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Abstract: The crystal morphology of high energetic materials plays a crucial role in aspects of their
safety performance such as impact sensitivity. In order to reveal the crystal morphology of ammonium
dinitramide/pyrazine-1,4-dioxide (ADN/PDO) cocrystal at different temperatures, the modified
attachment energy model (MAE) was used at 298, 303, 308, and 313 K to predict the morphology
of the ADN/PDO cocrystal under vacuum and ethanol. The results showed that under vacuum
conditions, five growth planes of the ADN/PDO cocrystal were given, which were (1 0 0), (0 1 1),
(1 1 0), (1 1 −1), and (2 0 −2). Among them, the ratios of the (1 0 0) and (0 1 1) planes were 40.744%
and 26.208%, respectively. In the (0 1 1) crystal plane, the value of S was 1.513. The (0 1 1) crystal plane
was more conducive to the adsorption of ethanol molecules. The order of binding energy between
the ADN/PDO cocrystal and ethanol solvent was (0 1 1) > (1 1 −1) > (2 0 −2) > (1 1 0) > (1 0 0). The
radial distribution function analysis revealed that there were hydrogen bonds between the ethanol
and the ADN cations, van der Waals interactions with the ADN anions. As the temperature increased,
the aspect ratio of the ADN/PDO cocrystal was reduced, making the crystal more spherical, which
helped to further reduce the sensitivity of this explosive.

Keywords: ADN/PDO cocrystal; attachment energy model; molecular dynamics; growth morphology

1. Introduction

High-energy compounds are a class of compounds containing explosive groups that
can independently undergo chemical reactions and output energy. They are widely used
in exploration, aviation, and other fields. Ammonium dinitramide (ADN) [1] is an ionic
energetic compound, which is in the α crystal form at normal temperature and pressure,
with a crystal density of 1.812 g/cm3 [2], an enthalpy of formation of −1.22 mJ/kg [3],
and an oxygen balance of 25.8% [4]. Compared with ammonium perchlorate (AP), ADN
has a higher enthalpy of formation [5], which can provide higher specific impulse when
used in propellants. Since ADN is free of chlorine, its combustion products are clean, and
its characteristic signal, such as primary smoke, etc., is low when it burns. However, the
application of ADN is limited by the high hygroscopicity at room temperature [6,7].

Cocrystallization of energetic materials can effectively improve the physical and
chemical properties [8,9]. Previous studies [10,11] have shown that cocrystallization is
an effective way to improve the hygroscopicity of ADN. The moisture absorption rate
experiment with an AD/18C6 (18-crown-6) cocrystal [12] showed that the hygroscopicity
of the ADN/18C6 cocrystal was significantly lower than that of the ADN. The modified
attachment energy was adopted by Xie [13] to explore the influence of ethanol on the
morphology of an ADN/18C6 cocrystal at different temperatures. The results revealed
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that the morphology of the ADN/18C6 cocrystal was close to spherical at 293 K, and the
cocrystal of the ADN/18C6 had lower hygroscopicity than the ADN at this temperature.
Pyrazine-1,4-dioxide (PDO) was selected by Michael K [14] to construct an ADN/PDO
cocrystal with a molar ratio of 2:1. The hygroscopicity test showed that the hygroscopicity
of the ADN decreased significantly after the cocrystallization of the ADN and PDO. The
thermal stability of the ADN/PDO cocrystal was higher than the ADN. Meanwhile, the
energetic properties were improved over the ADN.

As an important indicator of crystals, their morphology has been widely consid-
ered [15–17]. The morphology of an energetic material can significantly affect its sen-
sitivity [18], which is affected by saturation, solvent, temperature, etc. [19,20]. In this
work, an “explosive/solvent” double-layer model was constructed, and four temperatures
were adopted to perform the molecular dynamics, which was carried out at 298, 303, 308,
and 313 K. The morphology of the ADN/PDO cocrystal was predicted with the help of
a modified attachment energy model. The binding energy, radial distribution function,
and diffusion coefficient were used to reveal the growth morphology of the ADN/PDO
cocrystal in an ethanol environment.

