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Abstract: Four one-dimensional complexes, denoted as [NiL1][Ni(CN)4] (1), [CuL1][Ni(CN)4] (2),
[NiL2][Ni(CN)4]·2H2O (3), and [CuL2][Ni(CN)4]·2H2O (4) (L1 = 1,8-dimethyl-1,3,6,8,10,13-hexaaza-
cyclotetradecane; L2 = 1,8-dipropyl-1,3,6,8,10,13-hexaazacyclotetradecane) were synthesized by re-
acting nickel/copper macrocyclic complexes with K2[Ni(CN)4]. Subsequently, the synthesized
complexes were characterized using elemental analysis, infrared spectroscopy analysis, thermo-
gravimetric analysis, and X-ray powder diffraction. Single-crystal structure analysis revealed that
the Ni(II)/Cu(II) atoms were coordinated by two nitrogen atoms from [Ni(CN)4]2− with four nitro-
gen atoms from a macrocyclic ligand, forming a six-coordinated octahedral coordination geometry.
Nickel/copper macrocyclic complexes were bridged by [Ni(CN)4]2− to construct one-dimensional
chain structures in 1–4. The characterization results showed that the four complexes obeyed the
Curie–Weiss law with a weak antiferromagnetic exchange coupling.

Keywords: macrocyclic metal complexes; tetracyanonicolate; magnetism

1. Introduction

The rational construction of one to three-dimensional porous coordination complexes
has attracted considerable attention because of their potential applications in gas adsorption
and separation, catalysis, and magnetism [1–4]. The design and assembly of different
dimensional cyano-bridged complexes have been extensively researched in recent decades.
Cyano-bridged complexes with superior magnetic properties can be constructed using
cyano complexes, such as [Ag(CN)2]−, [Cu(CN)3]2−, [M(CN)4]2− (M = Cd, Ni, Pd, and
Pt), and [M(CN)6]3− (M = W, Mo, and Fe) [5–15]. Studies on tetracyanometallate anions
[Ni(CN)4]2− exhibiting bridging characteristics with either one or two of the cyano groups
have been reported [16–28].

In previous reports, a few cyano-bridged complexes with one-dimensional helical
chains were prepared and structurally characterized using transition metal macrocyclic
complexes [NiL0]2+ (L0 = 5,5,7,12,12,14-hexamethyl-1,4,8,11-tetraazacyclo-tetradecane) and
[Ni(CN)4]2− [24]. As a continuation of the above research, we used different macrocyclic lig-
ands (L1 = 1,8-dimethyl-1,3,6,8,10,13-hexaazacyclotetradecane, L2 = 1,8-dipropyl-1,3,6,8,10,13-
hexaazacyclotetradecane, represented in Scheme 1) for the construction of cyano-bridged
complexes. In this study, we synthesized four cyano-bridged complexes: [NiL1][Ni(CN)4] (1),
[CuL1][Ni(CN)4] (2), [NiL2][Ni(CN)4]·2H2O (3), and [CuL2][Ni(CN)4]·2H2O (4), which were
isolated from the reactions of [ML](ClO4)2 with [Ni(CN)4]2−. In addition, the structures
and magnetism of four cyano-bridged complexes were analyzed.

Molecules 2023, 28, 4529. https://doi.org/10.3390/molecules28114529 https://www.mdpi.com/journal/molecules

https://doi.org/10.3390/molecules28114529
https://doi.org/10.3390/molecules28114529
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/molecules
https://www.mdpi.com
https://doi.org/10.3390/molecules28114529
https://www.mdpi.com/journal/molecules
https://www.mdpi.com/article/10.3390/molecules28114529?type=check_update&version=2


Molecules 2023, 28, 4529 2 of 9Molecules 2023, 28, 4529 2 of 10 
 

 

 

