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Abstract: Ataxia telangiectasia mutated and Rad3-related (ATR), a vital member of the phosphatidyli-
nositol 3-kinase-related kinase (PIKK) family, plays a critical role in the DNA damage response (DDR).
Tumor cells with a loss of DDR function or defects in the ataxia telangiectasia mutated (ATM) gene are
generally more dependent on ATR for survival, suggesting that ATR is an attractive anticancer drug
target based on its synthetic lethality. Herein, we present a potent and highly selective ATR inhibitor,
ZH-12 (IC50 = 0.0068 µM). It showed potent antitumor activity as a single agent or in combination
with cisplatin in the human colorectal adenocarcinoma LoVo tumor xenograft mouse model. Overall,
ZH-12 may be a promising ATR inhibitor based on the principle of synthetic lethality and deserves
further in-depth study.

Keywords: ATR; ATR inhibitors; ATM; DDR; synthetic lethality; cancer

1. Introduction

DNA damage response (DDR) is a highly conserved intracellular defense mechanism
against DNA damage induced by external and intrinsic factors [1,2]. The DDR comprises
DNA repair and cell checkpoint pathways for detecting and repairing DNA damage [3].
Central to the DDR is ataxia telangiectasia mutated and Rad3-related (ATR) and ataxia
telangiectasia mutated kinase (ATM), which induce cell cycle arrest and facilitate DNA
repair [4–6]. ATR and ATM belong to the phosphatidylinositol 3-kinase-related kinase
(PIKK) family of serine/threonine protein kinases, which also comprises DNA-dependent
protein kinase (DNA-PK) and the mammalian target of rapamycin (mTOR) [7]. Although
ATR and ATM are known to share structural similarities, they are primarily activated
and respond to different types of DNA damage. ATR is mainly implicated in the repair
of single-stranded DNA breaks (SSB), whereas ATM responds to double-stranded DNA
breaks (DSB) [8,9].

However, it has been found that ATM function is often impaired in tumor cells (from
defects in expression, activation, or downstream signaling proteins), resulting in genomic
instability, which is advantageous to tumor development [10,11]. Therefore, cells harboring
impaired ATM function will depend more on ATR to maintain survival, suggesting ATR
and ATM are synthetically lethal gene pairs. Many preclinical studies have validated that
cancer cells with ATM signaling defects are susceptible to ATR inhibition after being treated
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with DNA-damaging drugs [12,13]. In addition, normal cells can tolerate ATR inhibition
due to the presence of ATM-mediated compensatory DDR [14,15]. Therefore, targeting ATR
may be a promising strategy to treat cancer-harbored defects in ATM signaling, attracting
broad interest in industry and academia.

To date, five selective ATR inhibitors (berzosertib [16], ceralasertib [17], M4344 [18],
RP-3500 [19], and BAY-1895344 [20]) have been forwarded to clinical trials to evaluate their
effects on cancer treatment as a single agent or combination therapy (Figure 1). All of the
compounds were shown to modulate ATR/CHK1 signaling in an ATR-dependent manner
and promote the progression of the G2/M phase, resulting in apoptosis without repair of
the damaged DNA. Among them, ceralasertib (AZD6738), the oral ATR inhibitor, has been
used in clinical trials as both monotherapy and combination therapy strategies, including
chronic lymphocytic leukemia (CLL) [21], mantle cell lymphoma [22], gastric cancer [23],
and breast cancer [24]. Although these ATR inhibitors have shown promising efficacy in
clinical studies, none is available on the market. Therefore, it is still necessary to widen the
diversity of the ATR inhibitors.
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Figure 1. Structures of the ATR inhibitors in clinical trials. 
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0.0068 μM with high selectivity. Furthermore, ZH-12 showed potent antitumor efficacy in 
vivo as a single agent or in combination with cisplatin. 

2. Results and Discussion 
2.1. Design of ATR Inhibitors 

We chose AZD6738 as the lead compound and tried to modify the structure utilizing 
the structure-based drug design (SBDD) strategy. Firstly, a docking study was performed. 
Due to ATR having high homology with PI3Kα, PI3Kα-mutants were used to mimic the 
ATP binding site of ATR [25]. AZD6738 was docked into the PI3Kα-mutants (PDB: 5UK8) 
(Figure 2A,B) [25], and the results demonstrated that the (R)-3-methyl morpholinyl group 
of AZD6738 formed a critical hydrogen bond with VAL-851 in the hinge region. The NH-
group of azaindole in AZD6738 also formed a hydrogen bond with ASP-810, which plays a 
crucial role in the binding of ATR. The sulfoxide imine group of AZD6738 was extended to 
the solvent region, which does not have direct interactions with residues in the active site, 
providing a potential site for our structural modification (Figure 2A,B). In addition, we 
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Herein, we describe the design, synthesis, and biological evaluation of a series of ATR
inhibitors. Among them, ZH-12 shows potent activity against ATR with an IC50 value of
0.0068 µM with high selectivity. Furthermore, ZH-12 showed potent antitumor efficacy
in vivo as a single agent or in combination with cisplatin.

2. Results and Discussion
2.1. Design of ATR Inhibitors

We chose AZD6738 as the lead compound and tried to modify the structure utilizing
the structure-based drug design (SBDD) strategy. Firstly, a docking study was performed.
Due to ATR having high homology with PI3Kα, PI3Kα-mutants were used to mimic the
ATP binding site of ATR [25]. AZD6738 was docked into the PI3Kα-mutants (PDB: 5UK8)
(Figure 2A,B) [25], and the results demonstrated that the (R)-3-methyl morpholinyl group
of AZD6738 formed a critical hydrogen bond with VAL-851 in the hinge region. The NH-
group of azaindole in AZD6738 also formed a hydrogen bond with ASP-810, which plays a
crucial role in the binding of ATR. The sulfoxide imine group of AZD6738 was extended
to the solvent region, which does not have direct interactions with residues in the active
site, providing a potential site for our structural modification (Figure 2A,B). In addition, we
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found a cavity between sulfoxide imine and the pyrimidine scaffold, which could be filled
using a particular group.
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Figure 2. Design of ATR inhibitors. (A) Structure of AZD6738. (B) Molecular docking of AZD6738 
with a PI3Kα mutant mimicking ATR (PDB: 5UK8). (C) The design strategy of the ATR inhibitors. 
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Figure 2. Design of ATR inhibitors. (A) Structure of AZD6738. (B) Molecular docking of AZD6738
with a PI3Kα mutant mimicking ATR (PDB: 5UK8). (C) The design strategy of the ATR inhibitors.