2. Results and Discussion
2.1. Force Field Verification

As an ionic compound, ADN has strong electrostatic interactions between anions and
cations. In order to accurately calculate the interaction energy between the ADN/PDO
and ethanol, the DMol3 program was selected to calculate the Mulliken charge of the
ADN/PDO unitcell and ethanol, which was adopted as the atomic charge for subsequent
calculations. The Perdew–Burke–Ernzerhof (PBE) correlation was used to calculate the
exchange-correlation energy. The all-electron method was implemented to treat the core
electrons. The double numerical plus polarization numerical basis set (DNP) was adapted.
The Mulliken charge is shown in Figure 1.
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the Mulliken charge were adopted to describe the properties of the atom in the whole 

Figure 1. Mulliken charges of the ADN, PDO, and ethanol. (a) ADN (b) PDO (c) EtOH.

In classical molecular dynamics, the force field parameters directly determine the accu-
racy of calculation results. In order to accurately describe the interaction in the ADN/PDO
cocrystal, COMPASSIII, PCFF, CVFF, Universal, and Dreiding force fields and the Mulliken
charge were adopted to describe the properties of the atom in the whole simulation model.
The optimized unit cell parameters of the ADN/PDO cocrystal are given in Table 1. The
relative error (RE) of the unit cell parameters in Table 1 revealed that the RE optimized
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by CVFF was smaller than the results under other force fields, and it was closer to the
experimental value. Meanwhile, the calculation of Yusop [21] revealed that the CVFF force
field was suitable for the molecular dynamics simulation of ethanol. Therefore, the CVFF
force field was adopted to perform the molecular dynamics simulation.

Table 1. ADN/PDO unit cell parameters and relative errors optimized by five force fields.

Parameters Exp COMPASSIII PCFF CVFF Universal Dreiding

a/Å 11.592 10.946 11.533 11.626 11.819 11.347
b/Å 8.188 8.143 9.167 8.504 8.472 7.960
c/Å 7.227 6.832 6.946 7.217 7.687 7.696
α/◦ 90.000 90.000 90.000 90.000 90.000 90.000
β/◦ 101.236 99.546 93.744 101.050 100.974 100.628
γ/◦ 90.000 90.000 90.000 90.000 90.000 90.000
REa 0.00% −5.57% −0.51% 0.29% 1.96% −2.12%
REb 0.00% −0.54% 11.96% 3.86% 3.47% −2.78%
REc 0.00% −5.47% −3.89% −0.14% 6.36% 6.49%
REα 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%
REβ 0.00% −1.67% −7.40% −0.18% −0.26% −0.60%
REγ 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%

Note: RE is the relative error.

2.2. Morphology of the ADN/PDO in Vacuum

The morphology of the ADN/PDO in vacuum was calculated based on the AE model,
as shown in Figure 2. Under vacuum conditions, the important growth planes and area
ratios of the ADN/PDO cocrystal are shown in Table 2. It can be seen from Figure 2 that
the vacuum morphology of the ADN/PDO cocrystal was approximately hexagonal prism,
and the aspect ratio of the crystal was 2.569. Its crystal morphology was mainly composed
of five growth crystal planes (1 0 0), (0 1 1), (1 1 0), (1 1 −1), and (2 0 −2). Among them, the
(1 0 0) surface had the largest exposed area, accounting for 40.744%, and had the greatest
morphological importance. According to Formula (3), it can be seen that the absolute value
of the attachment energy was proportional to the relative growth rate of the corresponding
crystal plane. The order of the relative growth rate of each crystal plane of the ADN/PDO
was (2 0 −2) > (1 1 −1) > (1 1 0) > (0 1 1) > (1 0 0).
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Table 2. The crystal habits parameters of the ADN/PDO cocrystal under vacuum (attachment
energy model).

