O2 + 50 µM resveratrol 0.428 ± 0.018 b 285.0 ± 10.4 b

300 µM H2O2 0.386 ± 0.022 a 203.2 ± 6.8 a

300 µM H2O2 + 5 µM mix 0.263 ± 0.015 b 168.3 ± 6.3 b

300 µM H2O2 + 25 µM mix 0.086 ± 0.006 c 94.2 ± 3.7 c

300 µM H2O2 + 50 µM mix 0.096 ± 0.005 c 105.8 ± 4.1 c

2.3. Comparison between Experimental and Expected Antioxidant Activities

The results experimentally obtained with quercetin, resveratrol, and their binary
mixtures in HeLa cells in both basal and pro-oxidant conditions (H2O2 exposure) were
compared with the theoretical values calculated by the sum of the effects of the single
components at the same concentrations when analyzed separately. This is a common
method used by several authors for studying the antioxidant interaction between different
compounds [40–44]. Under pro-oxidant conditions, the percentage variation in the fluo-
rescence of the cells after 10 min from the addition of H2O2 is reported for comparison.
As shown in Figure 5, under basal conditions a statistically significant difference between
theoretical and experimental values was observed for the three concentrations tested, with
the observed values significantly lower than the expected one. This result indicates an
antagonistic interaction between the two polyphenols in their mixture.



Molecules 2023, 28, 4682 7 of 15

Molecules 2023, 28, x FOR PEER REVIEW 6 of 15 
 

 

quercetin on the H2O2-induced oxidative challenge. On the other hand, resveratrol exerted 
a slight pro-oxidant effect at 5 µM and a more pronounced pro-oxidant effect at 25 and 50 
µM, as indicated by the increased values of the initial velocity and the area under the 
curve. In the case of the mixtures, the observed response was almost overlapping with the 
quercetin results. 

 

(A)

(B)

(C)

Figure 4. (A–C) Effect of 1 h preincubation with increasing concentrations of quercetin (A), resveratrol
(B), and an equimolar mixture of the 2 polyphenols on the fluorescence variation time course of HeLa
cells loaded with the CM-H2DCFDA probe and exposed to an oxidative challenge (H2O2 300 µM).
The effect was measured spectrofluorimetrically over 1 h. Data are expressed as mean ± SEM.



Molecules 2023, 28, 4682 8 of 15

Molecules 2023, 28, x FOR PEER REVIEW 8 of 15 
 

 

 
Figure 5. (A,B) Comparison between the activity (expressed as percentage variation of the control) 
of equimolar mixtures of resveratrol and quercetin measured experimentally in basal (A) and pro-
oxidant conditions (B) with the corresponding theoretical values calculated by adding up the effect 
of the individual components at the same concentration analyzed separately. Data are expressed as 
mean ± SEM. * p < 0.05; *** p < 0.001. 

Under pro-oxidant conditions, at 5 µM no significant difference between theoretical 
and experimental values was observed, indicating an additive interaction. On the other 
hand, for the two other concentrations tested, the observed values were significantly 
higher than the expected one, suggesting a synergistic interaction occurring in the mix-
ture. 

  

*
***

***

***

***

(A)

(B)

Figure 5. (A,B) Comparison between the activity (expressed as percentage variation of the control)
of equimolar mixtures of resveratrol and quercetin measured experimentally in basal (A) and pro-
oxidant conditions (B) with the corresponding theoretical values calculated by adding up the effect
of the individual components at the same concentration analyzed separately. Data are expressed as
mean ± SEM. * p < 0.05; *** p < 0.001.

Under pro-oxidant conditions, at 5 µM no significant difference between theoretical
and experimental values was observed, indicating an additive interaction. On the other
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hand, for the two other concentrations tested, the observed values were significantly higher
than the expected one, suggesting a synergistic interaction occurring in the mixture.

3. Methods
3.1. Materials

All chemicals were reagent-grade. Cell culture materials were acquired from Eu-
roClone (Paignton-Devon, UK). The cell-permeable probe 5-(and-6)-chloromethyl-20,70-
dichlorodihydrofluorescein diacetate (CM-H2DCFDA) was purchased from Life Technologies-
Molecular Probes (Waltham, MA, USA). All the other reagents were purchased from
Sigma Aldrich (St. Louis, MO, USA). HeLa cells were purchased from ATCC (Manassas,
VA, USA).

