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Abstract: Nanotechnology is playing a critical role in several essential technologies with nanoscale
structures (nanoparticles) in areas of the environment and biomedicine. In this work, the leaf extract
of Pluchea indica was utilized to biosynthesize zinc oxide nanoparticles (ZnONPs) for the first time
and evaluated for antimicrobial and photocatalytic activities. Different experimental methods were
used to characterize the biosynthesized ZnONPs. The biosynthesized ZnONPs showed maximum
Ultraviolet–visible spectroscopy (UV-vis) absorbance at a wavelength of 360 nm. The X-ray diffraction
(XRD) pattern of the ZnONPs exhibits seven strong reflection peaks, and the average particle size
was 21.9 nm. Fourier-transform infrared spectroscopy (FT-IR) spectrum analysis reveals the presence
of functional groups that help in biofabrication. The existence of Zn and O was confirmed by
the Energy-dispersive X-ray (EDX) spectrum and the morphology by SEM images. Antimicrobial
studies showed that the biosynthesized ZnONPs have antimicrobial efficacy against Escherichia coli,
Pseudomonas aeruginosa, Enterococcus faecalis, Bacillus subtilis, Staphylococcus aureus, Candida albicans
and Cryptococcus neoformans where inhibition zones at concentration 1000 µg/mL were 21.83 ± 0.76,
13.0 ± 1.1, 14.9 ± 0.85, 24.26 ± 1.1, 17.0 ± 1.0, 20.67 ± 0.57 and 19.0 ± 1.0 mm respectively. Under
both dark and sunlight irradiation, the photocatalytic activity of ZnONPs was evaluated towards the
degradation of the thiazine dye (methylene blue-MB). Approximately 95% of the MB dye was broken
down at pH 8 after 150 min of sunlight exposure. The aforementioned results, therefore, suggest that
ZnONPs synthesized by implementing environmentally friendly techniques can be employed for a
variety of environmental and biomedical applications.

Keywords: green biosynthesis; zinc oxide nanoparticles; antimicrobial activity; photocatalytic activity