(h k l) dhkl Surface Area/Å2 Eatt (total)/(kcal·mol−1) Total Facet Area/% Aspect Ratio

(1 0 0) 11.411 61.370 −61.570 40.744

2.569
(0 1 1) 5.442 128.669 −117.417 26.208
(1 1 0) 6.818 102.703 −109.348 18.177

(1 1 −1) 5.220 134.151 −119.789 14.450
(2 0 −2) 3.306 105.900 −148.904 0.422

In the modified attachment energy (MAE) model, S was used to characterize the
surface roughness of the (h k l) crystal plane [22]. The larger the value of S, the rougher the
surface of the corresponding crystal plane, and the more conducive to the adsorption of
solvents [18,23]. It can be seen that the values of S corresponding to (1 0 0), (0 1 1), (1 1 0),
(1 1 −1), and (2 0 −2) crystal planes were 1.223, 1.513, 1.359, 1.389, and 1.836, respectively.
The packing patterns of five crystal planes of the ADN/PDO and the corresponding
Connolly surfaces are shown in Figure 3. Based on Figure 3, more chemical groups were
exposed in the (0 1 1) and (2 0 −2) crystal planes compared with the other three crystal
planes. It can be seen from Figure 3b,e that the (0 1 1) crystal plane was mainly exposed
to the PDO and the cations of the ADN, and the (2 0 −2) crystal plane was exposed to
both the cations and anions of the ADN and PDO. This results in the (2 0 −2) crystal plane
were more bumpy and rougher than the (0 1 1) crystal plane. The (2 0 −2) plane was the
roughest and had more adsorption sites. It was conducive to absorbing the molecule of
solvent. This had a certain hindering effect on the growth of the crystal plane.
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2.3. Morphology of the AND/PDO in Solvent
2.3.1. Binding Energy

When a crystal grows in a solution, the solute molecules first diffuse to the crystal
surface through diffusion, then overcome the desorption energy barrier of the solvent, and
finally adsorb to the crystal surface to complete the crystal growth [23,24]. Therefore, the
crystal morphology can be significantly affected by the adsorption of solvents on the crystal
surface. The greater the binding energy between solvent and crystal plane, the stronger the
binding effect, the greater the desorption energy barrier that the solute needs to overcome,
and the stronger the inhibitory effect of the solvent on the growth of crystal plane. The
formula for calculating the binding energy is

Ebind = −Eint = −(Etot − Ecry − Esol) (1)

where Ebind, Eint are the binding energy and interaction energy between the crystal plane
and the solvent, respectively. Etot is the total energy of the mixed system of crystal plane
and solvent, Ecry is the energy of the crystal plane in the model, Esol is the energy of the
solvent in the model. The calculation results are shown in Table 3.

Table 3. Energy details of the layered model for each crystal face of ADN/PDO-EtOH at different
temperatures.

T/K (h k l) Etot/
(kcal·mol−1)

Esol/
(kcal·mol−1)

Ecry/
(kcal·mol−1)

Ebind/
(kcal·mol−1)

298

(1 0 0) −31,481.17 −977.69 −30,057.88 445.60
(0 1 1) −30,628.73 −1821.46 −27,671.08 1136.19
(1 1 0) −34,837.67 −1936.03 −32,224.39 677.25

(1 1 −1) −36,757.43 −1570.34 −34,100.57 1086.52
(2 0 −2) −13,735.02 −1740.63 −11,101.82 892.57

303

(1 0 0) −31,274.01 −817.80 −29,976.35 479.86
(0 1 1) −30,552.83 −1790.10 −27,651.20 1111.53
(1 1 0) −34,632.60 −1770.36 −32,133.13 729.11

(1 1 −1) −36,837.35 −1703.37 −34,060.68 1073.30
(2 0 −2) −13,690.91 −1658.16 −11,116.84 915.91

308

(1 0 0) −31,210.31 −829.50 −29,875.30 505.50
(0 1 1) −30,341.76 −1626.49 −27,541.56 1173.72
(1 1 0) −34,523.77 −1706.96 −32,087.83 728.98

