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Abstract: Virgin coconut oil (VCO) is a functional food with important health benefits. Its economic
interest encourages fraudsters to deliberately adulterate VCO with cheap and low-quality vegetable
oils for financial gain, causing health and safety problems for consumers. In this context, there is an
urgent need for rapid, accurate, and precise analytical techniques to detect VCO adulteration. In
this study, the use of Fourier transform infrared (FTIR) spectroscopy combined with multivariate
curve resolution–alternating least squares (MCR-ALS) methodology was evaluated to verify the
purity or adulteration of VCO with reference to low-cost commercial oils such as sunflower (SO),
maize (MO) and peanut (PO) oils. A two-step analytical procedure was developed, where an initial
control chart approach was designed to assess the purity of oil samples using the MCR-ALS score
values calculated on a data set of pure and adulterated oils. The pre-treatment of the spectral data
by derivatization with the Savitzky–Golay algorithm allowed to obtain the classification limits able
to distinguish the pure samples with 100% of correct classifications in the external validation. In
the next step, three calibration models were developed using MCR-ALS with correlation constraints
for analysis of adulterated coconut oil samples in order to assess the blend composition. Different
data pre-treatment strategies were tested to best extract the information contained in the sample
fingerprints. The best results were achieved by derivative and standard normal variate procedures
obtaining RMSEP and RE% values in the ranges of 1.79–2.66 and 6.48–8.35%, respectively. The models
were optimized using a genetic algorithm (GA) to select the most important variables and the final
models in the external validations gave satisfactory results in quantifying adulterants, with absolute
errors and RMSEP of less than 4.6% and 1.470, respectively.

Keywords: virgin coconut oil; food analysis; infrared spectroscopy; multivariate analysis; calibration
model; variable selection; genetic algorithm; control chart

1. Introduction

Cocos nucifera L. is a palm belonging to the Arecaceae family, native to the Eastern
tropical regions, mainly cultivated in Asia, Central and South America, and Africa [1].
Coconut oil can be extracted through methods that can be divided into wet and dry pro-
cesses [2–4]. Virgin coconut oil (VCO) is an edible oil obtained from the extraction of
mature coconut kernels and produced by a variety of extraction processes, hot or cold,
or by fermentation, centrifugation, and extraction from dried coconuts [5]. The different
procedures have the aim of minimizing the degradation processes of the nutritional compo-
nents and ensuring a low level of acidity. It does not undergo any chemical treatment to
produce refined/bleached/deodorized oil [2]. The main VCO components are saturated
fatty acids, which constitutes about 94% of the weight, with about 62% of medium-chain
fatty acids. Among these last, lauric acid is most abundant with a percentage range of
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46–48% by weight [6]. VCO has assumed a significant role in recent years thanks to the
discovery of some biological and healthy properties such as antioxidant, anti-inflammatory,
antihyperlipidemic, and antibacterial activity due to some substances such as phenols and
tocopherols [7]. VCO and coconut oil are traditionally used as beauty products, to promote
hair growth, and hydrate the skin, they are also used for minor illnesses such as diarrhea
and skin inflammation [8–10].

The commercial price of VCO is about ten times higher than that of common vegetable
oils, making it a potential target for adulteration. This is undoubtedly a source of concern
for both buyers and the food industry [11]. The most common adulteration of high-cost
vegetable oil consists of a blending process with cheaper edible or non-edible oils [11–13].
The labeling of edible oils, such as the identification and quantification of adulterations,
has increased the attention of many researchers and centers specialized in food matrices.
Therefore, with the aim of avoiding fraud, advanced and reliable PAT (process analytical
technology) strategies for the certification of pure coconut oil and the detection of various
adulterants have been studied. Indeed, several analytical procedures have been developed,
such as gas chromatography [14], high-performance liquid chromatography [15], electronic
nose [16], differential scanning calorimetry [17], and nuclear magnetic resonance spec-
troscopy [18]. Undoubtedly, the mentioned approaches are sensitive and accurate but often
require high instrumentation costs, complex and time-consuming sample pre-treatment, as
well as solvent use and sample destruction.