1. Introduction

The printing and dyeing industries are among the worst environmental offenders
because they release a lot of dyes into wastewater [1]. These dyes are not only unattractive
but also dangerous to the environment and living things when present in rivers [2]. The
textile industry is now required to remove dyes from its released wastewater due to increas-
ingly stringent environmental regulations. Controlling dye effluent output, however, has
proven difficult over time. According to reports, over 7 × 105 tons of dyes are produced
annually for synthetic items, with a global yearly output of around 80 million tons [3].
These dyes seriously damage the environment, even when only trace amounts are emitted.
Methylene blue is the synthetic dye most frequently used in the textile industry to color
textiles [4,5]. Because of the strength of the MB dye molecules, they are difficult for a stan-
dard wastewater treatment procedure to break down [6]. MB dye also poisons serotonin
and the central nervous system severely [7]. Multiple pathways may be responsible for
photocatalyst deactivation, according to the literature that is currently available. In order
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to change the surface characteristics of the photocatalysts, the aqueous substances may
first bind to them through covalent bonds, electrostatic effects, interaction, and secondary
bonds. Second, the altered surface charge may cause the photocatalysts to aggregate, and a
strong adsorbate–surface contact may cause the photocatalysts to dissolve [8]. Numerous
studies have shown that exposure to dye-contaminated water can cause damage to various
organs, including the thyroid, conjunctiva/cornea, brain, kidney, liver, gastrointestinal tract,
and reproductive system [9–11]. Therefore, in today’s dye wastewater treatment, effective
dye removal is a hotly debated topic. The contamination brought on by dye effluent has
increased interest in its biological, chemical, and physical remediation. The most popular
techniques for sequestering and decolorizing dyes are adsorption, coagulation–flocculation,
ion exchange, catalytic degradation, chemical precipitation, and ion exchange [2,12,13].
In order to reduce dangerous pollutants in indoor air, many techniques, such as biologi-
cal degradation, thermal and non-thermal plasma treatment, membrane separation, and
photocatalytic oxidation (PCO), have been investigated to date. However, photocatalytic
oxidation still has drawbacks, such as quick catalyst deactivation, lower effectiveness under
typical working conditions, and the formation of undesirable byproducts [14]. However,
these traditional techniques offer some disadvantages, such as limited efficiency, high
costs, and unintended side effects [15]. Materials used in photocatalytic activity ought
to be safe and resistant to photo-oxidative degradation. Nanotechnology is concerned
with creating materials at the nanoscale, which ranges from 1 to 100 nm. In compari-
son to bulk, the material’s nanoscale size dimension displayed optimal physicochemical
characteristics [16,17]. Nanomaterials have generated a lot of attention because of the
many applications they have in fields as diverse as medicine, biotechnology, the food
industry, agriculture, transportation, national security, sensors, packaging, information
technology, aerospace, textiles, and cosmetics [18–25]. Due to their successful applications
in key disciplines such as catalysis, advanced nanomaterials have gained more researchers’
interest recently [26,27]. Adsorption, however, is a dependable dye removal method that is
operationally easier, economically feasible, highly effective, and has a strong regeneration
capacity [28]. Additionally, this technique is renowned for being simple, flexible, and easy
to utilize. Infectious illnesses, which cause a large number of deaths globally, are another
big issue facing the medical industry [29]. Many dangerous microbes that cause numerous
illnesses have been detected in dying wastewater. In addition, improper use of antibiotics
and a lack of scientific resources to create such medications have resulted in mutations and
generations of microorganisms that are resistant to them [30]. In order to prevent the spread
of diseases and give a fresh perspective on therapy, it was important to look for novel
therapeutic approaches, such as the use of nanotechnology. At low concentration levels
(ppb–ppm), conventional semiconductor nanoparticles frequently exhibit poor pollutant
adsorption capacities [14]. As an important micronutrient, zinc (Zn) is a key component of
all six types of enzymes, which include oxidoreductases, lyases, isomerases, transferases,
hydrolases, and ligases. It also plays a key role in many essential metabolic processes,
including the manufacture of photosynthetic pigments [31]. Zinc protects membranes from
oxidative and peroxidative damage by maintaining membrane integrity and stabilizing
permeability. One of the most significant metal oxides, ZnO nanoparticles, have unique
therapeutic effects as well as fungicidal, antibacterial, and catalytic capabilities. ZnONPs
may be produced using a variety of methods, such as hydrothermal, solvothermal, chemi-
cal, sonication, precipitation, microwave, etc., but in modern times, a biological synthesis
of ZnONPs using plant-derived products is widely employed [32–34]. ZnO nanoparti-
cles are more effective at blocking UV radiation than bulk ZnO due to their high surface
area-to-volume ratio [33]. There are several metabolites present in fungal biomass extracts
that easily convert the precursor molecule to zinc ions and then to ZnONPs [35]. Pluchea
indica Less., a member of the Asteraceae family, is a dual-purpose plant that is mostly
found in tropical and subtropical areas. According to chemical analysis results, flavonoids,
thiophenes, quinic acids, and other phenolic acids are this plant’s primary ingredients [36].
The most prevalent dietary polyphenolic chemicals among them are quinic acids, which are
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abundantly present in tea, coffee, and other foods. Numerous bioactivities, including anti-
inflammatory and hepatoprotection, have been documented [37]. Furthermore, P. indica’s
high concentration of phenolic chemicals has led to research into and certification of its
free radical scavenging capacity, which revealed that it has an antioxidation impact [38].
Herein, this study aims to biosynthesize ZnONPs using P. indica leaf extract for the first
time, which is easy to use, ecofriendly, and safe. Moreover, the study aims to characterize
biosynthesized ZnONPs by numerous techniques. Finally, to assess the antimicrobial
activity and photocatalytic degradation.

2. Results and Discussion
2.1. Biosynthesis of ZnONPs Using Leaf Extract of P. indica

Since they are inexpensive and require minimal maintenance, plants are regarded as
nature’s chemical factories. Many plant parts, including fruit, leaves, stems, and roots,
have frequently been used for the green production of nanoparticles because of the large
phytochemicals they produce [39]. Iron, gold, silver, zinc oxide, and other nanoparticles
have all been created simply using environmentally friendly methods [40]. Metallic ion
bioreduction is caused by phytocompounds such as polyols, terpenoids, and polyphenols
that are present in plant extracts [41]. As a result, efforts to synthesize ZnONPs using
various techniques have intensified. In the current study, ZnONPs were made using a
green process that is quick, easy, environmentally friendly, and economically feasible. Zinc
ions were reduced, capped, and stabilized using leaf extracts of P. indica. to reduce the
drawbacks associated with chemical and physical procedures, green approaches (plants,
fungi, bacteria, actinomycetes, and yeasts) are chosen for the manufacture of metal and
metal oxide NPs [42]. In this instance, the biocatalyst for reducing zinc ions to generate
ZnONPs was the leaf extract of P. indica. The color change of the extract from pale green to
turbid white after mixing with Zn (CH3COO)2.2H2O indicates the formation of ZnONPs.
This color shift is a result of the NPs’ surface plasmon resonance becoming excited [43].
According to Fouda et al. [43], the formation of white ZnONPs was achieved by mixing
the aqueous extract of U. fasciata with the zinc acetate solution. On the other hand, the
biosynthesis of ZnONPs was performed by using Delphinium uncinatum, which was utilized
for its anti-aging, cytotoxic, antibacterial, anti-diabetic, and anti-inflammatory properties.
Llashin et al. [44] used Ziziphus spina-christi for the green biosynthesis of ZnONPs and
selenium nanoparticles.