Scheme 1. Structural formula of macrocyclic complexes (R1 = CH3, R2 = C3H7, and M = Ni or Cu). 
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metric unit of the structure of complex 1 contained one [NiL1]2+ cation and one [Ni(CN)4]2− 

anion. Each Ni(1) was on an inversion center and coordinated with four nitrogen atoms, 

namely N(1), N(2), N(1A), and N(2A) (symmetry code: A, 1–x, 1–y, and 1–z), of the mac-

rocyclic ligand in the equatorial plane and two nitrogen atoms, namely, N(4) and N(4B) 

(symmetry code: B, –x, –y, 1–z), of [Ni(CN)4]2− in axial positions, forming a six-coordinated 

octahedral geometry in 1. The distances [2.0498(16) and 2.0712(16) Å] of Ni(1)-N(macro-

cycle) were shorter than that of the Ni(1)-N(cyano) [2.1489(17) Å], and they were longer 

than that of the Ni(2)-C(cyano) [1.858(2)-1.866(2) Å] (Table 1). The [Ni(CN)4]2− anion 

bridged the macrocyclic complex [NiL1]2+ cation in trans-positions to form a one-dimen-

sional chain along the b-axis (Figure 1). One-dimensional linear chains were formed when 

trans-M(II) tetradentate macrocyclic complexes were used because of steric hindrance. 

Four possible helical isomers can be formed when cis-M(II) tetradentate macrocyclic com-

plexes and [Ni(CN)4]2− building blocks are used [18,19,24]. 

  

(I) (II) 

Figure 1. (I) The structure of complexes 1 and 2 (M = Ni or Cu) and the symmetry codes for the 

generated atoms: A(1−x, 1−y, 1−z), B(−x, −y, 1−z); (II) The [Ni(CN)4]2− bridges macrocyclic complex 

[ML1]2+ to form a one-dimensional chain along the b-axis. 

The six-coordinated Cu(II) ions of complex 2 displayed a distorted octahedral geom-

etry by coordinating with four nitrogen atoms, namely, N(1), N(2), N(1A), and N(2A) 

(symmetry code: A, 1–x, 1–y, 1–z), of macrocyclic ligand in the equatorial plane and two 

nitrogen atoms, namely, N(5) and N(5B) (symmetry code: B, –x, –y, 1–z) of [Ni(CN)4]2− in 

axial positions (Figure 1). The Cu(1)-N(macrocycle) distances [2.0009(15) and 2.0240(16) 

Å] were shorter than the Cu(1)-N(cyano) distances [2.563(2) Å] due to the Jahn-Teller ef-

fect, but longer than the distances [1.861(2)-1.865(2) Å] of Ni(1)-C(cyano) (Table 1). The 

[Ni(CN)4]2− anion bridged the macrocyclic complex [CuL1]2+ cation in trans-positions to 

form a one-dimensional chain along the b-axis in 2 (Figure 1). Complexes 3 and 4 exhibited 

similar one-dimensional structures. The asymmetric unit of complex 3/4 contained one 

[Ni/CuL2]2+ cation, one [Ni(CN)4]2− anion, and two water molecules (Figure 2). The 

Ni(II)/Cu(II) ions were coordinated by four nitrogen atoms of ligands along the equatorial 

plane and two nitrogen atoms of [Ni(CN)4]2− in axial positions. The [Ni(CN)4]2− anion 

bridged the macrocyclic complex [Ni/CuL2]2+ cation in trans-positions to form a one-di-

mensional chain along the b-axis in 3/4 (Figure 2). 

Scheme 1. Structural formula of macrocyclic complexes (R1 = CH3, R2 = C3H7, and M = Ni or Cu).