The coupling between vibrational spectroscopic techniques and chemometric tools
able to extract and handle information from complex chemical systems has become a
trending topic in the case of characterization and authentication of food matrices. Analyt-
ical investigations on edible oils are certainly a much-discussed topic in this sector. The
different vibrational approach is generally simple to carry out, low expensive in terms
of time and money, and usually requires minimum or no sample pre-treatment [19–21].
Indeed, near-infrared (NIR), mid-infrared (MIR), and Raman spectroscopy are character-
ized by rapid spectral acquisition without the sample being destroyed and provide useful
qualitative–quantitative information about oil samples [2,22]. This information can be
processed by different chemometric approaches. Multivariate elaborations can be carried
out by unsupervised pattern recognition applying principal component analysis (PCA)
or hierarchical cluster analysis (HCA), or supervised classification. Partial least squares
discriminant analysis (PLS-DA), SIMCA, and linear discriminant analysis (LDA) method-
ologies have been successfully used to discriminate purely from adulterated coconut oil
samples [5,21,23,24]. PLS and PCR (principal component regression) algorithms have been
also used to build calibration models to determine oil adulteration amount [25–27]. All
the previous examples are able to detect and, in many cases, determine the number of
adulterants with satisfactory results, however, they allow for poor interpretation of the
spectral information, and have some difficulty in distinguishing adulterants. A valid alter-
native is to exploit methodologies based on the multivariate curve resolution, alternating
least squares (MCR-ALS), where the vibrational spectroscopic data can be processed by
simultaneously acquiring information about the concentration and spectral features of the
samples, detecting the pure spectral profiles of the adulterants in the oil mixtures [20,21].

Coconut oil adulterations have been investigated by using different vibrational and
chemometric tools. FTIR data were used to detect adulteration of VCO with different
low-cost oils using multivariate approaches [13]. PCA, PCR, and LDA algorithms were
applied to infrared data in order to detect the addition of fried coconut, paraffin, mustard,
and palm oils [24,28,29]. Raman spectroscopy was coupled with MCR-ALS modeling to
assay adding of sunflower, canola oils, and Vaseline [30].

In this work, multivariate curve resolution modeling was applied to FTIR data to
define a flow PAT tool for the detection and quantification of VCO adulteration by three low
commercial value oils, sunflower (SO), corn (or maize, MO), and peanut (PO) oils (Figure 1).
In the first step, the multivariate resolution was used to discriminate pure from blended
VCO and, in the second step, to quantify the addition of adulterants by the evaluation of
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the oil fingerprints. The predictive performance of the models was evaluated with respect
to different types of data pre-treatment and optimization procedures. To the best of our
knowledge, this is the first time that MCR methodologies are being exploited in FTIR data
processing by evaluating different data pre-processing procedures and selecting variables
on the models’ ability to analyze virgin coconut oil.
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Figure 1. Scheme of the flow PAT tool for adulteration evaluation of virgin coconut oil samples by
MCR-ALS and FTIR spectra.

2. Results and Discussion
2.1. Comparison among FTIR Spectra of Pure Virgin Coconut Oil and Adulterants

Figure 2 shows the FTIR spectra of pure VCO and the adulterants SO, MO, and PO in
the most informative wave regions (3100–2500 cm−1 and 1900–450 cm−1). The characteristic
peaks of bond vibrations of VCO could be attributed to the functional groups of its fatty
acids: 2954, 2922, and 2853 cm−1 due to stretching of -C-H (-CH2 and -CH3); 1741 cm−1

for stretching of ester group -C=O; 1466 and 1417 cm−1 for bending of -C-H (-CH2 and
-CH3) and =C-H (cis); 1228, 1155 and 1111 cm−1 for stretching and bending of -C-O and
-C-O-CH2; 721 cm−1 for bending of -(CH2)n-.