2.2. Characterization of ZnONPs

The precipitate’s hue shifting to white indicates the presence of ZnONP. In order to
find the maximal surface plasmon resonance, the absorbance of the generated color was
measured in the 200–600 nm range. After 24 h, the greatest SPR for biosynthesized ZnONPs
was recorded at 360 nm (Figure 1). According to Majhi and Kuiri [45], the metal-dielectric
constant, the size, and form of the metal NPs, the surrounding medium, and the frequency
of the SPR are all variables that affect its width. Earlier studies on the green manufacturing
of ZnONPs revealed peak values between 320 and 380 nm [46]. The UV-visible absorption
spectra of the biosynthesized ZnONPs from Vernonia cinerea leaf extract are 360 nm, which
is the same result as that reported by Azim et al. [47]. Kumar et al. [48] found an absorbance
peak at the resonance wavelength of 270 nm, which confirmed the existence of ZnONPs
in the aqueous solution. According to Vijayakumar et al. [49], the UV spectra of Ae-
ZnONPs include two peaks located at 275 and 380 nm, respectively. According to Shubha
et al. [50], hexagonal ZnO NPs had an absorption maximum of 368 nm. Additionally, the
zinc acetate was successfully transformed into the end product (ZnONPs), as evidenced by
the maximum SPR being recorded at 380 nm. [51].
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FT-IR analysis was used to determine the different functional groups present in the
cell-free filtrate and their functions in creating and stabilizing ZnONPs. As seen in Figure 2,
the FT-IR chart exhibits peaks at certain wave numbers, 3331, 2895, 1775, 1622, 1427, 1368,
1315, 1203, 1159, 1107, 1053, 1031, 663, 611, 594, 556, 459, 445, and 414 cm−1. The wide peak
at 3331 cm−1 indicates the presence of the -OH group [52], whereas the observed peak at
2895 cm−1 represents the aldehyde group (CHO) [48]. Conversely, the peak bands at 1622,
1427, 1368, 1315, 1203, 1159, and 1107 cm−1 are related to the current carbonyl group (C=O),
C-N bonds in aromatic stretching, and C-O [53–55]. The peaks of the NPs were variable
during biosynthesis. At peaks of 400 to 600 cm−1, as previously reported [50,56,57], the
successful synthesis of ZnONPs was verified. Final confirmation of the zinc oxide bond
comes from the band seen at 414 cm−1. The information gathered confirmed the occurrence
of a variety of functional groups, such as alkanes, alkenes, aliphatic, aromatic amines, and
alkyls, which are present in the leaf extract of P. indica and are crucial for the stabilization,
capping, and reduction of ZnONPs. Similar results were obtained by Dias et al. [58], who
found that FT-IR analysis revealed a strong peak at 432.05 cm−1, showing the characteristic
Zn-O bond. For the zinc oxide nanoparticles produced using a green approach, Al-Dhabi
and Arasu [59] achieved a peak of 417 cm−1. Rajivgandhi et al. [60] have identified the
peaks for the ZnO nanoparticle in the 400–4000 cm−1 wavelength region that was made
using Streptomyces enisocaesilis.