3.2. Intracellular Antioxidant/Pro-Oxidant Activity Assay

The intracellular antioxidant/pro-oxidant activity of quercetin and resveratrol alone
and in their equimolar binary mixtures was assessed in HeLa cells charged with the ROS-
sensitive probe, 5-(and-6-)-chloromethyl-20,70-dichlorodihydrofluorescein diacetate, acetyl
ester (CM-H2DCFDA) (Thermo Fisher Scientific, Waltham, MA, USA).

HeLa cells were grown as a monolayer in Dulbecco’s Modified Eagle’s Medium with
4500 mg glucose/L (DMEM) supplemented with 10% FBS, 40 IU/mL penicillin G, 2 mM
L-glutamine, and 100 g/mL streptomycin under a 95% air/5% CO2 atmosphere. Cells were
plated at a density of 1 × 105 cells per mL into Corning® 96-well solid black flat-bottom
polystyrene TC-treated microplates and incubated for 24 h for the adhesion of the cells
to the bottom of the plate according to Giordano et al. [45]. For the assessment of the
effect of the studied polyphenols on the basal ROS cellular production, HeLa cells were
incubated in PBS with different concentrations of quercetin, resveratrol, and equimolar
binary mixtures for 1 h. The concentrations of the 2 polyphenols used for single or mixed
exposure were 5, 25, and 50 µM, respectively. Then, they were washed and charged with the
cell-permeable fluorescent probe CM-H2DCFDA 5 µM, which is a chloromethyl derivative
of H2DCFDA. CM-H2DCFDA passively diffuses into cells, where its acetate groups are
cleaved by intracellular esterases. Oxidation induces the formation of the fluorescent
CM-DCF. Fluorescence was then measured by the SynergyTM (BioTek Instruments, Inc.,
Winooski, VT, USA) multi-mode microplate reader (Ex/Em: 492–495/517–527 nm).

For the assessment of the effect of the studied polyphenols under pro-oxidant conditions,
HeLa cells were first incubated with increasing concentrations of quercetin, resveratrol, and
equimolar binary mixtures for 1 h (5, 25, and 50 µM, see above). Then, they were washed,
charged with the cell-permeable fluorescent probe CM-H2DCFDA 5 µM, and exposed to
H2O2 for 1 h. The time course of the CM-H2DCFDA fluorescence variation was recorded by
the Synergy MX multi-mode microplate reader (Ex/Em: 492–495/517–527 nm).

3.3. Confocal Visualization of HeLa Cells

Cells were plated at a density of 1 × 105 cells per mL into a chambered coverslip
(IBIDI, Gräfelfing, Germany), incubated for 24 h for the adhesion of the cells to the bottom
of the plate, and then charged with CM-H2DCFDA. The cells were viewed under differ-
ent experimental conditions using a 100× NA plan apochromatic objective mounted on
a NIKON TE300 inverted microscope coupled to a NIKON C1 confocal laser scanning unit
(Nikon, Tokyo, Japan) [46,47]. The Argon 488 nm laser line was used. Each measurement
was performed on at least five fields randomly chosen. Unlabeled cells did not exhibit any
detectable fluorescence under the conditions used. Images were acquired and analyzed
using EZ-C1 NIKON software.

3.4. Statistical Analysis

Data are presented as mean ± S.E.M. For multiple comparisons, analysis was per-
formed by one-way ANOVA followed by Tukey’s multiple comparison post-test, as speci-
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fied in the captions to figures. GraphPad Prism (version 8) software was used for all the
analyses and graphing.

4. Discussion

The present work aimed to study the direct intracellular antioxidant/pro-oxidant
activity of resveratrol and quercetin and their interactions in a cellular short-term bioassay
under both basal and pro-oxidant conditions. The study was carried out by spectrofluo-
rimetric assessment of the intracellular CM-H2DCFDA fluorescence in HeLa cells, either
natively present in the cells due to the reactive species associated with the normal oxidative
metabolism or under pro-oxidant conditions induced by H2O2 exposure. HeLa cells were
chosen as the experimental cell model in this study; they are one of the most studied
cellular models, widely utilized in several research fields from cancer research to drug
development, gene expression, and cell death pathways, and recently they have been
used for the assessment of the antioxidant and pro-oxidant intracellular effects of Trolox,
a synthetic analog of vitamin E [45].