(1 1 −1) −36,633.24 −1583.95 −33,947.88 1101.40
(2 0 −2) −13,497.78 −1561.47 −11,070.35 865.96

313

(1 0 0) −31,010.92 −714.65 −29,865.60 430.68
(0 1 1) −30,239.24 −1560.73 −27,580.70 1097.81
(1 1 0) −34,250.38 −1550.09 −31,982.37 717.92

(1 1 −1) −36,502.03 −1486.06 −33,840.10 1175.87
(2 0 −2) −13,428.79 −1492.03 −11,066.84 869.92

According to Table 3, it can be seen that the binding energy between the ADN/PDO
cocrystal and the ethanol solvent were positive on all important growth crystal planes,
indicating that the interaction between the solute and the solvent was dominated by
attraction. The variations of the binding energy between the ADN/PDO and the ethanol
on each important crystal face of the ADN/PDO cocrystal are shown in Figure 4, which
were obtained under different temperatures. The order of binding energy between five
crystal planes of the ADN/PDO cocrystal and ethanol was (0 1 1) > (1 1 −1) > (2 0 −2)
> (1 1 0) > (1 0 0). It can be revealed that the binding effect between the ethanol and
the ADN/PDO was the strongest on the (0 1 1) crystal plane. Meanwhile, ethanol had
the strongest inhibitory effect on the growth of this crystal plane. It can be seen from
Figure 4 that the binding energy between the ADN/PDO crystal plane and ethanol first
increased and then decreased as the temperature increased. Its value was always positive,
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indicating that the process of ethanol adsorption onto the ADN/PDO crystal plane is an
exothermic process.
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2.3.2. Radial Distribution Function

The radial distribution function (RDF) is often adopted to analyze non-bonding inter-
actions between atomic pairs. It represents the probability of finding atom B at a distance r
from atom A. In general, non-bonding interactions between atomic pairs include hydrogen
bonding (less than 3.1 Å), van der Waals forces (3.1–5.0 Å), and electrostatic forces (greater
than 5.0 Å).

Taking the (0 1 1) crystal plane as an example, the RDF results are shown in Figure 5.
The black, red, and blue curves corresponded to the RDF between the oxygen atom in
ethanol (EtOH-O) and the nitrogen atom connected to two nitro groups in the ADN anion
(ADN-N), the RDF between the EtOH-O and the oxygen atom in the PDO (PDO-O), and
the RDF between the EtOH-O and the nitrogen atom in the ADN cations (ADN-N1),
respectively. The coordinates of the local maximum value of each curve are given in the
Figure 5. Based on Figure 5a, the RDF of the EtOH-O and ADN-N1 had the first peak at
r = 2.85 Å at 298 K, indicating that there was a hydrogen bond between the ethanol and
ADN cations. The peak of the black curve appeared at the position of r = 4.91 Å, indicating
that there was a van der Waals interaction between the ethanol and the ADN anions. There
were two peaks in the radial distribution function between the EtOH-O and PDO-O, which
appeared at r = 2.67 and 4.67 Å respectively. This revealed the presence of hydrogen bonds
and van der Waals interactions between the ADN and the PDO.
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Similarly, when the temperatures were 303, 308, and 313 K, there were hydrogen bonds
and van der Waals interactions between the ethanol and the PDO. There were hydrogen
bonds and van der Waals interactions between the ethanol and the cation and anion of the
ADN, respectively. As the temperature increased, the number of local maximum values
of the three RDFs remained unchanged, while the abscissa of the local maximum point
moved to the right as a whole. This revealed that the increase in temperature led to the
change of the hydrogen bond and van der Waals interaction between the ethanol and the
ADN, PDO, which first increased and then decreased. It was consistent with the binding
energy results in Figure 4.