The investigation of the morphological properties of synthesized NPs, such as their
size, aggregation, and shape, may be performed with the use of transmission electron
microscopy (TEM). As shown, phytochemicals produced by P. indica can reduce or cap
zinc acetate and create spherical, widely scattered ZnONPs (Figure 2A,B). The average
diameter of biosynthesized ZnONPs was 12.0 ± 2.2 nm, with sizes ranging from 6 to
21 nm. Figure 2B displayed the ZnONPs’ area selected electron-diffraction (SAED) patterns,
which exhibited good sharp rings and demonstrated the crystal structure of the ZnONPs.
Spherical ZnONPs were successfully generated using the marine macroalgae Ulva fasciata
Delile, with an average size of 10.62 nm and a size range of 3–33 nm [61]. Additionally, Abdo
et al. [51] created spherical ZnONPs with diameters ranging from 6 nm to 21 nm. Numerous
factors, including surface features, size, coating or capping agent, shape, reactivity, and
solubility, can affect the activity of NPs [62]. Additionally, Aziz et al.’s [63] production
of zinc oxide nanoparticles with a spherical shape and a size range of 28 to 42 nm was
successful. However, Rajivgandhi et al.’s [60] synthesis of ZnONPs showed the diameter
of the nanoparticle varying between 199 and 326 nm for the HP05 sample and between
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12 and 35 nm for the HP01 sample. These findings lead us to assume that the synthesized
ZnONPs used in the current work would have high activity due to their reduced sizes.
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Particle size and size distribution investigations may be performed using a variety
of approaches. Dynamic light scattering (DLS) is one such well-liked method for figuring
out the particle size and size distribution of nanoparticles. The average particle size,
distribution, and polydispersity index are calculated by Brownian motion by measuring the
light scattering. The analysis revealed that the average particle size of the biosynthesized
zinc oxide nanoparticles was 50.7 nm, and their PDI was 0.31. Figure 3B displays the size
distribution of intensity. Similarly, the particle size analysis was performed for zinc oxide
nanoparticles, which are synthesized by Cordyceps militaris [58]. According to Mohamed
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et al. [52], the obtained ZnONPs were poly-dispersed mixtures with average diameters of
135.5 nm (86.4%) and 163.34 nm (92.7%) for nanorod and hexagonal ZnONPs, respectively.
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By using XRD, the crystallinity of biosynthesized ZnONPs in the range of two theta
values was examined (Figure 3A). The spectra show the existence of seven prominent
peaks for Bragg reflection at (100), (002), (101), (102), (110), (103), and (112) at two theta
values of 31.6◦, 34.3◦, 36.2◦, 47.2◦, 56.4◦, 62.8◦, and 67.2◦, respectively. According to the
Diffraction Standards JCPDS data (Zincite, JCPDS 5-0664) for polycrystalline wurtzite
structure, the collected results demonstrated the crystallinity of ZnONPs [64]. The XRD
pattern for the crystalline nature of biologically produced ZnONPs was consistent with
our observations [51,52]. The particle size of the created NPs was determined using the
Debye-Scherrer equation. The average ZnONP size that could be analyzed by TEM in this
instance was 21.9 nm, and the FWHM (2θ) value was 0.3981. The effective manufacturing of
small ZnONPs of the previously reported sizes is indicated by the widening of the bases of
Bragg’s diffraction peaks [58,64]. The different peaks recently approximated the diffraction
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planes (100), (260), (002), (101), (102), and (101). The findings support the biofabricated
ZnONPs’ wurtzite structure [47].

The surface appearance and qualitative and quantitative elemental compositions of
ZnONPs produced by P. indica leaf extract were examined using SEM in conjunction with
EDX equipment. As shown, the produced ZnONPs had a spherical form and were evenly
spread (Figure 4A). The synthesis of ZnONPs was successful, as seen by the prominent
peak in the zinc area of the EDX chart (Figure 4B). According to the EDX chart, Zn makes
up a large portion of the synthesized components. Figure 4B demonstrates the presence
of C, O, and Zn, with weight percentages of 20.5, 29.3, and 50%, respectively. The ZnO
nanoparticle’s elemental composition showed that it included 61.57% oxygen and 38.43%
zinc, respectively, according to Rajivgandhi et al. [60]. In a manner similar to this, ZnONPs
were produced using Zingiber officinale root extract and then analyzed using EDAX.
Additionally, elemental analysis of nanoparticles generated from root extract showed
that they included around 80% zinc and 19% oxygen [65]. Furthermore, S. marginatum
and U. lactuca produced ZnONPs that were mostly composed of Zn and O with weight
percentages of (51.6 and 48.4%) and (48.3 and 51.7%), respectively [61]. Similar to this,
Mohamed et al. [66] discovered that Zn (58.3%) and O (20%) were the two main peaks of
the EDX spectra for ZnONPs generated by P. chrysogenum, in addition to the occurrence of
other peaks linked to biomolecules in P. chrysogenum filtrate that conjugated with ZnONPs.
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2.3. Antimicrobial Activity