2. Results and Discussion
2.1. Description of Structures

Figure 1 shows the similarity between the structures of complexes 1 and 2. One
asymmetric unit of the structure of complex 1 contained one [NiL1]2+ cation and one
[Ni(CN)4]2− anion. Each Ni(1) was on an inversion center and coordinated with four
nitrogen atoms, namely N(1), N(2), N(1A), and N(2A) (symmetry code: A, 1–x, 1–y, and
1–z), of the macrocyclic ligand in the equatorial plane and two nitrogen atoms, namely,
N(4) and N(4B) (symmetry code: B, –x, –y, 1–z), of [Ni(CN)4]2− in axial positions, forming
a six-coordinated octahedral geometry in 1. The distances [2.0498(16) and 2.0712(16) Å]
of Ni(1)-N(macrocycle) were shorter than that of the Ni(1)-N(cyano) [2.1489(17) Å], and
they were longer than that of the Ni(2)-C(cyano) [1.858(2)-1.866(2) Å] (Table 1). The
[Ni(CN)4]2− anion bridged the macrocyclic complex [NiL1]2+ cation in trans-positions to
form a one-dimensional chain along the b-axis (Figure 1). One-dimensional linear chains
were formed when trans-M(II) tetradentate macrocyclic complexes were used because of
steric hindrance. Four possible helical isomers can be formed when cis-M(II) tetradentate
macrocyclic complexes and [Ni(CN)4]2− building blocks are used [18,19,24].
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Figure 1. (I) The structure of complexes 1 and 2 (M = Ni or Cu) and the symmetry codes for the
generated atoms: A(1−x, 1−y, 1−z), B(−x, −y, 1−z); (II) The [Ni(CN)4]2− bridges macrocyclic
complex [ML1]2+ to form a one-dimensional chain along the b-axis.

The six-coordinated Cu(II) ions of complex 2 displayed a distorted octahedral geometry
by coordinating with four nitrogen atoms, namely, N(1), N(2), N(1A), and N(2A) (symmetry
code: A, 1–x, 1–y, 1–z), of macrocyclic ligand in the equatorial plane and two nitrogen
atoms, namely, N(5) and N(5B) (symmetry code: B, –x, –y, 1–z) of [Ni(CN)4]2− in axial
positions (Figure 1). The Cu(1)-N(macrocycle) distances [2.0009(15) and 2.0240(16) Å] were
shorter than the Cu(1)-N(cyano) distances [2.563(2) Å] due to the Jahn-Teller effect, but
longer than the distances [1.861(2)-1.865(2) Å] of Ni(1)-C(cyano) (Table 1). The [Ni(CN)4]2−

anion bridged the macrocyclic complex [CuL1]2+ cation in trans-positions to form a one-
dimensional chain along the b-axis in 2 (Figure 1). Complexes 3 and 4 exhibited similar one-
dimensional structures. The asymmetric unit of complex 3/4 contained one [Ni/CuL2]2+

cation, one [Ni(CN)4]2− anion, and two water molecules (Figure 2). The Ni(II)/Cu(II)
ions were coordinated by four nitrogen atoms of ligands along the equatorial plane and
two nitrogen atoms of [Ni(CN)4]2− in axial positions. The [Ni(CN)4]2− anion bridged the
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macrocyclic complex [Ni/CuL2]2+ cation in trans-positions to form a one-dimensional chain
along the b-axis in 3/4 (Figure 2).

Table 1. Selected bond distances (Å) and angles (◦).

1
Bond Length Bond Length Bond Length

Ni(1)-N(1) 2.0498(16) Ni(1)-N(2) 2.0712(16) Ni(1)-N(4) 2.1489(17)
Ni(2)-C(6) 1.866(2) Ni(2)-C(7) 1.858(2)

Bond Angle Bond Angle Bond Angle
N(1)-Ni(1)-N(2) 94.15(7) N(1)-Ni(1)-N(2) #1 85.85(7) N(1)-Ni(1)-N(4) #1 90.27(6)

N(2)-Ni(1)-N(4) #1 88.33(6) N(1)-Ni(1)-N(4) 89.73(6) N(2)-Ni(1)-N(4) 91.67(6)
N(5)-C(7)-Ni(2) 176.0(2) N(4)-C(6)-Ni(2) 171.6(7) C(6)-N(6)-Ni(1) 149.7(5)

2
Bond Length Bond Length Bond Length

Cu(1)-N(1) 2.0009(15) Cu(1)-N(2) 2.0240(16) Cu(1)-N(5) 2.563(2)
Ni(1)-C(7) 1.865(2) Ni(1)-C(6) 1.861(2)