2.3.3. Diffusion Coefficients

Generally, the diffusion of a solvent is greatly affected by temperature. The diffusion
of a solvent on the crystal surface may cause it to adsorb on the crystal surface. Absorption
of solute molecules to the crystal surface is blocked by this process. The growth of the
corresponding crystal planes is also inhibited. To reveal the effect of temperature on the
diffusion of ethanol molecules on the AND/PDO crystal plane, the calculated trajectories
were processed, and the corresponding mean square displacement curves were calculated,
which is given in Figure 6.
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According to Einstein’s law of diffusion, the formula for calculating the diffusion
coefficient is

lim
t→∞

〈∣∣∣⇀r (t)−⇀
r (0)

∣∣∣2〉 = lim
t→∞

MSD = 6Dt (2)

where D is the diffusion coefficient. Therefore, the diffusion coefficient is one-sixth of the
slope of the mean square displacement curve.

The diffusion coefficients of the ethanol on each crystal surface at different tempera-
tures are given in Table 4. Taking the (0 1 1) surface as an example, when the temperature
was 298 K, the diffusion coefficient of the ethanol in the system was 0.52 × 10−8 m2·s−1.
When the temperature rose to 313 K, the diffusion coefficient of the system was
0.64 × 10−8 m2·s−1. As the temperature increased, the diffusion coefficient of the ethanol
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under the same crystal plane increased gradually. At the same temperature, the largest
diffusion coefficient of the ethanol in the layered model was obtained under the (1 1 0)
crystal plane. However, the final morphology of the crystals in the solvent was determined
by the diffusion of the solute and solvent and the competitive adsorption of the solute and
solvent on the crystal surface.

Table 4. Diffusion coefficient of the solvent on each crystal face at different temperatures.

(h k l)
D/(×10−8 m2·s−1)

298 K 303 K 308 K 313 K

(1 0 0) 0.53 0.61 0.60 0.71
(0 1 1) 0.52 0.59 0.62 0.64
(1 1 0) 0.57 0.61 0.63 0.73

(1 1 −1) 0.56 0.61 0.60 0.66
(2 0 −2) 0.57 0.56 0.62 0.61

2.3.4. Morphology Analysis

According to the modified AE model, the corrected attachment energy and aspect
ratio between the crystal plane of the ADN/PDO cocrystal and ethanol are shown in
Table 5, which was calculated under different temperatures. The calculated morphology
of the ADN/PDO cocrystal in ethanol at different temperatures and the corresponding
experimental crystal morphology of the ADN/PDO cocrystal [25] are shown in Figure 7.
Based on Table 5, it can be seen that the (0 1 1) crystal surface of the ADN/PDO cocrystal
had a greater interaction with the ethanol than the (1 0 0) plane at the four temperatures
(298, 303, 308, and 313 K). This indicated that the ethanol had a strong inhibitory effect on
the growth of the ADN/PDO (0 1 1) crystal surface.

Table 5. Modified attachment energies and related parameters of the ADN/PDO cocrystals in ethanol
at different temperatures.

T/K (h k l) Eint/
(kcal·mol−1)

Es/
(kcal·mol−1)