Based on the above observations, we designed the 5,6,7,8-tetrahydropyrido[3,4-d]pyri
midin-4-yl scaffold using a cyclization strategy (Figure 2C). As a result, a series of 5,6,7,8-
tetrahydropyrido[3,4-d]pyrimidin-4-yl derivatives (ZH-1~ZH-14) were synthesized, and
their activities against the ATR enzyme in vitro were evaluated. All the designed com-
pounds were reasonable because their clogPs were < 5 and complied with the rule of
clogP within the rule of five. As shown in Table 1, ZH-1 with ethyl sulfonyl at 7-position
of 5,6,7,8-tetrahydropyrido[3,4-d]pyrimidin-4-yl scaffold exhibited moderate ATR inhibi-
tion (IC50 = 53.26 nM), which was less potent than AZD6738 (IC50 = 6.50 nM). However,
this result provided a guide for further structural modification. Subsequently, the acyl
group moieties were introduced at the 7-position to mimic the sulfoxide imine group in
AZD6738 to obtain more potent ATR inhibitors. Among them, propionamide ZH-2, bu-
tyramide ZH-3, and 3-methylbutanamide ZH-4 exhibited a comparable potency for ATR
to compound ZH-1, suggesting the acyl moiety warranted further investigation. Com-
pound ZH-5 was obtained by introducing the 2-cyanoacetyl group, and its ATR activity
(IC50 = 11.34 nM) was significantly improved. However, the cyano group in ZH-5 was
replaced with a hydroxyl group to give compound ZH-6 (IC50 = 34.03 nM), which was less
potent than ZH-4, suggesting the polar group was not tolerated at this site. As expected, we
replaced the hydroxyl group in ZH-6 with a methoxyl group to give compound ZH-7, and
its ATR activity was significantly improved. Then, some cycloalkyl groups were introduced
to the 7-position to afford compounds ZH-8~ZH-10. These compounds exhibited good
ATR inhibitory activities. Compound ZH-10 (IC50 = 27.47 nM) showed a comparable ATR
inhibitory activity to compound ZH-5. In addition, butyramide was replaced with ethy-
lurea to afford compound ZH-7, which exhibited comparable ATR activity to compounds
ZH-5 and ZH-10. It was identified that the indole group could retain the ATR potency
of the 7-azaindole. Therefore, we replaced the 7-azaindole group in compounds ZH-5,
ZH-7, and ZH-11 with the indole group to give ZH-12~ZH-13, respectively. As expected,
these compounds exhibited good ATR inhibitory activities. Compound ZH-12 showed a
single-digit nanomole inhibitory activity (IC50 = 6.81 nM) comparable to AZD6738.
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Table 1. The in vitro inhibitory activities of compounds ZH-1~ZH-14 against ATR.
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Table 1. Cont.

Compounds X R ATR IC50 ± SD (nM) a clogP b

ZH-13 CH
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2.2. Chemistry

The synthetic routes of the target compounds and intermediates are outlined in
Scheme 1. In brief, pinner pyrimidine synthesis was carried out to afford the interme-
diate A2 with ethyl N-benzyl-3-oxo-4-piperidine-carboxylate hydrochloride (A1) and urea
in the presence of MeONa. Then, chlorination of the intermediate A2 with the POCl3
generated the intermediate A3, which was followed by nucleophilic substitution with
(R)-3-methyl morpholine (A4) to provide the intermediate A5. Compound A5 underwent a
palladium-catalyzed Suzuki coupling reaction with A6 to afford the intermediate A7. The
A8 was obtained by debenzylation in formic acid and H2O (1:5) solution with Pd/C as a
catalyst under atmospheric hydrogen pressure. Finally, A8 was reacted with a correspond-
ing sulfonyl chloride, acyl chloride, or alkyl isocyanate to generate the target compounds
ZH-1~ZH-4, ZH-8, ZH-11, ZH-13, and ZH-14. In addition, ZH-5~ZH-7, ZH-9, ZH-10, and
ZH-12 were generated by carboxylic acid reacted with A8 in the presence of EDCI and
HOBT.
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64.9% yield; (iv) A6-1 or A6-2, Pd(Ph3)2Cl2, Na2CO3, EtOH, reflux, 12 h, 76.3–81.5% yield; (v) H2,
10% Pd/C, HCOOH/H2O (1/5), 30 ◦C, 6 h, 75.4–80.8% yield; (vi) ZH-1~ZH-4, ZH-8, and ZH-13: A8,
corresponding sulfonyl chloride or acyl chloride, Et3N, DCM, rt, 1 h, 61.5–84.1% yield; ZH-5~ZH-7,
ZH-9, ZH-10, and ZH-12: corresponding carboxylic acid, EDCI, HOBT, DCM, rt, 1 h, then A8, Et3N,
DCM, rt, 4 h, 55.4–79.6% yield; ZH-11, ZH-14: A8, corresponding alkyl isocyanate, DCM, 0 ◦C to rt, 4
h, 78.1–88.0% yield.

2.3. Molecular Docking of ZH-12

Molecular docking was performed to predict the binding mode of the ZH-12 with
ATR kinase. ZH-12 was docked into the ATR protein homology model based on the
PI3Kα-mutants (PDB: 5UK8). As shown in Figure 3, ZH-12 bound to the active site of the
PI3Kα-mutants protein, similar to the AZD6738. The 3-methyl morpholine group formed
a critical hydrogen bond with residue VAL-851 at the kinase hinge binder. In addition,
the indole group formed a hydrogen bond with residue ASP-810. Finally, the cyanoacetyl
group formed a hydrogen bond with residue SER-774.
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2.4. Antiproliferative Activity In Vitro

Based on the above results, ZH-4, ZH-7, and ZH-12 were selected to evaluate their
antiproliferative activities using the CCK-8 assay. Four tumor cell lines were chosen,
including two ATM-deficient cell lines, LoVo and NCI-H23, and two ATM-normal cell
lines, HCT116 and A549 [23,26,27]. As shown in Table 2, compounds ZH-7 and ZH-12
exerted promising antiproliferative activity on LoVo and NCI-H23, which had higher
antiproliferative activity than A549 and HCT116. Compared to ZH-7 and ZH-12, ZH-4
exhibited a reversed result in that it had more potent antiproliferation activities against the
HCT116 rather than the LoVo cell lines, probably because ZH-4 also inhibits other kinases
in the PIKK family in HCT116 cells, resulting in off-target effects. To our delight, ZH-12
showed comparable antitumor activity to the positive drug AZD6738 against LoVo, NCI-
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H23, HCT116, and A549 cells, with IC50 values of 0.29, 0.77, 1.61, and 4.74 µM respectively.
Therefore, ZH-12 has excellent potency for cell viability inhibition in ATM-deficient cell
lines and warrants further pharmacological studies.

Table 2. Inhibitory effects of selected compounds against A549, HCT116, NCI-H23, and LoVo cell
lines.