Bond Angle Bond Angle Bond Angle
N(1)-Cu(1)-N(2) 93.72(7) N(1)-Cu(1)-N(2) #1 86.28(7) C(6)-Ni(1)-C(7) 88.08(9)

C(6)-Ni(1)-C(7) #2 91.92(9) N(5)-C(7)-Ni(1) 175.7(9) N(4)-C(6)-Ni(1) 177.3(2)
C(7)-N(5)-Cu(1) 127.8(8)

3
Bond Length Bond Length Bond Length

Ni(1)-N(1) 2.061(2) Ni(1)-N(2) 2.068(2) Ni(1)-N(4) 2.118(2)
Ni(2)-C(8) 1.864(3) Ni(2)-C(9) 1.862(3)

Bond Angle Bond Angle Bond Angle
N(1)-Ni(1)-N(2) #1 85.66(10) N(1)-Ni(1)-N(2) 94.34(10) N(1)-Ni(1)-N(4) 92.09(10)

N(2)-Ni(1)-N(4) 91.21(9) N(1)-Ni(1)-N(4) #1 87.91(10) N(2)-Ni(1)-N(4) #1 88.79(9)
C(9)-Ni(2)-C(8) 91.14(11) C(9)-Ni(2)-C(8) #3 88.86(11) N(4)-C(8)-Ni(2) 177.1(2)
N(5)-C(9)-Ni(2) 178.9(3) C(8)-N(4)-Ni(1) 148.4(2)

4
Bond Length Bond Length Bond Length

Cu(1)-N(1) 2.016(2) Cu(1)-N(2) 2.0159(19) Cu(1)-N(4) 2.410(2)
Ni(1)-C(8) 1.864(3) Ni(1)-C(9) 1.865(3)

Bond Angle Bond Angle Bond Angle
N(1)-Cu(1)-N(2) #4 85.93(8) N(1)-Cu(1)-N(2) 94.07(8) N(1)-Cu(1)-N(4) #4 91.93(8)
N(2)-Cu(1)-N(4) #4 91.37(9) N(1)-Cu(1)-N(4) 88.07(8) N(2)-Cu(1)-N(4) 88.63(9)

C(8)-Ni(1)-C(9) 90.18(11) C(8)-Ni(1)-C(9) #5 89.82(11) N(4)-C(8)-Ni(1) 178.0(2)
N(5)-C(9)-Ni(1) 178.8(3) C(8)-N(4)-Cu(1) 160.8(2)

Symmetry transformation: #1 −x + 1, −y + 1, −z + 1; #2 −x, −y + 1, −z + 1; #3 −x + 2, −y + 1, −z; #4 −x + 1, −y + 1,
−z + 2; #5 −x + 2, −y + 1, −z + 1.
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Figure 2. (I) The structure of complexes 3 and 4 (M = Ni or Cu) and the symmetry codes for the
generated atoms: A(1−x, 1−y, 1−z), B(−x, −y, 1−z); (II) The [Ni(CN)4]2− bridges macrocyclic
complex [ML2]2+ to form a one-dimensional chain along the b-axis.

Due to the Jahn-Teller effect, the axial Cu–N(cyano) bonds were considerably longer
[2.563(2) in 2 and 2.410(2) Å in 4 (Table 1)] than those of the equatorial with mean values
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of Cu–N(macrocycle) bonds of 2.0125(15) and 2.0159(19) Å in 2 and 4, respectively. The
five-membered intra-chelate N-M-N angles had similar values [85.85(7), 86.28(7), 85.66(10),
and 85.93(8) Å for 1–4, respectively]. The Ni–C–N angles slightly deviated from linearity,
and the maximum deviation was observed for the Ni–C–N angle [171.6(7)◦] in complex 1,
and the Ni–C–N angles of coordinated cyano groups [171.6(7)◦, 175.7(9)◦, 177.1(2)◦, and
178.0(2)◦ for 1–4, respectively] were smaller than those of uncoordinated cyano groups
[176.0(2)◦, 177.3(2)◦, 178.9(3)◦, and 178.8(3)◦ for 1–4, respectively]. However, the M–C–N
angles significantly deviated from linearity. The M–C–N angles of the L1 ligand [149.7(5)◦

and 127.8(8)◦ for 1 and 2, respectively] were smaller than the M–C–N angles of L2 ligand
[168.4(2)◦ and 160.8(2)◦ for 3 and 4, respectively], shortening the distances of neighboring
macrocyclic metal center [9.834(2), 9.906(2), 10.187(2), and 10.647(2) Å for 1–4].