Zinc oxide nanoparticles have piqued the interest of researchers and scientists during
the last decade due to their numerous potential applications in biomedicine, the environ-
ment, and electronics. ZnO nanoparticles are of tremendous interest because of their low
cost, safety, and ease of manufacture. In the current study, the biosynthesized ZnONPs
using leaf extract of P. indica were assessed as antimicrobial agents against Gram-positive
and Gram-negative bacteria as well as unicellular fungi, as shown in Table 1. Results
displayed that the biosynthesized ZnONPs exhibited antibacterial activity where inhibition
zones were 21.83 ± 0.76, 13.0 ± 1.1, 14.9 ± 0.85, 24.26 ± 1.1, and 17.0 ± 1.0 mm toward
E. coli, P. aeruginosa, E. faecalis, B. subtilis and S. aureus respectively, at a concentration of
1000 µg/mL. Moreover, B. subtilis was the most sensitive among tested bacterial strains
to ZnONPs, where the MIC was 62.5 µg/mL, while P. aeruginosa was the least sensitive,
where the MIC was 500 µg/mL. Compared to standard antibiotic (SAM), SAM showed
weak antibacterial activity against all tested bacterial strains, where MICs were in the
range of 500–1000 µg/mL. Furthermore, the biosynthesized ZnONPs revealed potential
antifungal activity against C. albicans and C. neoformans where inhibition zones at concen-
trations of 1000 µg/mL were 20.67 ± 0.57 and 19.0 ± 1.0 mm, respectively. Moreover,
the MIC was 125 µg/mL for both C. albicans and C. neoformans. Although no previous
studies on the biosynthesis of ZnONPs by P. indica leaf extract, previous studies reported
that leaf plant extracts were used for the biosynthesis of ZnONPs [67,68]. Naseer, Aslam,
Khalid, and Chen [67] succeeded in the biosynthesis of ZnONPs using leaf extracts of
Cassia fistula and Melia azadarach, where these nanoparticles showed promising antibacterial
activity against E. coli and S. aureus. Moreover, [69] reported that ZnONPs synthesized
by leaf extracts of Passiflora caerulea revealed antimicrobial activity toward urinary tract
infection-causing microbes. Moreover, Gharpure et al. [70] illustrated that leaf extract of
Neolamarckia cadamba can be used for the green biosynthesis of ZnONPs and also found
that these nanoparticles have antibacterial activity against B. subitils, S. aureus, P. aeruginosa,
and E. coli. Furthermore, Pisonia alba leaf extract was used for ZnONPs biosynthesis and
exhibited potential antibacterial activity toward Gram-negative and Gram-positive bacte-
ria [71]. Additionally, Chaudhary et al. [72] succeeded in the biosynthesis of ZnONPs using
Aloe vera peel extract and found ZnONPs have promising antimicrobial activity against E.
coli (MTCC-41) and A. niger (MTCC-404). Bala et al. [73] reported that the biosynthesized
ZnONPs using leaf extracts of Hibiscus subdariffa had antibacterial activity toward S. aureus
and E. coli. Moreover, ZnONPs were green biosynthesized using cinnamon and bay leaves
and displayed antibacterial and antifungal activity against S. aureus, S. epidermidis, E. coli,
Klebsiella pneumonia, and C. albicans. Moreover, ZnONPs were biosynthesized through a
green and eco-friendly method, where Allium sativum and Zingiber officinale extracts were
used, and the biosynthesized ZnONPs showed antibacterial activity against E.coli, P. putida,
S. aureus, and Streptococcus pyogenes [74]. The production of reactive oxygen species (ROS),
such as hydroxyl radicals (OH), hydrogen peroxide (H2O2), and peroxide (O2), may be
the cause of the antibacterial activity of biosynthesized ZnONPs. A number of processes
have been linked to ROS, including the internalization of NPs as a result of proton motive
force loss, cell wall disintegration brought on by ZnO-localized contacts, enhanced mem-
brane permeability, and the consumption of dangerous dissolved zinc ions. These have
led to oxidative stress-related gene expression, intracellular outflow, and mitochondrial
malfunction, which have suppressed cell development and led to cell death [75]. Dwivedi
et al. [76] conducted research on the mechanism of ZnO-NPs’ antibacterial action, which
they determined to be ROS production as a result of treatment with DCFH-DA dye. When
the dye enters the bacterial cell passively, cell esterases break it down, releasing DCFH.
Reactive oxygen species (ROS) enable the oxidation of DCFH to DCF, a highly fluorescent
chemical known as dichlorofluorescein. The amount of reactive oxygen species (ROS) is
correlated with the intensity of the fluorescent signal, which was quantified using flow
cytometry or a microplate reader [77].
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Table 1. Antimicrobial activity of biosynthesized ZnONPs.

Microbial
Strains

P. indica Leaf Extract Zinc
Acetate ZnO NPs SAM/NS **

IZ/mm * IZ /mm IZ/mm MIC IZ MIC

E. coli ND ND 21.83 ± 0.76 ab 125 12.5 ± 0.5 b 500

P. aeruginosa ND ND 13.0 ± 1.1 f 500 9.33 ± 0.57 c 1000

E. faecalis ND ND 14.9 ± 0.85 ef 500 12.5 ± 0.86 b 500

B. subtilis ND ND 24.26 ± 1.1 a 62.5 15.4 ± 0.53 a 125

S. aureus ND ND 17.0 ± 1.0 de 250 9.73 ± 0.46 c 1000

C. albicans ND ND 20.67 ± 0.57 bc 125 11.83 ± 0.76 b 500

C. neoformans ND ND 19.0 ± 1.0 cd 125 10.16 ± 0.29 c 1000

* IZ means inhibition zone, ** SAM/NS means Ampicillin–sulbactam/nystatin. Letters a, b, c, . . . mean signifi-
cance power.