Compound IC50 ± SD (µM) a

A549 HCT116 NCI-H23 LoVo

ZH-4 20.85 ± 1.21 5.17 ± 0.58 1.74 ± 0.05 18.00 ± 1.69
ZH-7 25.63 ± 1.62 6.02 ± 0.26 6.77 ± 0.43 5.71 ±0.81
ZH-12 4.74 ± 0.27 1.61 ± 0.08 0.77 ± 0.13 0.29 ± 0.01

AZD6738 6.60 ± 0.24 4.32 ± 0.16 0.50 ± 0.06 0.41 ± 0.01
a IC50 values are expressed as the mean ± SD of three independent experiments.

We then examined the ability of ZH-12 to inhibit tumor cell proliferation in LoVo cells
using a colony-forming assay. As shown in Figure 4, ZH-12 inhibited cell proliferation
dose-dependently (Figure 4A,B). In addition, the wound healing assays showed that ZH-12
also inhibited LoVo cell migration in a dose-dependent manner (Figure 4C). In conclusion,
we have identified a candidate compound ZH-12, which significantly inhibits tumor cell
proliferation and migration.
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formed by one-way analysis of variance (ANOVA). n = 3, *** p < 0.001 vs. the control group. 
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2.5.1. Comet Assay 

ATR is a significant member of the DNA damage checkpoint [28]. A comet assay was 
conducted to further evaluate the extent of the DNA damage induced by ZH-12. As shown 
in Figure 5, ZH-12 induced significant amounts of DNA damage dose-dependently. It 
generated a comparable tail intensity to AZD6738 at 0.5 µM. 

Figure 4. Antitumor activities of ZH-12 in vitro. (A) Colony formation assays in LoVo cells. Cells
were incubated with various concentrations of ZH-12 for 24 h; then, the medium was refreshed with
a drug-free medium every two days. (B) On day 14, the cells were stained with crystal violet and
quantified. (C) In vitro antimigratory activity of ZH-12 against LoVo cells. Cells were treated with
different concentrations of ZH-12 for 48 h. The bar graphs present the mean ± SD. Statistical analysis
was performed by one-way analysis of variance (ANOVA). n = 3, *** p < 0.001 vs. the control group.

2.5. Cellular Mechanism of Action Studies
2.5.1. Comet Assay

ATR is a significant member of the DNA damage checkpoint [28]. A comet assay was
conducted to further evaluate the extent of the DNA damage induced by ZH-12. As shown
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in Figure 5, ZH-12 induced significant amounts of DNA damage dose-dependently. It
generated a comparable tail intensity to AZD6738 at 0.5 µM.
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Figure 5. Effects of ZH-12 and AZD6738 on the DNA damage response in LoVo cells. (A) The
LoVo cancer cells were treated with the indicated compound for 72 h. Comet images ×200 taken by
fluorescence microscope are shown. (B) Quantitative analysis was performed with the comet analysis
software CASP, and the olive tail moment was employed to evaluate the DNA damage. The bar
graphs present the mean ± SD. Statistical analysis was performed by one-way analysis of variance
(ANOVA). n = 3, *** p < 0.001 vs. the control group.

2.5.2. Cell Apoptosis Assay

An apoptosis assay was conducted using Annexin-V by FACS analysis in the LoVo cells
to determine the effect of ZH-12 on cell death. As shown in Figure 6, ZH-12 can induce
cell apoptosis dose-dependently. In addition, the ability of ZH-12 (0.5 µM) to induce cell
apoptosis was comparable to AZD6738 (0.5 µM). Notably, the apoptosis effect of ZH-12 was
achieved 33.8% at 1 µM (Figure 6A,B). The above results showed that compound ZH-12 could
significantly induce apoptosis of tumor cells, thereby inhibiting the growth of LoVo cells.
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Figure 6. Apoptosis assay of ZH-12 in LoVo cells. (A) Apoptotic index analysis of LoVo cells
detected by Annexin V-fluorescein isothiocyanate isomer I (FITC)/propidium iodide (PI) staining
after treatment with ZH-12. (B) The percentage of apoptotic cells was counted by GraphPad Prism
8.0. The bar graphs present the mean ± SD. Statistical analysis was performed by one-way analysis
of variance (ANOVA). n = 3, *** p < 0.001 vs. the control group.
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2.5.3. Western Blot Analysis of Protein Expression In Vitro

To verify the mechanism of action of compound ZH-12 causing DNA damage, we
further investigated the effect of the ATR signaling pathways in intact cells by Western blot
assays. Firstly, LoVo (ATM-deficient) cells were treated with HU (hydroxyurea) to stimulate
DNA damage. As shown in Figure 7, ZH-12 inhibited the phosphorylation of ATR and
its downstream kinase CHK1 in a dose-dependent manner. At the same time, the ATR
and CHK1 expression remained unchanged, indicating that ZH-12 effectively inhibited the
ATR signaling in intact cells (Figure 7A,B).
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2.6. In Vivo Antitumor Effects of ZH-12

Finally, we evaluated the antitumor activity of ZH-12 in the human colorectal adeno-
carcinoma LoVo tumor xenograft mouse model as a single agent or in combination with
cytotoxic agents. Firstly, compound ZH-12 was administered at 12.5, 25, and 50 mg/kg
twice a day (BID) for 18 consecutive days to assess its antitumor activity as a single agent
in vivo, and the AZD6738 (25 mg/kg) was chosen as a positive drug. As shown in Figure 8,
ZH-12 significantly inhibited the growth of LoVo xenografts in a dose-dependent manner.
At 25 mg/kg dosage, ZH-12 showed comparable tumor growth inhibition (TGI) to that
of the positive drug AZD6738 (25 mg/kg). Notably, ZH-12 (50 mg/kg) inhibited tumor
growth with a TGI of 53.8% (Figure 8A,C,D). No significant body weight loss or toxicity
was observed during the process (Figure 8B). Subsequently, HE staining and immuno-
histochemistry (IHC) analysis were performed to measure the effect of different doses of
ZH-12 on tumor histomorphology and DNA repair (γH2AX, a DNA damage biomarker)
in LoVo tumor xenograft models. As shown in Figure 8, ZH-12 significantly altered the
morphologic features of the tumor tissue compared to the control group, including cell
shrinkage, condensation, and nuclear chromatin marginalization (Figure 8E). γH2AX lev-
els decreased dose-dependently, suggesting that the ATR-mediated DNA damage was
promoted in tumor tissue (Figure 8E). The above results indicated that compound ZH-12
suppressed tumor growth in vivo by promoting DNA damage without toxicity.
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Figure 8. ZH-12 inhibits the growth of LoVo xenografts and the expression of γH2AX in vivo.
AZD6738 was administered orally, and ZH-12 was injected intraperitoneally twice daily during days
1–18. (A) Tumor growth curve: AZD6738 (25 mg/kg, TGI: 42.5%), ZH-12 (12.5 mg/kg, TGI: 27.0%),
ZH-12 (25 mg/kg, TGI: 39.5%), and ZH-12 (50 mg/kg, 53.7%). (B) Body weight. (C) Tumor weight.
(D) tumor nodules. (E) H&E staining and γH2AX expression of tumor sections. Scale bar, 50 µM.
(F) Tumor growth curve: cisplatin (6 mg/kg, TGI: 26.1%), cisplatin+AZD6738 (6 + 25 mg/kg,
TGI:66.4%), and cisplatin + ZH-12 (6 + 25 mg/kg, TGI: 60.8%). (G) Body weight. (H) Tumor
weight. (I) Tumor nodules. The bar graphs present the mean ± SD. Statistical analysis was performed
by one-way ANOVA. n = 3, ** p < 0.01, *** p < 0.001 vs. the control group.
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Most ATR inhibitors are combined with various genotoxic chemotherapeutic agents
(e.g., cisplatin and cyclophosphamide), which have shown strong synergistic effects [29,30].
Therefore, to evaluate the antitumor activity of ZH-12 in combination with cisplatin in vivo,
we investigated the efficacy of cisplatin (6 mg/kg, twice a week) alone or in combination
with ZH-12 (25 mg/kg, once daily) or AZD6738 (25 mg/kg, once daily) in a colorectal LoVo
xenograft balb/c nude mice model. The results showed that cisplatin alone could inhibit
tumor growth, and its efficacy was significantly improved when combined with AZD6738
(Figure 8F,H,I). To our delight, cisplatin combined with ZH-12 also considerably inhibited
tumor regrowth with a TGI value of 60.8%, demonstrating comparable antitumor efficacy
to the group of AZD6738 combined with cisplatin. We examined the combinatorial toxicity
by weight loss, and the results showed that cisplatin and the combined treatment resulted
in comparable maximum average body weight loss, indicating that the toxicity may be
ascribed to cisplatin (Figure 8G). These results revealed that ZH-12 has the advantages of
high efficacy and low toxicity when combined with cisplatin treatment.