2.2. IR Spectra

The infrared spectra (Figures S1–S4) of complexes 3 and 4 had broad absorption bands
near 3400 cm–1, and the absorption was attributed to the stretching vibration of O–H. The
N–H absorption bands appeared near 3200 cm–1, and the absorption bands at 2136 (s) and
2125 (s), 2123 (s) and 2119 (s), 2152 (s) and 2131 (s), and 2136 (s) and 2129 (s) cm–1 were
assigned to υ(M–CN–M) and υ(M–CN) (M = Ni or Cu) in complexes 1–4.

2.3. XRD and TG

X-ray powder diffraction measurements for 1–4 (Figure 3) showed that the peaks in
the measured patterns for both complexes closely matched those in the simulated patterns
generated from single-crystal diffraction data, indicating that single phases were formed.
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Figure 3. XRD patterns of complexes 1–4.

Figure 4 shows the thermogravimetric analysis (TGA) curves of both complexes. The
TGA of complex 1 revealed that a weight loss of approximately 24.2% occurred from room
temperature to 613 K, corresponding to the release of adsorbed water from the air (2.3%)
and four CN− (calcd 22.5%).
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The decomposition of the macrocyclic structure was observed after the further heating
of the macrocyclic ligand. The TGA curve for 2 showed the first weight loss from room
temperature to 523 K, and the observed weight loss of 22.8% was related to the release
of four CN− (calcd 22.7%). Then, the macrocyclic structure began to decompose after the
macrocyclic ligand was further heated.

The TGA curve for complex 3 revealed that a weight loss of approximately 27.2%
occurred from room temperature to 630K, which was attributed to the release of adsorbed
water from the air (2.3%), two lattice water molecules (calcd 6.5%), and four CN− (calcd
18.6%). The weight loss was attributed to the release of structural water molecules and
four CN−. The TGA curve of complex 4 was similar to that of complex 3, which revealed
that an initial weight loss of 25.3% (calcd 25.5%) occurred from room temperature to 496 K,
corresponding to the release of structural water molecules and four CN−.

2.4. Magnetism

Magnetic susceptibility measurements were performed to investigate the magnetic
behaviors of complexes 1–4 at 1000 G within the temperature range of 2–300 K. Plots of χM
vs. T and µeff/µB vs. T of the complexes within the temperature range of 2–300 K are shown
in Figure 5. Complexes 1 and 3 exhibited similar magnetic properties, and their µeff/µB
values within the temperature range of 7–300 K were close to the theoretical value expected
for two unpaired d electrons in Ni(II) ions. In addition, complexes 2 and 4 exhibited similar
magnetic properties, and their µeff/µB values within the temperature range of 7–300 K
were close to the theoretical value expected for an unpaired d electron in Cu(II) ions.

The magnetic susceptibility measurements between 2 and 300 K yielded
C = 1.35 cm3·K·mol−1 and θ = −1.85 K for 1, while the corresponding values were
C = 0.56 cm3·K·mol−1 and θ = −2.21 K for 2, C = 1.15 cm3·K·mol−1 and θ = −1.79 K
for 3, and C = 0.43 cm3·K·mol−1 and θ = −2.20 K for 4. The antiferromagnetic interactions
were confirmed because of the negative Weiss constants θ in complexes 1–4. Weak antifer-
romagnetic interactions were also observed in analogous complexes Cu(cyclam)M(CN)4
[cyclam = 1,4,8,11−tetraazacyclotetradecane, M = Ni, Pd], and the reported values of the
Weiss constants θ were −0.79 K for M = Ni [21]. The characterization results showed
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that the four complexes 1–4 obeyed the Curie–Weiss law with a weak antiferromagnetic
exchange coupling.
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3. Materials and Methods