Eatt
′/

(kcal·mol−1)
Total Facet

Area/% Aspect Ratio

298

(1 0 0) −445.60 −27.85 −27.51 15.37

3.324
(0 1 1) −1136.19 −71.01 −10.00 84.63
(1 1 0) −677.25 −42.33 −51.81 -

(1 1 −1) −1086.52 −67.91 −25.46 -
(2 0 −2) −892.57 −55.79 −46.46 -

303

(1 0 0) −479.86 −29.99 −24.90 19.85

2.653
(0 1 1) −1111.54 −69.47 −12.33 80.15
(1 1 0) −729.11 −45.57 −47.40 -

(1 1 −1) −1073.30 −67.08 −26.61 -
(2 0 −2) −915.91 −57.24 −43.78 -

308

(1 0 0) −505.50 −31.59 −22.94 12.33

4.090
(0 1 1) −1173.72 −73.36 −6.45 87.67
(1 1 0) −728.98 −45.56 −47.41 -

(1 1 −1) −1101.40 −68.84 −24.17 -
(2 0 −2) −865.96 −54.12 −49.52 -

313

(1 0 0) −430.68 −26.92 −28.65 10.70

2.353
(0 1 1) −1097.81 −68.61 −13.63 61.50
(1 1 0) −717.92 −44.87 −48.35 -

(1 1 −1) −1175.87 −73.49 −17.71 27.80
(2 0 −2) −869.92 −54.37 −49.06 -
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According to the results of S on each crystal plane of the ADN/PDO cocrystal, the
(2 0 −2) crystal plane was the roughest, which was the most favorable for the adsorption of
solvents. However, the binding energy between the solvent and the (2 0 −2) crystal plane
was weak, and the diffusion coefficient of ethanol on the (2 0 −2) plane was small. Under
the comprehensive influence of various factors, the relative growth rate of the (2 0 −2)
plane was large, which made the (2 0 −2) crystal surface disappear eventually during the
growth process. Similarly, the roughness of the (0 1 1) surface and the binding energy
between explosives and ethanol were large. This gave the (0 1 1) surface the largest area
ratio in the ethanol solvent.

When the temperature was lower than 308 K, the morphology of the ADN/PDO
cocrystal in the ethanol solvent was a quadrangular prism. The three crystal planes (1 1 0),
(1 1 −1), and (2 0 −2) eventually disappeared during the growth process owing to the high
relative growth rate. When the temperature increased from 298 to 308K, the (0 1 1) surface
area ratio of the ADN/PDO cocrystal was greater than 80%, and the aspect ratios of the
ADN/PDO cocrystal were 3.324, 2.653, and 4.090, respectively. When the temperature was
313 K, the morphology of the ADN/PDO cocrystal was irregular prism, and the aspect ratio
was 2.353. The ADN/PDO cocrystal morphology calculated by the modified AE model
was the closest to the experimental one at 313 K. The presented modeling and simulations
can also be applied for the prediction of the drug crystal topologies in a pharmaceutical
application employing drug delivery carriers [26–28].

3. Modeling and Simulation
3.1. Modified Attachment Energy Model

The Attachment Energy Model (AE model) was developed by Hartman and Ben-
nema [25,29] on the basis of the Periodic Bond Chain (PBC) theory. In the AE model, the
relative growth rate of each crystal plane of the crystal is proportional to the absolute value
of the crystal plane attachment energy.

Rhkl ∝ |Eatt| (3)

where Rhkl is the relative growth rate, and Eatt is the attachment energy of the crystal plane,
kcal·mol−1. The attachment energy (Eatt) is defined as the energy released by a wafer with
a thickness of dhkl attached to the (h k l) crystal plane. The formula is

Eatt = Elatt − Eslice (4)

where Eatt, Elatt, Eslice are the attachment energy, lattice energy of crystal, and the energy of
growth slice, respectively.
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By calculating the attachment energy of the crystal face, the habit of the crystal can be
predicted with the help of the AE model. However, the external environment of crystal
growth is not considered by the AE model. It is difficult to accurately reveal the actual
growth process of crystals in solution [30,31]. Therefore, the AE model should be corrected,
and the modified formula for calculating the attachment energy is

E′att = Eatt − S·Es (5)

where S is used to describe the surface characteristics and is defined as S = Aacc
Ahkl

.
Among them, Aacc is the accessible area of solvent on the crystal plane unit (h k l), Ahkl

is the cross-sectional area of the crystal plane unit (h k l). Es represents the effect of the
solvent on the crystal plane growth, which is defined as

Es = Eint·
Ahkl
Abox

(6)

where Abox and Eint are the cross-sectional area of the simulation box and the interaction
energy between the crystal layer and the solvent, respectively.

Eint is defined as
Eint = Etot − (Ecry + Esol) (7)

where Etot, Ecry, Esol are the total energy of the mixed system of crystal plane and solvent,
the energy of crystal plane in the calculation model, and the energy of the solvent in this
model, respectively. Meanwhile, under solvent conditions, the relative growth rate of the
crystal is proportional to the absolute value of the corrected attachment energy.