2.7. In Vivo Western Blot Analysis

To further investigate the effect of compound ZH-12 on the ATR/CHK1 signaling
pathway in vivo, the tumors were excised and subjected to Western blot analysis. The
ATR/CHK1 signaling pathway plays an essential role in antitumor effects by regulating
cycle checkpoints and DNA damage repair. As shown in Figure 9, ZH-12 significantly
inhibited ATR phosphorylation (p-ATRThr1989) and CHK1 phosphorylation (p-CHK1Ser345)
in a dose-dependent manner compared to the control group. Still, it did not affect the ex-
pression level of ATR and CHK1, suggesting that the ATR-mediated downstream signaling
pathways were impaired (Figure 9A,B). These results indicate that ZH-12 suppresses LoVo
xenograft tumor growth in vivo by inhibiting the ATR/CHK1 signaling pathway.
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Figure 9. Effect of ZH-12 on ATR/CHK1 signaling in vivo. (A) Western blot analysis of ATR,
p-ATRThr1989, p-CHK1, and p-Chk1Ser345 protein expression in tumor tissues from LoVo tumor
xenografts treated with the 50, 25, and 12.5 mg/kg doses of ZH-12 or vehicle. (B) The intensity of
the ATR, p-ATRThr1989, CHK1, and p-CHK1Ser345 was quantified by ImageJ and normalized to the
β-tubulin. The bar graphs present the mean ± SD. Statistical analysis was performed by one-way
ANOVA. n = 3, *** p < 0.001, * p < 0.05 vs. the control group.

2.8. Kinase Selectivity of the Most Potent Compound ZH-12

Compound ZH-12 was tested at a single concentration of 1 µM against the Ion Channel
Explorer kinase panel to further elucidate its kinase selectivity. The results showed that ZH-
12 at a concentration of 1 µM displayed weak or no inhibitory activities against 207 kinases
(Figure 10), demonstrating the high selectivity of ZH-12 for ATR. These results suggest that
ZH-12 has excellent kinase selectivity for ATR over other human protein kinases.
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3. Experiments
3.1. General Chemistry

All reagents and solvents were purchased from chemical suppliers and used without
further purification. All reactions were monitored by TLC on silica gel plates (silica gel
60 F254) with UV (254 or 365 nm). 1H NMR (300 or 400 MHz) and 13C NMR (100 MHz)
spectra were recorded on Bruker spectrometers with TMS as the internal standard and the
chemical shift values (δ) expressed in ppm. Coupling constants (J) are described in hertz
(Hz). Ordinary and high-resolution mass spectra were recorded by ESI-MS. The purity of
the target compounds was >90%, determined by HPLC (BDS Hypersil C18, λ = 254 nm).
The synthesis conditions of the intermediates A2~A8 and the 1H NMR, 13C NMR, and
HRMS spectra of the target compounds are shown in the Supplementary Files.

3.1.1. General Procedure for the Synthesis of ZH-1~ZH-4, ZH-8, and ZH-13

Ethyl sulfonyl chloride or appropriate acyl chloride (0.430 mmol) was dropped into
a solution of A8-2 (0.286 mmol) in DCM (5 mL) followed by Et3N (0.572 mmol). After
stirring at room temperature for 1 h, H2O (5 mL) was added, and the mixture was extracted
with DCM (3 × 5 mL). The combined organic layers were dried with Na2SO4, filtered, and
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concentrated under reduced pressure. The residue was purified by column chromatography
on silica gel to give the compounds ZH-1~ZH-4, ZH-8, and ZH-13.

(R)-4-(7-(ethylsulfonyl)-2-(1H-pyrrolo[2,3-b]pyridin-4-yl)-5,6,7,8-tetrahydropyrido[3,4-d]pyrim
idin-4-yl)-3-methylmorpholine (ZH-1). White solid (84 mg). Yield 66.5%, m.p. 244–246 ◦C. 1H
NMR (400 MHz, DMSO-d6) δ (ppm): 11.78 (s, 1H), 8.34 (d, J = 5.0 Hz, 1H), 7.97 (d, J = 5.0 Hz,
1H), 7.58 (t, J = 3.0 Hz, 1H), 7.28 (dd, J = 3.4, 2.0 Hz, 1H), 4.55–4.44 (m, 2H), 4.25–4.14 (m,
1H), 3.94–3.91 (m, 1H), 3.77–3.73 (m, 1H), 3.76–3.70 (m, 1H), 3.67–3.65 (m, 2H), 3.62–3.54
(m, 1H), 3.52–3.51 (m, 1H), 3.45–3.38 (m, 1H), 3.25 (q, J = 7.4 Hz, 2H), 2.85–2.79 (m, 2H),
1.31–1.21 (m, 6H). 13C NMR (101 MHz, DMSO-d6) δ (ppm): 164.71, 160.81, 160.64, 150.66,
142.73, 136.62, 127.65, 118.14, 114.86, 114.47, 102.37, 70.86, 66.85, 50.22, 49.52, 43.94, 43.03,
26.91, 14.65, 8.09. HRMS (ESI): m/z calcd for C21H27N6O3S: 443.1865 [M + H]+; found:
443.1858. HPLC purity = 96.70%, tR = 3.346 min.