H2O2 was used in this study as an oxidative stress inducer since it is an important
physiological oxidative stress agent as a major component of intracellular ROS. It is a
membrane-permeable source of the peroxide ion (O2

2−) that is relatively stable in aqueous
solutions [48]. Moreover, H2O2 is known to diffuse through the plasma membrane of mam-
malian cells through aquaporins [49]. The H2O2 concentration applied in our experimental
system falls within the range of concentrations found extracellularly during pathological
conditions such as inflammation and tumor growth [50]. The cellular assay was based
on the ROS-sensitive intracellular probe CM-H2DCFDA. In our experimental system, its
fluorescence increased hyperbolically in a dose-dependent manner under exposure to
H2O2. As outlined by Kalyanaraman et al. [51], the oxidation of this sensor is not specific
to a particular type of ROS; therefore, it does not allow a direct measure of intracellular
H2O2 since the probe can be oxidized not only by H2O2 but by several oxidizing species
including hydroxyl radicals (·OH), compounds I and II generated from the interaction be-
tween H2O2 and peroxidase or heme, NO2 arising from the myeloperoxidase/H2O2/NO2
system, and reactive species arising from peroxynitrite (ONOO-/ONOOH) decomposition.
Therefore, the hyperbolic increase in the fluorescence of the probe following exposure of the
cells to H2O2 fluorescence does not directly reflect a time-dependent increase in the H2O2
intracellular concentration, but it somewhat represents the appearance of a time-dependent
increase in the H2O2-induced intracellular oxidative conditions.

Under basal conditions, both quercetin and resveratrol exerted an antioxidant behavior
against the ROS basal levels arising from cellular oxidative metabolism but with some
differences. The effect was more pronounced in the case of quercetin which showed a
dose-dependent antioxidant behavior; its effect was statistically significant at already 5 µM
and further increased at 25 µM and 50 µM, reaching the maximum value of about 20%
CM-H2DCFDA fluorescence percentage variation. In the case of resveratrol, the antioxidant
effect was weaker, with a maximum value (about 7%) at the lowest concentration tested of
5 µM. This result suggests a more effective ability of quercetin to exert a direct antioxidant
activity against ROS arising from the basal cellular metabolism, presumably due to the
known antiradical activity of the catechol group (3′,4′-dihydroxy) in the B ring and the
double bond between carbon 2 and carbon 3 of the C ring conjugated with the keto group
at position 4 [9]. On the other hand, the direct antioxidant behavior of resveratrol against
the intracellular ROS basal levels was weaker. The direct antioxidant activity of resveratrol
has been widely assessed in different cell-free assays including total antioxidant activ-
ity, reducing power, DPPH•, ABTS•+, DMPD•+ and O2

•− radical scavenging, hydrogen
peroxide scavenging, and metal chelating activities [52]. Resveratrol has been shown to
directly scavenge a variety of oxidants, including hydroxyl radical (•OH), O2

•−, H2O2, and
peroxynitrite in acellular assays. However, its direct ROS scavenging activity appears to be
poor [53,54], while it is thought that the known effects of resveratrol against oxidative injury
in vivo are more likely to be attributable to its effects as a gene regulator of antioxidant
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enzymes rather than to its direct scavenging activity. In our system, the short duration of
the assay, used to investigate the direct antioxidant activity intracellularly, prevented the
expression of the indirect antioxidant activity of resveratrol as a modulator of antioxidant
enzyme expression and could explain the weak antioxidant effect observed.

In our system, under pro-oxidant conditions, quercetin exerted a significant antiox-
idant activity, as indicated by the significant (p < 0.05) decrease in the initial velocity
(calculated as the first derivative f’ at time = 0) and area under the curve of the fluorescence
variation time course of HeLa exposed to 300 µM H2O2 cells. It acted extremely fast in the
first few minutes, as indicated by the significantly (p < 0.05) decreased initial velocity of
the time course. Indeed, the antioxidant activity was significantly detectable at 5 µM and
reached its maximum value at 25 µM, while at 50 µM no further increase in the antioxidant
activity was observed. These results obtained in a cellular bioassay are in agreement with
the well-known capacity of quercetin to lower ROS formation by scavenging activity, as as-
sessed in cell-free assays [9,55], and outline the direct intracellular ROS scavenging activity
of this polyphenol.