In the informative regions, the adulterants showed some differences in the spectra due
to their different compositions, the unsaturated long chain with -C-H stretching frequency
appeared at 3007 cm−1, while the ester bond of C-O stretching was evident around 1118 and
1097 cm−1. Except for these few differences, the overlap of the oil spectra was substantial
and even more among the adulterants, as confirmed by the calculation of the Pearson
correlation coefficient (RP

2) as plotted in Figure 3. The correlation coefficients were higher
than 0.9996 when the comparison was among different brands of VCO, while the values
decreased to values below 0.9825 for VCOn versus adulterants. Among the adulterant oils,
the RP

2 values were in the range 0.9883–0.9887 [31].



Molecules 2023, 28, 4661 4 of 12
Molecules 2023, 28, x FOR PEER REVIEW 4 of 13 
 

 

 
Figure 2. FTIR spectra for each vegetable oil: virgin coconut oil (VCO); sunflower oil (SO); maize oil 
(MO); peanut oil (PO). 

In the informative regions, the adulterants showed some differences in the spectra 
due to their different compositions, the unsaturated long chain with -C-H stretching fre-
quency appeared at 3007 cm−1, while the ester bond of C-O stretching was evident around 
1118 and 1097 cm−1. Except for these few differences, the overlap of the oil spectra was 
substantial and even more among the adulterants, as confirmed by the calculation of the 
Pearson correlation coefficient (RP2) as plotted in Figure 3. The correlation coefficients were 
higher than 0.9996 when the comparison was among different brands of VCO, while the 
values decreased to values below 0.9825 for VCOn versus adulterants. Among the adul-
terant oils, the RP2 values were in the range 0.9883–0.9887 [31]. 

Qualitative–quantitative evaluation by classical spectroscopy using discrete wave 
variable information appeared unsuitable due to the large overlap of the spectral curves. 
Therefore, it appeared necessary to perform a multivariate study of the data to interpret 
the data matrices, taking into account all information from the FTIR fingerprints of the 
samples. 

 
Figure 3. Pearson correlation coefficient (Rp2) calculated for all vegetable oils. 

Figure 2. FTIR spectra for each vegetable oil: virgin coconut oil (VCO); sunflower oil (SO); maize oil
(MO); peanut oil (PO).

Molecules 2023, 28, x FOR PEER REVIEW 4 of 13 
 

 

 
Figure 2. FTIR spectra for each vegetable oil: virgin coconut oil (VCO); sunflower oil (SO); maize oil 
(MO); peanut oil (PO). 

In the informative regions, the adulterants showed some differences in the spectra 
due to their different compositions, the unsaturated long chain with -C-H stretching fre-
quency appeared at 3007 cm−1, while the ester bond of C-O stretching was evident around 
1118 and 1097 cm−1. Except for these few differences, the overlap of the oil spectra was 
substantial and even more among the adulterants, as confirmed by the calculation of the 
Pearson correlation coefficient (RP2) as plotted in Figure 3. The correlation coefficients were 
higher than 0.9996 when the comparison was among different brands of VCO, while the 
values decreased to values below 0.9825 for VCOn versus adulterants. Among the adul-
terant oils, the RP2 values were in the range 0.9883–0.9887 [31]. 

Qualitative–quantitative evaluation by classical spectroscopy using discrete wave 
variable information appeared unsuitable due to the large overlap of the spectral curves. 
Therefore, it appeared necessary to perform a multivariate study of the data to interpret 
the data matrices, taking into account all information from the FTIR fingerprints of the 
samples. 

 
Figure 3. Pearson correlation coefficient (Rp2) calculated for all vegetable oils. Figure 3. Pearson correlation coefficient (Rp2) calculated for all vegetable oils.

Qualitative–quantitative evaluation by classical spectroscopy using discrete wave
variable information appeared unsuitable due to the large overlap of the spectral curves.
Therefore, it appeared necessary to perform a multivariate study of the data to interpret
the data matrices, taking into account all information from the FTIR fingerprints of the
samples.