(R)-1-(4-(3-methylmorpholino)-2-(1H-pyrrolo[2,3-b]pyridin-4-yl)-5,8-dihydropyrido[3,4-d]pyrim
idin-7(6H)-yl)propan-1-one (ZH-2). White solid (90 mg). Yield 77.6%, m.p. 234–236 ◦C.
1H NMR (300 MHz, CDCl3) δ (ppm): 10.42 (s, 1H), 8.46–8.44 (m, 1H), 8.12–8.07 (m, 1H),
7.53–7.36 (m, 2H), 5.17–4.59 (m, 2H), 4.19–4.09 (m, 1H), 4.02–4.00 (m, 1H), 3.89–3.49 (m,
7H), 2.82–2.71 (m, 2H), 2.51 (q, J = 7.3 Hz, 2H), 1.37 (d, J = 6.7 Hz, 3H), 1.30–1.18 (m, 3H).
13C NMR (101 MHz, CDCl3) δ (ppm): 172.80, 164.96, 162.17, 160.91, 150.36, 142.76, 137.65,
126.09, 118.53, 115.42, 114.77, 102.79, 71.10, 67.15, 50.54, 50.00, 43.06, 39.05, 27.04, 26.23,
14.55, 9.31. HRMS (ESI): m/z calcd for C22H27N6O2: 407.2195 [M + H]+; found: 407.2182.
HPLC purity = 92.88%, tR = 8.141 min.

(R)-1-(4-(3-methylmorpholino)-2-(1H-pyrrolo[2,3-b]pyridin-4-yl)-5,8-dihydropyrido[3,4-d]pyrim
idin-7(6H)-yl)butan-1-one (ZH-3). White solid (110 mg). Yield 91.7%, m.p. 214–216 ◦C.
1H NMR (400 MHz, CDCl3) δ (ppm): 10.44 (s, 1H), 8.49–8.48 (m, 1H), 8.12–8.09 (m, 1H),
7.61–7.37 (m, 2H), 5.26–4.60 (m, 2H), 4.22–3.98 (m, 3H), 3.98–3.49 (m, 6H), 2.85–2.71 (m,
2H), 2.48 (q, J = 6.5 Hz, 2H), 1.85–1.70 (m, 2H), 1.39 (d, J = 6.7 Hz, 3H), 1.09–1.00 (m, 3H).
13C NMR (101 MHz, CDCl3) δ (ppm): 172.05, 164.95, 162.18, 160.95, 150.36, 142.77, 137.66,
126.08, 118.53, 115.43, 114.76, 102.80, 71.10, 67.15, 50.54, 47.34, 43.06, 39.00, 35.77, 26.26,
18.59, 14.55, 14.02. HRMS (ESI): m/z calcd for C23H29N6O2: 421.2352 [M + H]+; found:
421.2343. HPLC purity = 97.09%, tR = 10.759 min.

(R)-3-methyl-1-(4-(3-methylmorpholino)-2-(1H-pyrrolo[2,3-b]pyridin-4-yl)-5,8-dihydropyrido[3,4-
d]pyrimidin-7(6H)-yl)butan-1-one (ZH-4). White solid (108 mg). Yield 84.1%, m.p. 236–238
◦C 1H NMR (300 MHz, CDCl3) δ (ppm): 10.54 (s, 1H), 8.45 (t, J = 4.8 Hz, 1H), 8.12–8.08
(m, 1H), 7.50 (t, J = 3.6 Hz, 1H), 7.47–7.38 (m, 1H), 5.22–4.68 (m, 2H), 4.20–4.07 (m, 1H),
4.08–4.00 (m, 1H), 3.91–3.52 (m, 7H), 2.74 (t, J = 5.7 Hz, 2H), 2.37 (t, J = 5.7 Hz, 2H), 2.33–2.14
(m, 1H), 1.38 (d, J = 6.7 Hz, 3H), 1.03 (t, J = 5.6 Hz, 6H). 13C NMR (101 MHz, CDCl3) δ
(ppm): 171.56, 164.95, 162.19, 160.97, 150.32, 142.80, 137.68, 126.04, 118.60, 115.45, 114.74,
102.82, 71.11, 67.15, 50.67, 50.40, 43.05, 42.59, 39.04, 26.30, 25.70, 22.77, 14.54. HRMS (ESI):
m/z calcd for C24H31N6O2: 435.2508 [M + H]+; found: 435.2493. HPLC purity = 98.83%,
tR = 12.333 min.

(R)-(4-(3-methylmorpholino)-2-(1H-pyrrolo[2,3-b]pyridin-4-yl)-5,8-dihydropyrido[3,4-d]pyrimidin-
7(6H)-yl)(tetrahydro-2H-pyran-4-yl)methanone (ZH-8). White solid (92 mg). Yield 69.7%, m.p.
>250 ◦C. 1H NMR (300 MHz, DMSO-d6) δ (ppm): 11.78 (s, 1H), 8.33 (d, J = 5.5 Hz, 1H), 7.97
(d, J = 5.0 Hz, 1H), 7.58 (s, 1H), 7.31–7308 (m, 1H), 4.96–4.50 (m, 2H), 4.18 (s, 1H), 3.97–3.81
(m, 4H), 3.78–3.60 (m, 5H), 3.57–3.38 (m, 3H), 3.17–2.95 (m, 1H), 2.81 (s, 1H), 2.69 (s, 1H),
1.72–1.57 (m, 4H), 1.29 (d, J = 6.9 Hz, 3H). 13C NMR (101 MHz, DMSO-d6) δ (ppm): 173.23,
164.45, 161.87, 160.70, 150.65, 142.73, 136.77, 127.62, 118.13, 114.89, 102.32, 70.86, 66.80, 50.24,
47.27, 42.88, 42.46, 36.96, 29.43, 29.24, 27.39, 14.68. HRMS (ESI): m/z calcd for C25H31N6O3:
463.2458 [M + H]+; found: 463.2444. HPLC purity = 97.16%, tR = 6.954 min.
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(R)-(2-(1H-indol-4-yl)-4-(3-methylmorpholino)-5,8-dihydropyrido[3,4-d]pyrimidin-7(6H)-yl) (tetr
ahydro-2H-pyran-4-yl)methanone (ZH-13). White solid (86 mg). Yield 61.5%, m.p. 170–172 ◦C.
1H NMR (400 MHz, DMSO-d6) δ (ppm): 11.24 (s, 1H), 8.10 (d, J = 7.2 Hz, 1H), 7.53 (d,
J = 7.9 Hz, 1H), 7.50–7.32 (m, 2H), 7.19 (t, J = 7.8 Hz, 1H), 4.95–4.41 (m, 2H), 4.13 (s, 1H),
3.98–3.82 (m, 4H), 3.74 (d, J = 11.2 Hz, 1H), 3.70–3.59 (m, 4H), 3.56–3.39 (m, 3H), 3.17–2.99
(m, 1H), 2.83–2.76 (m, 1H), 2.67 (s, 1H), 1.74–1.59 (m, 4H), 1.27 (d, J = 6.5 Hz, 3H). 13C NMR
(101 MHz, DMSO-d6) δ (ppm): 173.21, 164.46, 162.42, 161.56, 137.51, 129.49, 126.69, 126.54,
128.88, 120.80, 114.09, 113.57, 103.74, 70.91, 66.80, 50.22, 47.32, 43.07, 42.58, 36.98, 29.45,
29.25, 27.16, 14.56. HRMS (ESI): m/z calcd for C26H32N5O3: 462.2505 [M + H]+; found:
462.2494. HPLC purity = 97.36%, tR = 15.010 min.