R′hkl ∝
∣∣E′hkl

∣∣ (8)

3.2. Computational Methods

The initial unit cell for the ADN/PDO cocrystal was obtained from the Cambridge
Crystallographic Data Centre (CCDC) [14]. The initial unit cell parameters of the ADN/PDO
cocrystal were a = 11.592 Å, b = 8.188 Å, c = 7.227 Å, α = γ = 90◦, β = 101.236◦, and the space
group was P21/c, belonging to the monoclinic crystal system. The molecular structure of
the ADN and PDO and the unit cell structure of the ADN/PDO cocrystal are shown in
Figure 8. In Figure 8, the gray, white, red, and blue balls correspond to carbon, hydrogen,
oxygen, and nitrogen atoms, respectively.
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The flowchart of the calculation model is given in Figure 9. At first, the stable struc-
ture of the ADN/PDO unit cell was obtained after geometry optimization. The Smart
optimization algorithm was used, which is the built-in algorithm in Materials Studio 2020.
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The Ewald summation method was selected as the electrostatic force summation method,
and the precision was set to 0.001 kcal·mol−1. The atom-based method was selected as the
van der Waals force summation method, and the cut-off radius was set to 12.5 Å. The mor-
phology of the AND/PDO in vacuum was predicted with the help of the AE model. The
important growth planes under vacuum conditions were determined. Then, the important
crystal planes of the ADN/PDO were cut to expand it into a 4 × 4 × 4 supercell structure.
A solvent layer containing 400 ethanol molecules was constructed using the Amorphous
Cell module. The Build Layers function was used to construct an “explosive/solvent”
double-layer model with a 50 Å vacuum layer above the solvent layer.
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Figure 9. Schematic diagram of the flow chart of calculation model construction.

The model was optimized using the Forcite module of Materials Studio 2020, followed
by molecular dynamics calculations at specified temperatures (298, 303, 308, and 313 K).
When molecular dynamics calculations were performed, the ensemble and the simulation
time were set as NVT and 500 ps, respectively. A total of 500,000 calculation steps were
performed, and the timestep was set as 1 fs. The Andersen method was adopted to control
the temperature through the whole simulation process. The initial velocity of the particle
was randomly assigned according to a Gaussian distribution. Finally, the homemade script
was used to calculate the interaction energy between the ADN/PDO explosive and ethanol,
the radial distribution function, the mean square displacement, and the mass density
distribution based on the stable part of the calculated trajectory.

4. Conclusions

In summary, the modified attachment energy (MAE) model was adopted to inves-
tigate the morphology of the ADN/PDO cocrystal in vacuum and ethanol at different
temperatures (298, 303, 308, and 313 K). The CVFF forcefield and Mulliken charges were
used to perform the molecular dynamics simulation. The main conclusions of this work
are as follows:
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(1) The growth morphology of the ADN/PDO is hexagonal prism in vacuum, and the
five main crystal surfaces are (1 0 0), (0 1 1), (1 1 0), (1 1 −1), and (2 0 −2). Among
them, the (1 0 0) surface has the largest exposed area, accounting for 40.744%.

(2) The binding energy between the ADN/PDO cocrystal and ethanol solvent is positive
on all important growth planes. The order of binding energy is (0 1 1) > (1 1 −1) >
(2 0 −2) > (1 1 0) > (1 0 0). The binding effect between the ethanol and ADN/PDO is
strongest on the (0 1 1) crystal plane.

(3) The radial distribution function analysis of the (0 1 1) crystal plane showed that there
are hydrogen bonds between the ethanol and ADN cations, van der Waals interactions
with the ADN anions, and hydrogen bonds and van der Waals interactions with the
PDO at the same time. In the (0 1 1) crystal plane, the value of S is 1.513, which
indicates that this surface has a large roughness. This is more conducive to the
adsorption of ethanol molecules.

(4) As the temperature increases, the diffusion coefficient of the ethanol under the same
crystal plane increases gradually. Meanwhile, the morphology analysis indicated that
increasing the temperature is beneficial to reducing the aspect ratio of the crystal. This
is conducive to the reduction of explosive sensitivity.
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