2.4. Photocatalytic Degradation of Methylene Blue-MB Using ZnONPs

Either directly applying high-energy light sources to the surface of the nanomaterials
or utilizing a photosensitization approach is used in the degradation process. Nanoparticles
are irradiated with light, and direct photocatalytic degradation happens when electrons are
moved from the valence band (filled) to the conduction band by the use of light energy. This
process is known as photo-excitation [78]. In order to undertake a comparative analysis,
the potential of ZnONPs for the decolorization of methylene blue dye was examined in
this work at various ZnONPs concentrations (25, 50, 75, and 100 mg) for various contact
durations (30, 60, 90, 120, 150, 180, 240, and 300 min) in both light and dark. The data
analysis showed the dosage and time dependence of ZnONPs’ catalytic activity. Surpris-
ingly, exposure to light accelerated the biodegradation of ZnONPs more than exposure
to darkness (Figure 5A–D). In comparison to the control, which had a decolorization per-
centage of 9.1 ± 0.35% after 240 min. The decolorization percentages at 0.25 mg mL−1 the
concentration of ZnONPs reached up to 30.5 ± 0.51% and 15.7 ± 0.72% under sunlight and
dark conditions, respectively. At 0.5 mg mL−1 of ZnONPs, the decolorization percentages
under sunlight stimulation increased to 51.8 ± 1.04% after 240 min. After 180 min, the
percentages of decolorization at 0.75 mg mL−1 of ZnONPs under light and dark conditions
were 77.2± 0.34% and 40.3± 0.84%, respectively. In the presence of sunlight, the maximum
decolorization was attained at 1.0 mg mL−1 of ZnONPs with percentages of 95.3± 0.65%
after 150 min; while in the absence of sunlight at the same NPs concentration, the decol-
orization was 56.3 ± 0.93% after 180 min. These findings showed that 1.0 mg mL−1 of
ZnONPs after 150 min of contact time was the most suitable condition. Saied et al. [79]
found that the presence of light stimulators is necessary for the biosynthesized Hem-NPs
to effectively degrade CV dye. An increase in ZnONPs concentration results in the greatest
dye decolorization because there are more adsorption sites on the NPs’ surface [80]. When
compared to complicated solutions made up of many dye types or unidentified compounds,
the time needed to decolorize and degrade either pure or one dye was the same [81]. The
amount of dye that degrades is reducing as dye molecules compete for binding to the
few available reaction sites on the nanoparticles at a greater concentration [80]. The num-
ber of active sites on the surface of the zinc oxide nanoparticles reduces as the amount
of adsorbent increases, which lowers the adsorbent’s capacity for the adsorption of dye
molecules on its surface [82]. The photocatalytic efficiency of ZnONPs revealed higher
eco-bioremediation capacities by degrading methylene blue (88.93%) and crystal violet
(80.69%) dyes, according to Omran [83]. Additionally, Nguyen et al. [84] showed that the
maximal Congo red dye degradation efficiency was 94.85% at 5.0 mg L−1 of ZnFe2O4@ZnO
nanocomposites concentration and 0.33 g L−1 of ZnO dosage. Additionally, after 75 min of
exposure to sunlight, almost 80% of the MB dye began to break down at pH 8 [85]. The
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mycosynthesized ZnO nanoparticles showed potential dye degradation efficiency of up to
90% of fast green dye under photo illumination [48].
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One of the most crucial pieces of knowledge to have while creating a system is the
mechanism of adsorption. The major mechanism at play between the adsorbent and the
adsorbed dye was electrostatic contact. In the adsorption process between the surfaces
of the ZnONPs and dye, hydrogen bonds, hydrophobic interactions, and interactions of
the ZnO-NPs with the aromatic rings of the dye all played important roles. Additionally,
the C=O, OH, NH, and phenyl groups of the ZnONPs, which served as adsorption sites,
interacted with the aromatic rings of dye molecules [86]. Zinc oxide is essentially insoluble
in aqueous solutions and functions as a flimsy base. ZnONPs’ valence band electrons are
photoexcited into their conduction band by sunlight. O2 was converted into O2

•− radicals,
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which were subsequently converted into hydroxyl radicals as a result of the separation of
charges brought on by the electrons in the conduction band. Additionally, the generated
hole (h+) has a propensity to split water molecules into hydrogen (H+) ions and hydroxyl
radicals (OH•) (Figure 6). As a potent oxidizing agent, the generated hydroxyl radical (OH•)
is extremely reactive and may be used to degrade dyes and other contaminants [87–89].