2.2. Adulteration Detection by Multivariate Resolution of Pure and Blended VCO Samples

First of all, when assessing VCO adulteration, a prior distinction should be made
between pure and adulterated oil samples. For this purpose, the MCR-ALS algorithm was
used, taking into account the ability of multivariate curve resolution to distinguish the con-
tributions of the different components in the spectral data obtained from complex mixtures.
A column-wise augmented matrix Daug,cl (Daug,cl = [Dt;Dcl] in Matlab notation) for MCR
analysis consisting of two subsets was arranged. The first subset Dt contained the samples
used as a training set with pure coconut oil samples belonging to all considered brands
(9 VCO samples × 2025 wave variables) and the samples blended with the adulterants
maize, peanut, and sunflower oils (70 CMO + 70 CPO + 70 CSO × 2025). The second matrix
Dcl (6 VCO + 20 CMO + 20 CPO + 20 CSO) contained pure VCO and adulterated samples
to be subjected to classification.

The MCR-ALS algorithm with non-negativity constraints applied in both concentra-
tion and spectral optimization decomposed matrix Daug,cl providing scores related to the
composition of each sample in the matrix, and these values were used to implement the
control charts [30]. Sample classification by means of the control charts was carried out
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by considering the mean and the standard deviation of the score values calculated for the
unadulterated reference samples. The classification limits were determined by adding and
removing two times the standard deviation from the mean value of the scores to generate
the minimum and maximum limits, respectively. Control and unadulterated samples had
to be within the limits; consequently, samples appearing outside these limits were defined
as adulterated.

Figure 4 shows the control chart built for the samples described in Daug,cl. The report
graph is divided into training and prediction sections, and the dashed red lines delimit pure
samples from adulterated ones for both sections. In this first processing, all pure samples
analyzed in the prediction set were correctly classified, as all score values were in the range
−0.7349 and −0.7434. However, it is evident that some of the values calculated for the
adulterated samples place them in the selected range by misclassifying them. When the
adulterants were mixed at lower concentrations, the iterative MCR process was unable to
distinguish the components of the mixture without being able to identify the adulteration.
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(b) control chart produced using data subdued to derivative pre-treatment.

In an effort to make the information contained in spectral signals more available and
help the algorithm process the data, the effect of certain pre-pretreatment procedures on
classification performance was tested. Derivatization by the Savitzky–Golay algorithm,
standard normal variate (SNV), and multiple scatter correction (MSC) were applied to the
FTIR recorded data [24,32]. The classification of the oil samples was repeated by using
the transformed Daug,cl matrix after all data pretreatments. A significant improvement in
the useful variance with the derivative transformation of the spectral signals. Different
operative conditions were tested in applying the derivative calculation and the best results
were reached with the following parameters: 1st order, number of smoothing points 7,
and polynomial order 2. In Figure 4b, it is evident how the control chart range between
the values 2.05297 and 2.23724 of the MCR scores calculated with the derivate data was
able to correctly classify all the samples of both training and prediction sets. However,
MCR processing using derivative-transformed spectral data required appropriate data
handling: when using absorbance spectral data, the non-negativity constraint is usually
applied to both concentration and spectral profiles; in contrast, when using derivative data,
the non-negativity constraint is only imposed on the concentration values.

These results showed that the spectral data processing was able to distinguish pure
from adulterated samples without however, being able to distinguish the different types of
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adulteration. Therefore, it was necessary to proceed with the quantitative assessment of
adulteration by considering the single addition of maize, peanut, and sunflower oil.

2.3. Quantitative Evaluation of Coconut Oil Adulterations

Three different calibration models by the MCR-ALS algorithm were built for the deter-
mination of the amount of maize, peanut, and sunflower oils added to the VCO, respectively.
For this purpose, three augmented matrices (Daug,cal = [Dcal;Dp]) were assembled, each
containing the calibration subset and the subset of the samples to be used in the model
external validations. Each Dcal matrix consisted of 70 samples of blended coconut oil with
adulterant concentration between 5 and 50% and 5 samples of pure coconut and adulterant
oils, while the Dp matrix contained 22 samples of both adulterated and pure VCO.

In the first instance, the multivariate resolution of the matrices was carried out using
the absorbance FTIR data in the ranges 3100–2500 cm−1 and 1900–450 cm−1. In these
elaborations, the non-negativity constraint was applied to optimize the concentration
and spectral profiles, and the additional calibration constraint was applied only to the
concentration profiles.