The Ni(II) and Cu(II) macrocycle complexes were prepared following the previous
report procedure [29]. All of the chemicals used in this work were commercially available
and were used without further purification. Elemental analyses were carried out using
an Elementar Micro Cube elemental analyzer. Infrared spectra were recorded in the
4000−400 cm−1 region using KBr pellets and a Bruker EQUINOX 55 spectrometer (Bruker,
Germany). Thermogravimetric analyses were performed using a Netzsch STA 449F3
instrument (Netzsch, Germany) in flowing air at a heating rate of 10 ◦C·min−1. X-ray
powder diffraction data were recorded using a Bruker D8 ADVANCE X-ray powder
diffractometer (Cu Kα radiation, λ = 1.5418 Å, Bruker, Germany). Magnetic susceptibility
measurements were conducted to determine the magnetic behaviors of both complexes at
1000 G in a temperature range of 2–300 K.

Preparation of the Compounds

[NiL1][Ni(CN)4] (1): An aqueous solution (20 mL) of K2[Ni(CN)4] (0.024 g, 0.1 mmol)
was layered on an acetonitrile solution (20 mL) of NiL1(ClO4)2 (0.048 g, 0.1 mmol). After a
few days, green prism crystals of 1 with ~37% yield were obtained. Elemental Anal. Found:
C, 37.62; H, 5.65; N, 31.25%. Calcd for C7H13NiN5: C, 37.22; H, 5.80; N, 31.00%. IR (KBr):
3226 (s), 2946 (m), 2870 (m), 2136 (s), 2125 (s), 1435 (m), 1283 (s), 1059 (m), 1015 (m), 834 (m),
and 603 (m) cm–1.

[CuL1][Ni(CN)4] (2): An aqueous solution (20 mL) of K2[Ni(CN)4] (0.024 g, 0.1 mmol)
was layered on an acetonitrile solution (20 mL) of CuL1(ClO4)2 (0.049 g, 0.1 mmol). After
some weeks, red prism crystals of 2 with ~42% yield were obtained. Elemental Anal. Found:
C, 36.45; H, 5.98; N, 30.92%. Calcd for C14H26CuN10Ni: C, 36.82; H, 5.74; N, 30.67%. IR
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(KBr): 3247 (m), 3180 (m), 2960 (w), 2123 (s), 2119 (s), 1430 (m), 1286 (m), 1090 (m), 1007 (s),
840 (m), 612 (m) cm–1.

[NiL2][Ni(CN)4]·2H2O (3): Crystals of complex 3 with ~28% yield were prepared
following the similar synthetic method of complex 1; however, [NiL2](ClO4)2 (0.054 g,
0.1 mmol) was used in place of [NiL1](ClO4)2. Elemental Anal. Found: C, 39.92; H, 7.28;
N, 25.52%. Calcd. for C18H38Ni2N10O2: C, 39.75; H, 7.04; N, 25.75%. IR (KBr): 3590 (m),
3405 (m), 3222 (m), 2870 (w), 2152 (s), 2131 (s), 1430 (w), 1284 (w), 1080 (m), 1019 (s), 908 (m),
and 620 (m) cm–1.

[CuL2][Ni(CN)4]·2H2O (4): Crystals of complex 4 with ~35% yield were synthesized
using a similar synthetic method of complex 1; however, [CuL2](ClO4)2 (0.055 g, 0.1 mmol)
was used in place of [NiL1](ClO4)2. Elemental Anal. Found: C, 39.65; H, 6.65; N, 25.35%.
Calcd. for C18H38CuNiN10O2: C, 39.39; H, 6.98; N, 25.52%. IR (KBr): 3599 (m), 3372 (m),
3181 (m), 2925 (w), 2136 (s), 2129 (s), 1426 (w), 1285 (w), 1087 (m), 1012 (s), 842 (m), and
627 (m) cm–1.