3.1.2. General Procedure for the Synthesis of ZH-5~ZH-7, ZH-9~ZH-10, and ZH-12

EDCI (0.858 mmol) and HOBT (0.572 mmol) were added to a solution of the appropri-
ate acid (0.572 mmol) in DCM (5 mL). After stirring at room temperature for 30 min, A8
(0.286 mmol) and Et3N (40 mg, 0.572 mmol) were added to the mixture. The mixture was
stirred at room temperature for 4 h. After completion (monitored by TLC), H2O (5 mL) was
added, and the mixture was extracted with DCM (3 × 5 mL). The combined organic layers
were dried with Na2SO4, filtered, and concentrated under reduced pressure. The residue
was purified by column chromatography on silica gel to give the compounds ZH-5~ZH-7,
ZH-9~ZH-10, and ZH-12.

(R)-3-(4-(3-methylmorpholino)-2-(1H-pyrrolo[2,3-b]pyridinedin-4-yl)-5,8-dihydropyrido[3,4-d]pyri
midin-7(6H)-yl)-3-oxopropanenitrile (ZH-5). White solid, 84 mg, 70.5% yield, m.p. > 250 ◦C.
1H NMR (400 MHz, DMSO-d6) δ (ppm): 11.79 (s, 1H), 8.34 (d, J = 4.9 Hz, 1H), 7.97 (t,
J = 4.8 Hz, 1H), 7.64–7.56 (m, 1H), 7.33–7.25 (m, 1H), 4.90–4.44 (m, 2H), 4.29–4.21 (m, 2H),
4.19–4.11 (m, 1H), 3.99–3.89 (m, 1H), 3.79–3.60 (m, 5H), 3.58–3.45 (m, 2H), 2.89–2.78 (m,
1H), 2.72 (t, J = 5.6 Hz, 1H), 1.32–1.21 (m, 3H). 13C NMR (101 MHz, DMSO-d6) δ (ppm):
164.56, 162.52, 161.21, 160.70, 150.66, 142.74, 136.64, 127.66, 118.14, 116.56, 114.89, 114.76,
102.34, 70.82, 66.85, 50.31, 49.78, 47.40, 42.94, 26.42, 25.40, 14.59. HRMS (ESI): m/z calcd for
C22H24N7O2: 418.1991 [M + H]+; found: 418.1982. HPLC purity = 99.15%, tR = 15.907 min.

(R)-2-hydroxy-1-(4-(3-methylmorpholino)-2-(1H-pyrrolo[2,3-b]pyridinedin-4-yl)-5,8-dihydropy
rido[3,4-d]pyrimidin-7(6H)-yl)ethan-1-one (ZH-6). White solid (80 mg). Yield 68.6%, m.p.
174–176 ◦C. 1H NMR (400 MHz, DMSO-d6) δ (ppm): 11.78 (s, 1H), 8.34 (d, J = 5.0 Hz, 1H),
8.01–7.94 (m, 1H), 7.59 (s, 1H), 7.29 (s, 1H), 4.86–4.46 (m, 3H), 4.26 (d, J = 5.7 Hz, 1H), 4.16
(s, 1H), 3.94–3.91 (m, 1H), 3.79–3.59 (m, 5H), 3.54–3.50 (m, 2H), 2.80 (s, 1H), 2.72 (s, 1H),
1.28 (d, J = 6.7 Hz, 3H), 1.23 (s, 1H). 13C NMR (101 MHz, DMSO-d6) δ (ppm): 170.93, 164.51,
161.51, 160.67, 150.66, 142.73, 136.72, 127.63, 118.13, 114.88, 102.36, 70.83, 66.84, 60.88, 50.26,
47.14, 42.95, 38.85, 29.47, 26.69, 14.62. HRMS (ESI): m/z calcd for C21H25N6O3: 409.1988
[M + H]+; found: 409.1982. HPLC purity = 95.30%, tR = 4.802 min.

(R)-2-methoxy-1-(4-(3-methylmorpholino)-2-(1H-pyrrolo[2,3-b]pyridinedin-4-yl)-5,8-dihydropyri
do[3,4-d]pyrimidin-7(6H)-yl)ethan-1-one (ZH-7). White solid (96 mg) Yield 79.6%, m.p.
294–296 ◦C. 1H NMR (400 MHz, DMSO-d6) δ (ppm): 11.78 (s, 1H), 8.34 (d, J = 5.0 Hz,
1H), 7.98–7.97 (m, 1H), 7.59–7.58 (m, 1H), 7.36–7.25 (m, 1H), 4.86–4.48 (m, 2H), 4.27–4.24 (m,
2H), 4.21–4.10 (m, 1H), 3.98–3.89 (m, 1H), 3.78–3.59 (m, 5H), 3.58–3.46 (m, 2H), 3.36 (s, 3H),
2.80 (s, 1H), 2.71 (s, 1H), 1.28 (d, J = 6.6 Hz, 3H). 13C NMR (101 MHz, DMSO-d6) δ (ppm):
168.14, 164.49, 161.54, 160.69, 150.66, 142.73, 136.73, 127.63, 118.13, 114.90, 102.34, 99.88,
70.83, 66.83, 58.94, 50.24, 48.78, 46.95, 42.95, 38.62, 26.79, 14.64. HRMS (ESI): m/z calcd for
C22H27N6O3: 423.2145 [M + H]+; found: 423.2138. HPLC purity = 94.40%, tR = 6.025 min.