The MCR-ALS algorithm decomposed all the Daug,cal matrices into their respective
C and S matrices, where it was possible to observe how the multivariate resolution was
able to distinguish the composition of the oil samples, returning the pure fingerprints
belonging to the VCO and to all the adulterant oils in the S matrices (Figure 5). Evaluating
the coefficients of Rp

2, a very high correlation was observed between the pure spectra
recorded instrumentally and the spectral profiles calculated by the MCR algorithm, as can
be seen in Table 1, with correlation values above 0.92 in all cases.
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Table 1. Figures of merit obtained for the calibration and validation of all data sets.

Adulterant Maize Oil (MO) Peanut Oil (PO) Sunflower Oil (SO)

Absorbance data
N. components 2 2 2
RMSEP 3.8237 2.4511 2.7890
R2 0.9748 0.9914 0.9870
Rp

2 VCO-adulterant 0.977–0.979 0.971–0.929 0.915–0.938
RE% 11.9986 7.9505 8.6965

Derivative data
N. components 2 2 2
RMSEP 2.6623 2.6754 1.7925
R2 0.9877 0.9906 0.9944
Rp

2 VCO-adulterant 0.989–0.988 0.956–0.988 0.975–0.915
RE% 8.3540 8.6780 5.5894

SNV data
N. components 2 2 2
RMSEP 2.7310 1.9991 3.1079
R2 0.9879 0.9947 3.1079
Rp

2 VCO-adulterant 0.995–0.987 0.991–0.990 0.992–0.879
RE% 8.5699 6.4843 9.6910

MSC data
N. components 2 2 2
RMSEP 4.4441 2.4318 2.8090
R2 0.9652 0.9928 0.9867
Rp

2 VCO-adulterant 0.981–0.880 0.987–0.892 0.982–0.878
RE% 13.9452 7.8878 8.7591

Variable selection optimization procedure GA + PLS
Adulterant Maize oil (MO) Peanut oil (PO) Sunflower oil (SO)

Data set Derivative SNV Derivative
PLS factors in GA 3 3 2
RMSECV 1.1747 1.1878 0.7299
R2 0.992 0.993 0.997
N. of variables 426 426 284
Predictive performance of MCR calibration models after variable selection procedure
N. components 2 2 2
RMSEP 1.1969 1.1937 1.4702
R2 0.9973 0.9975 0.9962
RE% 3.7557 3.8182 4.5843

Despite the good ability of the MCR algorithm to qualitatively describe the spectral
contribution of each vegetable oil in the samples, the quantitative prediction performance
resulted below a level that can be considered satisfactory. The adulterant detected with the
lowest error was PO with a RE% of 7.95%, while for the detection of MO, this value was
not less than 11.9%.

The calibrations were then repeated by replacing the augmented matrices with the
data resulting from the pre-treatment of the spectral data using derivative signals, SNV, and
MSC transformations. The pre-treatment strategies succeeded in all cases in improving the
predictive capabilities of the calibration models: this was evident for the VCO adulteration
with MO and SO, as the transformation of the data into derivatives was able to reduce the
prediction error of the CMO and CSO mixtures up to 8.35% and 5.59%, respectively, while
the SNV pre-treatment was the best for the CPO mixture with an error of 6.48%.

The variable selection strategy aims to select a subset of variables that can improve
prediction performance and streamline the model. The Genetic Algorithm (GA) is a popular
variable selection approach that uses an evolutionary selection of individuals from a larger
population [33]. In the GA procedure, the sequences of genes/variables are grouped into
chromosomes and used to build models. The selection of the best chromosomes is based
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on two steps called crossover and mutation. When evolution produces a new chromosome
with better performance than the previous ones, it enters the selected population, and the
worst ones are discarded. In our work, GA and PLS algorithms were used in synergy to
select the best variable subset, starting from the best pre-treatment procedure [33]. The
figures of merit RMSECV (root mean square error of cross-validation) and R2 calculated
during the full cross-validation were considered discriminative in the selection procedures.
GA selected three different subsets of matrices: for the CMO and CPO calibration models,
2 sets of 426 variables were selected for each adulteration, while for the CSO model, the
GA-PLS selection gave good statistical data in terms of RMSECV and R2 with a smaller set
of 284 variables. The predictive ability of the MCR-ALS models improved for all types of
adulteration such that they can predict the adulteration of VCO with maize, peanut, and
sunflower oils within an error range of 3.76 to 4.58%.