Crystal Structure Determination. Single-crystal data for 1–4 were collected using a
Bruker Smart Apex II diffractometer (Bruker, Germany) with Mo-Kα radiation (λ = 0.71073 Å).
All empirical absorption corrections were applied using the SADABS program [30]. All
structures were solved using direct methods, which yielded the positions of all non-
hydrogen atoms. The positions were first refined isotropically, then anisotropically. All
the hydrogen atoms of the ligands were placed in calculated positions with fixed isotropic
thermal parameters and included in the structure factor calculations in the final stage of
full-matrix least-squares refinement. All calculations were performed using the SHELXTL
5.1 software package [31]. For complexes 3 and 4, the hydrogen atoms bonded to oxygen
were introduced at idealized positions and refined as riders with isotropic displacement
parameters assigned 1.2 times the Ueq value of the corresponding bonding partner. Se-
lected bond lengths and angles are listed in Table 1. The crystallographic data of 1–4 are
summarized in Table 2.

Table 2. Crystallographic data.

Compound [NiL1][Ni(CN)4] [CuL1][Ni(CN)4] [NiL2][Ni(CN)4]·2H2O [CuL2][Ni(CN)4]·2H2O

Empirical formula C14H26Ni2N10 C14H26CuNiN10 C18H38Ni2O2N10 C18H38CuNiN10O2
Formula weight 451.86 456.70 544.00 548.83
Temperature (K) 296(2) 296(2) 296(2) 296(2)
Crystal system Monoclinic Monoclinic Triclinic Triclinic

Space group P2(1)/n P2(1)/n P-1 P-1
a/Å 9.834(3) 9.906(4) 8.588(8) 8.400(4)
b/Å 9.167(3) 9.110(4) 8.873(8) 8.771(4)
c/Å 10.910(4) 10.785(5) 10.001(9) 10.098(4)
α/◦ 90 90 80.930(11) 81.180(4)
β/◦ 95.177(4) 92.268(4) 65.954(10) 69.590(4)
γ/◦ 90 90 67.544(10) 67.991(4)

V/Å3 979.5(6) 972.6(7) 643.1(10) 646.2(5)
Z 4 2 2 1

Dc/Mg cm−3 1.532 1.559 1.405 1.410
µ/mm−1 1.943 2.082 1.498 1.585

F (000) 472 474 288 289
Crystal size (mm) 0.36 × 0.28 × 0.23 0.46 × 0.36 × 0.28 0.28 × 0.23 × 0.15 0.38 × 0.26 × 0.20

θ range 2.67–27.46 2.74–27.47 2.23–27.44 2.15–27.53
Collected/unique 10687/2221(0.022) 10594/2206(0.021) 7227/2838(0.0295) 6873/2872(0.0306)
Completeness to θ 99.3% 99.1% 97.0% 96.3%

Goodness-of-fit on F2 1.041 1.012 0.979 0.991
Final R indices [I > 2σ

(I)] 0.0279, 0.0721 0.0268, 0.0716 0.0340, 0.0828 0.0356, 0.0893

R indices (all data) 0.0411, 0.0799 0.0417, 0.0792 0.0554, 0.0910 0.0551, 0.0981
Max. peak/hole (e.

Å−3) 0.290/−0.173 0.196/−0.178 0.460/−0.464 0.605/−0.379
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4. Conclusions

In this work, four one-dimensional linear chains were successfully obtained be-
tween the reactions of macrocyclic nickel/copper complexes and [Ni(CN)4]2−. All com-
plexes exhibited one-dimensional linear chain structures, which were formed by bridg-
ing [NiL]2+/[CuL]2+ with [Ni(CN)4]2− moieties. The magnetic susceptibilities revealed
Curie-Weiss behavior for complexes 1–4 and the existence of weak antiferromagnetic
exchange coupling.

Supplementary Materials: The following supporting information can be downloaded at:
https://www.mdpi.com/article/10.3390/molecules28114529/s1, Figure S1: The infrared spectra of
complex 1; Figure S2: The infrared spectra of complex 2; Figure S3: The infrared spectra of complex 3;
Figure S4: The infrared spectra of complex 4.
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