(R)-3-(4-(3-methylmorpholino)-2-(1H-pyrrolo[2,3-b]pyridinedin-4-yl)-5,6,7,8-tetrahydropyrido[3,4-
d]pyrimidine-7-carbonyl)cyclobutan-1-one (ZH-9). White solid (90 mg). Yield 70.6%, m.p.
222–224 ◦C. 1H NMR (400 MHz, CDCl3) δ (ppm): 9.81 (s, 1H), 8.46 (d, J = 5.0 Hz, 1H), 8.10
(dd, J = 17.9, 5.0 Hz, 1H), 7.52–7.38 (m, 2H), 4.89–4.71 (m, 2H), 4.22–4.12 (m, 1H), 4.04 (d,
J = 11.5 Hz, 1H), 3.92–3.43 (m, 10H), 3.41–3.26 (m, 2H), 2.86–2.75 (m, 2H), 1.41 (d, J = 6.6 Hz,
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3H). 13C NMR (101 MHz, CDCl3) δ (ppm): 203.78, 171.56, 164.94, 161.59, 160.26, 150.18,
142.95, 137.52, 125.97, 118.42, 115.53, 114.44, 102.87, 71.08, 67.13, 51.12, 50.60, 49.96, 47.88,
43.06, 39.80, 26.18, 14.60. HRMS (ESI): m/z calcd for C24H27N6O3: 447.2145 [M + H]+;
found: 447.2136. HPLC purity = 96.34%, tR = 5.907 min.

(R)-4-(4-(3-methylmorpholino)-2-(1H-pyrrolo[2,3-b]pyridinedin-4-yl)-5,6,7,8-tetrahydropyrido[3,4-
d]pyrimidine-7-carbonyl)cyclohexan-1-one (ZH-10). White solid (104 mg). Yield 76.8%, m.p.
240–242 ◦C. 1H NMR (400 MHz, CDCl3) (ppm): 9.53 (s, 1H), 8.45 (d, J = 5.3 Hz, 1H),
8.14–8.05 (m, 1H), 7.50–7.38 (m, 2H), 5.14–4.65 (m, 2H), 4.27–3.98 (m, 2H), 3.95–3.85 (m,
1H), 3.82–3.60 (m, 5H), 3.16–3.00 (m, 1H), 2.90–2.73 (m, 2H), 2.68–2.56 (m, 2H), 2.50–2.37
(m, 2H), 2.23–2.09 (m, 4H), 1.41 (d, J = 6.7 Hz, 3H). 13C NMR (101 MHz, CDCl3) (ppm):
209.82, 173.14, 164.94, 161.35, 160.53, 150.00, 142.83, 137.72, 125.92, 118.48, 115.57, 114.55,
102.93, 71.09, 67.13, 50.55, 50.22, 43.01, 39.97, 39.46, 38.62, 28.84, 26.20, 14.60. HRMS (ESI):
m/z calcd for C26H31N6O3: 475.2458 [M + H]+; found: 475.2435. HPLC purity = 97.07%,
tR = 6.581 min.

(R)-3-(2-(1H-indol-4-yl)-4-(3-methylmorpholino)-5,8-dihydropyrido[3,4-d]pyrimidin-7(6H)-yl)-3-
oxopropanenitrile (ZH-12). White solid (66 mg). Yield 55.4%, m.p. 154–156 ◦C. 1H NMR (400
MHz, DMSO-d6) δ (ppm): 11.25 (s, 1H), 8.14–8.06 (m, 1H), 7.53 (d, J = 8.1 Hz, 1H), 7.47–7.42
(m, 1H), 7.42–7.36 (m, 1H), 7.20 (t, J = 7.8 Hz, 1H), 4.82–4.49 (m, 2H), 4.26 (d, J = 5.26 Hz,
1H), 4.22 (s, 1H), 4.15–4.06 (m, 1H), 3.94–3.91 (m, 1H), 3.77–3.73 (m, 1H), 3.68–3.64 (m, 3H),
3.61–3.56 (m, 1H), 3.58–3.42 (m, 2H), 2.90–2.74 (m, 1H), 2.70 (t, J = 5.8 Hz, 1H), 1.26 (t, J =
7.7 Hz, 3H). 13C NMR (101 MHz, DMSO-d6) δ (ppm): 164.56, 162.43, 160.90, 160.66, 137.53,
129.36, 126.69, 126.58, 120.91, 120.75, 116.59, 114.17, 113.44, 103.82, 70.87, 66.88, 50.29, 49.82,
47.45, 43.14, 26.18, 25.40, 14.61. HRMS (ESI): m/z calcd for C23H25N6O2: 417.2039 [M + H]+;
found: 417.2028. HPLC purity = 98.22%, tR = 13.715 min.

3.1.3. General Procedure for the Synthesis of ZH-11 and ZH-14

Ethyl isocyanate (1.14 mmol) was added to a solution of A8 (0.286 mmol) in DCM
(5 mL) on an ice bath under N2 atmosphere. The mixture was stirred for 4 h at room
temperature. After completion (monitored by TLC), H2O (5 mL) was added, and the
mixture was extracted with DCM (3 × 5 mL). The combined organic layers were dried with
Na2SO4, filtered, and concentrated under reduced pressure. The residue was purified by
column chromatography on silica gel to give the compounds ZH-11 and ZH-14.

(R)-N-ethyl-4-(3-methylmorpholino)-2-(1H-pyrrolo[2,3-b]pyridin-4-yl)-5,8-dihydropyrido[3,4-d]py
rimidine-7(6H)-carboxamide (ZH-11). White solid (94 mg). Yield 78.1%, m.p. 272–274 ◦C. 1H
NMR (300 MHz, CDCl3) δ (ppm): 10.33 (s, 1H), 8.44 (d, J = 5.1 Hz, 1H), 8.07 (d, J = 5.0 Hz,
1H), 7.46 (d, J = 3.5 Hz, 1H), 7.40 (d, J = 3.5 Hz, 1H), 4.74–4.51 (m, 3H), 4.13 (d, J = 6.3 Hz,
1H), 4.07–3.98 (m, 1H), 3.99–3.90 (m, 1H), 3.90–3.83 (m, 1H), 3.82–3.69 (m, 2H), 3.69–3.64
(m, 1H), 3.54–3.42 (m, 1H), 3.42–3.31 (m, 2H), 2.76 (t, J = 5.5 Hz, 2H), 2.30 (s,1H), 1.37 (d,
J = 6.7 Hz, 3H), 1.21 (t, J = 7.2 Hz, 3H). 13C NMR (101 MHz, DMSO-d6) δ (ppm): 164.66,
162.33, 160.49, 157.40, 150.66, 142.73, 136.86, 127.55, 118.15, 115.18, 114.81, 102.41, 70.85,
66.84, 50.19, 49.00, 42.95, 35.43, 26.51, 16.07, 14.61. HRMS (ESI): m/z calcd for C22H28N7O2:
422.2304 [M + H]+; found: 422.2294. HPLC purity = 98.52%, tR = 12.007 min.