3. Materials and Methods
3.1. Virgin Coconut Oil Collection and Sample Arrangement

VCO of three Italian brands (VCO1, VCO2, and VCO3) and three different types of
adulterant oils, maize (MO), peanut (PO), and sunflower (SO) from the same brand were
purchased from the local market at Rende, Italy. Five samples from each VCO brand and
adulterant oils were collected for the analysis of pure sample oils (Table 1). The blended
samples were obtained by mixing each VCOn brand with one adulterant oil at a time in the
range from 5 to 50% v/v with an increase of 5%, replicated three times. All oil mixtures
were stored in borosilicate flasks at 4 ◦C, in the absence of light. Before the spectral analysis,
each sample was returned to room temperature and vortexed for 1 min at 5000 rpm. Finally,
90 VCO blended samples were produced for each adulterant oil, with a total of 270 samples,
as reported in Table 2. The Kennard–Stone procedure for sample partition was used to
arrange calibration and testing subsets. For this purpose, 70 samples from each blended set
were selected for the calibration step and 20 samples were used to validate the prediction
performance of the models [34].

Table 2. Sample scheme.

Pure Sample Set Mixture Sample Sets

VCO a brand 1 (VCO1) = 5
samples

VCO adulterated with MO 5–50%, 10 × 3 = 30 samples for each VCO brand = 90 c CMO b

samples

VCO brand 2 (VCO2) = 5 samples VCO adulterated with PO 5–50%, 30 samples for each VCO brand = 90 CPO samples

VCO brand 3 (VCO3) = 5 samples VCO adulterated with SO 5–50%, 30 samples for each VCO brand = 90 CSO samples

MO a = 5 samples

PO a = 5 samples Total samples: 30 pure oil samples + 270 mixture oil samples = 300 samples

SO a = 5 samples
a VCO = virgin coconut oil; MO = maize oil; PO = peanut oil; SO = sunflower oil; b CMO = VCO + MO;
CPO = VCO + PO; CSO = VCO + SO. c Adulteration procedure has been made in triplicate for each VCO brand.

3.2. FTIR-ATR Spectra Acquisition and Treatment

FTIR spectra were acquired on a Fourier transform infrared spectrometer (Spectrum
Two, Perkin Elmer, Milan, Italy) equipped with a diamond crystal cell attenuated total
reflection accessory (HATR top plate fitted with a 50 mm ZnSe crystal). Oil samples were
placed on the ATR surface and infrared spectra were recorded between 4000 and 450 cm−1.
All spectra were acquired at a resolution of 4 cm−1 and 32 scans. After cleaning and drying
the ATR element, the room air spectrum was selected as the background. The ATR plate
was cleaned prior to each analysis with dry paper and wiped with hexane and ethanol,
making it possible to dry the surface of the ATR. Cleanliness was verified by comparing
the background spectrum with the previous ones to check the instrumental conditions and
laboratory interferences from H2O and CO2. The spectral data were converted into .csv
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files suitable for direct import into statistical tools. The computing environment MATLAB®

(The Mathworks, Inc., Natick, MA, USA) and The Unscrambler X from CAMO (Computer
Aided Modelling, Trondheim, Norway) were used for the handling of ATR-FTIR spectral
data.

The spectral windows 4000–3100 cm−1 and 2500–1900 cm−1 were not considered
due to a lack of information [24], so each sample spectrum was stored by selecting the
wavenumber ranges 3100–2500 cm−1 and 1900–450 cm−1 with a data vector consisting of
2052 wave variables. According to the sample preparation and FTIR spectra acquisition,
the experimental data were arranged in four data matrices, one matrix dedicated to pure oil
samples with dimensions 30 × 2025 and three matrices for blended samples (70 × 2025 for
each adulterant). All the matrices were divided into their respective subsets dedicated to the
calibration and validation of the models, as described in the previous section. Prior to the
multivariate analysis, a pre-treatment of the data was applied converting the spectral signal
from reflectance to absorbance unit and the baseline correction to allow the exploitation of
Beer’s law and adjust the spectral offset adjusting the data to the minimum values.