ZnO
Excitation
Sunlight

h+ + e− (1)

h+ + H2O→H+ + •OH (2)

e− + O2→•O2
− (3)

O2
− + h+→ •OH (4)

methylene blue + •OH→CO2 + H2O + non − degradable products (5)
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2.5. Reusability of ZnO Nanoparticles as Catalyst

In this work, the stability of biosynthesized ZnONPs for reuse in dye wastewater
treatment was investigated. In this study, the regeneration of the employed ZnO nanoad-
sorbents from the dye solutions was carried out to ensure the appropriateness of our
systems from the standpoint of industrial applications. ZnONPs were washed with a
suitable proportion of water and ethanol for the concerned purpose after being centrifuged
out of the dye solutions that had been treated. To make powdered ZnONPs, the sediment
pellets were dried in an oven. In a similar way, ZnONPs were tested for reusability. Even
after the fourth cycle of reusability, the dye removal percentage using ZnONPs showed
a removal of 74.7% (Figure 7A,B). After four reuses, the dye removal efficiency was 87%,
according to Rasool et al. [80]. These findings are consistent with other studies [87,90,91].
The unavoidable decrease in catalyst performance was mostly caused by the reduction of
the catalytic site, the concentration of metal leaching, and the adsorption of intermediate
products on the catalytic site [79].
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2.6. Comparison between ZnO and Other Solid Adsorbents and Photocatalysts

A comparison of the photocatalytic activities for ZnO and other published nano-
materials is presented in Table 2 [92–97]. Based on the tabulated data for photocatalytic
degradation of methylene blue, we can conclude that nano zinc oxide and Other solid
adsorbents are used in environmental applications.

Table 2. Photocatalytic degradation of methylene blue dye using ZnONPs and modified ZnONPs.

Type of Nanomaterial Type of Dye Photocatalysis References

In/ZnO nanoparticles methylene blue 89% [92]

ZnO/C methylene blue 95% [95]

ZnONPs methylene blue 92.5% [93]

Ag–ZnO/g-C3N4/GO
nanocomposite methylene blue 93.43% [94]

N-doped ZnO methylene blue 95.3% [97]

Gd-doped ZnO nanoparticles methylene blue 93% [96]

3. Materials and Methods
3.1. Materials

Zinc acetate dihydrate (Zn (CH3COO)2·2H2O), methylene blue, and sodium hydroxide
(NaOH) were analytical-grade compounds that were purchased from Sigma-Aldrich for
use in this research.

3.2. Preparation of P. indica Leaf Extract

Pluchea indica leaves were obtained from Egypt’s Giza Governorate. The recovered
leaves were thoroughly cleansed with double-distilled water and left to dry for 5 days to
eliminate any contaminants. Next, 5 g of the chopped material was combined with 100 mL
of deionized water to create the extract, which was then heated at 65 ◦C for 60 min before
being decanted. For use within a week, the supernatant was centrifuged for 10 min at
10,000 rpm and stored at 4 ◦C [98].



Molecules 2023, 28, 4679 13 of 19

3.3. Biosynthesis of ZnONPs Using Leaf Extracts of P. indica

To biosynthesize ZnONPs, zinc acetate (3 mM) was added to P. indica leaf extract
and agitated at 150 rpm for 24 h at 30 ◦C. At the end of the incubation period, a white tint
was seen as a result of ZnONPs production. Drying the ZnONPs took 48 h at 80 ◦C. The
ZnONPs product was eventually gathered and put through additional testing (Figure 8).
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3.4. Characterization of ZnONPs

The characterization of ZnONPs was performed using Ultraviolet-visible (UV-vis)
spectra, and the development of ZnONPs was tracked by observing changes in the color of
the solution. UV-vis spectra were used to monitor the biosynthesis of ZnONPs in a colloid
solution because surface plasmon stimulation causes it to produce a strong absorption
peak. At wavelengths between 200 and 600 nm, the JENWAY 6305 Spectrophotometer was
used to observe color change. The size and shape of nanoparticles were determined using
a TEM (JEM-1230, Japan, Akishima, Tokyo 196-8558) and selected area electron diffraction
(SAED). Using a Malvern Zetazier Instrument (Malvern, UK), DLS measurements were
used to assess the particle size distribution of ZnONPs. The energy dispersive spectroscopy
(EDX) apparatus (JEOL, JSM-6360LA, Tokyo, Japan) was coupled to a scanning electron
microscope (SEM), which was used to examine the elemental composition of mycosyn-
thesized ZnONPs. The potential biomolecules included in biosynthesized ZnONPs were
identified using FTIR. The material was scanned using a Fourier Transform-Infrared Spec-
trometer (Agilent System Cary 660 FTIR model) in the infrared region of 400–4000 cm−1.
X-ray diffraction patterns were analyzed using the X’Pert Pro X-ray diffractometer (Philips,
Eindhoven, Netherlands). The average crystallite size of ZnONPs may also be calculated
using the Debye–Scherrer equation. ZnONPs’ crystalline structure was identified in the
2θ range of 10◦ to 80◦.