On the other hand, in the same cell-based assay, resveratrol exerted a pro-oxidant
behavior under exposure of the HeLa cells to H2O2, as indicated by the significant increase
in the initial velocity and area under the curve. The effect was statistically significant
at higher concentrations starting from 25 µM, while it was not detectable at the lowest
concentration tested of 5 µM. It is known that resveratrol may behave as an antioxidant
or pro-oxidant depending on concentration, time of exposure, cell type, and the presence
of metal cations [56,57]. This, in turn, influences the biological effect exerted, as observed
in previous studies where cardioprotective properties of resveratrol were found at lower
concentrations (5 µM–10 µM) associated with an antioxidant behavior, while at higher
concentrations it acted as a pro-oxidant [58]. Moreover, at low concentrations (5 µM)
resveratrol increased cell proliferation, while at higher concentrations (15 µM or more)
it induced apoptosis in various cancer cells [59]. It is known that resveratrol can be
(auto-)oxidized to generate semiquinones and the relatively stable 4′-phenoxyl radical, in
turn leading to ROS production [60–62]. Such polyphenol oxidative reactions are known to
be influenced by pH and the presence of hydroxyl anions [63,64]. The exposure of the cells
to H2O2 increased the intracellular concentrations of hydroxyl anions [65]; therefore, this
could explain the pro-oxidant effect observed in our system under exposure to H2O2.

In our cellular-based assay, the possible interaction between the two polyphenols was
investigated in both basal and pro-oxidant conditions. It is known that the assessment of the
antioxidant activity of the single components of a mixture does not allow determining the
total antioxidant capacity of the mixture due to the interaction of the single compounds [40].
We compared the experimental results obtained with the binary mixtures of quercetin
and resveratrol at the three concentrations tested with the theoretical values calculated
by the algebraic sum of the effects of the single components at the same concentrations,
according to previous studies [40–44]. Under basal conditions, an antagonistic interac-
tion between quercetin and resveratrol in equimolar binary mixtures was found at the
three concentrations tested. Indeed, the sum of the effects, both attributable to an an-
tioxidant behavior, was less than the mathematical sum that would be predicted from
the individual components according to Wang et al. [29]. On the other hand, under pro-
oxidant conditions where opposite effects were observed (antioxidants for quercetin and
pro-oxidants for resveratrol), different results were observed at different concentrations. An
additive interaction was found at the lowest concentration tested (5 µM) while a synergic
effect was observed at the higher concentrations tested, where the pro-oxidant effect of
resveratrol was completely nullified by the presence of quercetin. In this case, quercetin
activity seems to be enhanced by the pro-oxidant effect of resveratrol compared with the
baseline conditions. In the literature, little information is available on the interaction of
quercetin and resveratrol under direct antioxidant activity determination, and no informa-
tion is available in the intracellular environment. Skroza et al. [39] previously analyzed
the behavior of quercetin and resveratrol equimolar binary mixtures using the cell-free an-



Molecules 2023, 28, 4682 12 of 15

tioxidant assay Briggs–Rauscher reaction, finding slight antagonism. The results obtained
with HeLa cells appear different from the data obtained in cell-free assays, suggesting
that the interaction of polyphenols in the intracellular environment cannot be predicted
by their behavior in a cell-free reaction; moreover, the oxidative status of the cells and
concentrations seem to strongly influence the type of interactions.

5. Conclusions

In conclusion, this study clarified the direct intracellular antioxidant/pro-oxidant
activity of two known polyphenols, quercetin and resveratrol, alone and in their equimo-
lar mixtures on the cell model HeLa cells charged with the cell-permeable ROS-sensitive
CM-H2DCFDA under either basal or pro-oxidant conditions. The results obtained showed
under basal conditions a significant antioxidant effect of quercetin and a weaker antioxidant
effect of resveratrol when used singly, while antagonism of their effect was detected in
their equimolar mixtures at all the concentrations used. Under pro-oxidant conditions,
exerted by the exposure of the cells to H2O2, quercetin exhibited dose-dependent intra-
cellular antioxidant activity, whereas resveratrol manifested a pro-oxidant intracellular
activity, while their equimolar mixtures highlighted an intracellular interaction between the
2 polyphenols, with additive effects at 5 µM and synergic at 25 µM and 50 µM, which
were not predictable on the basis of the analysis conducted on the single compounds.
Thus, the results highlight that all the intracellular antioxidant properties of polyphenols
in mixtures depend not only on the nature of the compounds themselves but also on the
type of interaction in the cellular system and the oxidative status of the cells. Moreover, in
the cellular system, the behavior of polyphenols singly and in mixtures does not always
correspond with an ability to counteract the production of ROS in cell-free systems. The
results can be used as a model for further studies with other polyphenols and cell types;
they can represent a base for the development of a cellular-based short-term assay useful
for the assessment of the intracellular behavior of antioxidant compounds, singly and in
a mixture.
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