3.3. Chemometric Method

The vibrational spectra of food samples and their adulterants are in many cases very
similar, and this is certainly the case for edible vegetable oils. Therefore, chemometric tools
for instrumental data handling and spectral identification and quantification are funda-
mental for the development of quality control strategies. Multivariate curve resolution
methodologies are characterized by their ability to process the recorded spectral data and
distinguish the spectral contribution of the individual components that make up complex
chemical samples, which may consist of two single substances up to highly complex natural
mixtures such as food samples.

The MCR-ALS approach is based on the extraction of relevant information about the
single components in a complex chemical system by means of a bilinear decomposition
procedure from the experimental data matrix D (n,m), where the sample spectra (n) are
arranged with the corresponding wavenumbers (m). The MCR modeling produces two
smaller matrices containing information about the pure components in terms of their
respective concentrations (matrix C) and spectra (matrix S); these matrices can be used
for classification or quantification purposes, while the spectral profile of the components
present in the complex mixtures is useful for their identification. Finally, as shown in
Equation (1), where the decomposition is described mathematically, matrix E includes
information not explained by the model.

D = CST + E (1)

The MCR elaboration uses an iterative ALS (alternating least squares) algorithm,
which involves the generation of a sequence of approximate solutions that change with
the execution of several cycles. The ALS procedure is often unable to provide unique
solutions due to intensity and/or rotational ambiguity in the elaborations, however, a series
of constraints can be applied to reduce the number of responses and fit the optimized result
with a chemical significance. The non-negativity constraint can only guarantee positive
values for matrix C and S when applied and the correlation constraint is usually dedicated
to the MCR-ALS calibration and mixture determination, even in the presence of unknown
interferences. The correlation constraint is implemented in the ALS iteration, where the
relationship between the reference concentrations and calibration samples is used to predict
the concentration of unknown samples. Multivariate resolution was achieved by using the
MCR-ALS 2.0 toolbox for Matlab® [35].

In order to evaluate the prediction performance of the MCR-ALS models, external
validation was made by using new samples (not used during the calibration step). The
following figures of merit were calculated to describe the validation results:
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Root mean squares error of prediction (RMSEP)

RMSEP =

√
∑n

i=1(ci − ĉi)
2

n
(2)

Error in predicted concentrations in% (RE%)

RE(%) = 100

√√√√∑n
i=1(ci − ĉi)

2

∑n
i=1 c2

i
(3)

Data pre-treatment procedures and variable selection were elaborated by using a
regression toolbox for Matlab® available on website: https://michem.unimib.it/ (accessed
on 1 October 2022) [33].

4. Conclusions

Many of the analytical methods developed so far to quantify the adulteration of oils
often require extensive use of solvents, are time-consuming, and cause the destruction
of the samples. The use of FTIR spectroscopy combined with MCR-ALS analysis has
proven to be a fast, clean, and non-destructive method. An analytical strategy based on
two-step data processing was built, which first used the control chart method to distinguish
samples of pure coconut oil from adulterated samples. The collection of the data into
augmented matrices, the pre-treatment of the data, variable selection, and the use of
correlation constraint, subsequently allowed the quantification of the adulterated samples
using MCR calibration models ensuring that the values predicted in the concentration
matrices match the effective concentration. Derivative and SNV pre-treatment approaches
were very useful to improve the extraction of information from FTIR data and allowed
the detection of VCO adulteration when the multivariate spectral analysis was performed.
The MCR calibration models were optimized by applying a Genetic Algorithm (GA),
which selected the most important variables that showed satisfactory predictive ability
in assessing the addition of adulterants with errors below 4.58%. This work confirmed
that ATR-FTIR spectroscopy has great potential in the control of food matrices, such as the
detection of virgin coconut oil adulteration, and was particularly effective when combined
with chemometric tools capable of resolving and understanding spectral signals even from
complex food samples.
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