3.5. Antimicrobial Activity

Biosynthesized ZnONPs were evaluated for antimicrobial activity toward Gram-
negative bacteria (Escherichia coli ATCC 25922 and Pseudomonas aeruginosa ATCC 27853),
Gram-positive bacteria (Enterococcus faecalis ATCC 29212, Staphylococcus aureus ATCC 25923
and Bacillus subtilis ATCC 6051) and unicellular fungi (Candida albicans ATCC 90028 and
Cryptococcus neoformans ATCC 14116). Minor modifications were made to the Clinical
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Laboratory Standard Institute’s guideline M51-A2 [99] when performing the diffusion
in agar test. Individually, 100 µL of ZnONPs, leaf extract, standard antibiotic (Ampi-
cillin/sulbactam), reference antifungal (Nystatin), and zinc acetate at a concentration of
1000 µg/mL were added to the agar well, and then plates were put in the refrigerator for
2 h followed by incubation at (37 ◦C for 24 h)/(30 ◦C for 48 h) for bacterial/fungal strains,
respectively. Then, inhibition-zone diameters were measured. ZnONPs and AMC/FLU
were prepared at a variety of concentrations ranging from 1000 to 3.9 g/mL, and their
respective MICs were then tested against a number of bacterial and fungal strains [100,101].

3.6. Photocatalytic Activity

The catalytic activity of biosynthesized ZnONPs was examined using methylene blue
under both dark and light stimulation. The experiment involved mixing 50 mL of MB
solution with various amounts of ZnONPs (25, 50, 75, and 100 mg) over a range of contact
periods (30, 60, 90, 120, 150, 180, 240, and 300 min). A 250-watt halogen lamp served as the
illumination source. Briefly, 50 mL of the MB solution was added to a specified ZnONPs
concentration after the MB solution had been made at a concentration of 10 mg L−1. Earlier
in the experiment, the prior mixture was agitated for 30 min to reach the balance of
absorption and desorption. The mixture was then exposed to light and incubated at room
temperature with aeration. For comparison analysis, the same experiment was carried out
once again under identical circumstances under dark irradiation. The optical density of the
clear supernatant was measured using spectrophotometers, M-ETCAL, OK International
Ltd., Eastleigh, UK, at λ max of MB (663 nm), after 2.0 mL of each treatment had been
centrifuged at 5000 rpm for 10 min [102]. The following calculation was used to compute
the decolorization percentages of MB color removal:

D% = ((dye 1 − dye 2)/dye 1)) × 100

where D% represents the ratio of decolorization, dye (1) represents starting absorbance,
and dye (2) represents final absorbance. For the fourth cycle, the catalyst’s reusability in the
degradation of MB was accomplished under ideal circumstances. The catalyst from the first
cycle was recovered by centrifugation, subjected to two washings with distilled water, and
then oven-dried at 80 ◦C to minimize water content before being used in the second cycle.

3.7. Statistical Analysis

All results presented in this study are the mean of three independent replicates. The
SPSS v17 statistical software was used to analyze variance in the data. The mean difference
between the treatments was analyzed by the Tukey HSD test at a significant level of
p ≤ 0.05.

4. Conclusions

In this study, P. indica leaf extract was used, for the first time, to synthesize ZnONPs
utilizing a simple, effective, and eco-friendly method. The size, shape, and structure of
the biosynthesized NPs were evaluated using transmission electron microscopy, Fourier
transform-infrared spectroscopy, X-ray diffractometry, and dynamic light scattering in-
vestigations. Broad XRD peaks were present in the biosynthesized ZnONPs, confirming
their nanocrystallinity and average size of 21.9 nm. The capping activity on the surface
of ZnONPs is supported by the presence of polyphenols’ stretching vibrations, which are
present in the extract. The ZnONPs were observed at 360 nm. The biosynthesized ZnONPs
exhibited antibacterial and antifungal activity against Gram-positive, Gram-negative, and
unicellular fungi. The ZnONPs were found to have high efficacy in dye removal and to
be simple to reuse four times. The highest dye decolorization was 95% after 150 min. Our
findings highlight the significance of choosing the right plant to produce a particular NP
shape in relation to the characteristics and potential uses of biosynthesized nanoparticles.
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