(R)-N-ethyl-2-(1H-indol-4-yl)-4-(3-methylmorpholino)-5,8-dihydropyrido[3,4-d]pyrimidine-7(6H)-
carboxamide (ZH-14). White solid (106 mg). Yield 88.0%, m.p. 200–202 ◦C. 1H NMR
(400 MHz, CDCl3) δ (ppm): 8.54 (s, 1H), 8.19 (d, J = 7.2 Hz, 1H), 7.56–7.49 (m, 2H), 7.40–7.28
(m, 2H), 4.70–4.50 (m, 2H), 4.15–4.06 (m, 1H), 4.05–3.91 (m, 2H), 3.89–3.86 (m, 1H), 3.81–3.75
(m, 1H), 3.69–3.56 (m, 2H), 3.51–3.42 (m, 1H), 3.42–3.33 (m, 2H), 2.74 (t, J = 5.5 Hz, 2H),
1.91 (s, 1H), 1.36 (d, J = 6.7 Hz, 3H), 1.22 (t, J = 7.2 Hz, 3H). 13C NMR (101 MHz, CDCl3) δ
(ppm): 164.85, 162.81, 160.55, 157.31, 137.03, 130.00, 126.51, 125.03, 121.69, 121.46, 113.65,
113.27, 104.38, 71.18, 67.22, 50.50, 49.02, 43.20, 40.20, 35.87, 26.39, 15.60, 14.45. HRMS (ESI):
m/z calcd for C23H29N6O2: 421.2352 [M + H]+; found: 421.2337. HPLC purity = 95.46%,
tR = 14.789 min.
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3.2. Biological Activity Assay
3.2.1. Molecular Modeling

Molecular docking was conducted by the docking module of the Schrodinger Maestro
2018 in the X-ray crystal structure of the PI3Kα mutant mimicking ATR (PDB: 5UK8),
which was retrieved from the Protein Data Bank. The Protein preparation wizard module
prepared the target protein structure with polar hydrogen added and water removed from
the protein. The energy was minimized and optimized using the OPLS3 force field. The
receptor grid was generated using Receptor Grid Generation. The Ligand Preparation
Wizard carried out the three-dimensional structures of compounds of interest for molecular
docking. The types of interactions between the compounds of interest with protein were
analyzed at the end of molecular docking.

3.2.2. Cell Lines and Culture Methods

A549, HCT116, NCI-H23, and LoVo cells were purchased from the Cell Resources
Center of Shanghai Academy of Life Sciences, Shanghai, China. A549 cells were cul-
tured in McCoy’s5A medium supplemented with 10% FBS (KeyGEN Biotech, Nanjing,
China) and 1% penicillin/streptomycin (Gibco, 15070-063). HCT116 cells were cultured
in IMDM medium supplemented with 10% FBS (KeyGEN Biotech, Nanjing, China) and
1% penicillin/streptomycin (Gibco, 15070-063). NCI-H23 cells were cultured in RPMI 1640
medium supplemented with 10% FBS (KeyGEN Biotech, Nanjing, China) and 1% peni-
cillin/streptomycin (Gibco, 15070-063). LoVo cells were cultured in F12K medium supple-
mented with 10% FBS (KeyGEN Biotech, Nanjing, China) and 1% penicillin/streptomycin
(Gibco, 15070-063). All cells were cultured in an incubator at 37 ◦C under a 5% CO2
atmosphere.

3.2.3. Cell Proliferation Assay

For the assay, 3000/well cells were planted into 96-well plates for 24 h and then
treated with the indicated doses of drugs or controls for 72 h. Following the manufacturer’s
instructions, cell proliferation/survival was measured using the CCK-8 (KeyGEN Biotech,
Nanjing, China) assay and plotted via GraphPad 8.0.

3.2.4. Colony Formation Assay

LoVo cells at a concentration of 800 cells/well were exposed to various concentra-
tions of ZH-12 for 14 days. After 14 days of treatment, the colonies were fixed with 4%
paraformaldehyde, stained with 0.1% crystal violet, and imaged using an upright biological
microscope (Olympus BX53, Tokyo, Japan). The experiments were repeated at least three
times and plotted via GraphPad 8.0.

3.2.5. Migration Assays

LoVo cells in the logarithmic phase were collected and seeded in 6-well plates and
cultured overnight. A straight line was drawn across the cell with a sterile pipette tip. A
culture medium containing different concentrations of ZH-12 or 0.1% DMSO (10% FBS) was
added. Scratch widths were recorded under an inverted microscope (Olympus, Waltham,
MA, USA) at 0 h and 48 h.

3.2.6. Comet Assay

The comet assay was performed following the protocol of the manufacturer of the
Comet Assay Kit (KeyGEN Biotech, Nanjing, China). LoVo cells were treated with AZD6738
and different concentrations of ZH-12 for 3 days. After 3 days of treatment, the cells
(1 × 104/mL) were collected, mixed with low-melting agarose at a ratio of 1:10 (v/v),
layered on slides, lysed in lysis buffer at 4 ◦C for 2 h, and then lysed in alkaline lysis
solution at room temperature for 30 min. Following electrophoresis, the cells were stained
with PI and observed with an inverted biomicroscope (Olympus BX53, Tokyo, Japan). Three
images were randomly captured per slide.
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3.2.7. Cell Apoptosis

The percentage of apoptotic cells was determined by the Annexin V-FITC/PI double
staining kit (KeyGEN Biotech, Nanjing, China). According to the manufacturer’s instruc-
tions, LoVo cells were stained with Annexin V-FITC and PI. The signal of the FITC and PI
was recorded by BD FACSCelesta Flow Cytometer (BD FACSCelesta, Becton, Dickinson
and Company) and the FlowJo software.

3.2.8. Western Blotting

LoVo cells with a density of 1 × 106 were inoculated in a small cell culture dish at a
single density for 24 h and then treated with the specified concentration of 5% dimethyl
sulfoxide or compound at different times. The cells were washed with cold PBS and lysed
with RIPA buffer (Beyotime, Shanghai, China) containing protease inhibitors (Beyotime,
Shanghai, China) and phosphatase inhibitors (Beyotime, Shanghai, China). After lysis of
the total cell solution on ice for 60 min, the lysate was centrifuged (12,000 rpm, 4 ◦C, 20 min);
The total protein concentrations obtained were determined using the BCA kit (Beyotime,
Shanghai, China). A proper 6 × loading buffer was added before use, and the samples
were denatured by boiling. Then, 30–100 µg of protein was loaded onto a 4–12% SDS-PAGE
gel and then transferred to the PVDF membrane (Millipore). The membrane was occluded
for 1 h, incubated overnight with primary antibody at 4 ◦C, followed by washing 3 times
with Tris-buffered saline and Tween 20 (TBST) for 10 min. After incubation with a second
antibody with horseradish peroxidase for 60 min at room temperature, the membrane was
washed 3 times for 10 min with TBST. Finally, blotting was performed with an enhanced
chemiluminescence assay kit (KeyGEN Biotech, Nanjing, China). The software ImageJ was
used to quantify the percentage degradation of proteins. The primary antibodies used were
ATR (1/1000 dilution, CST, #2790), Phospho-ATR (Thr1989) (1/1000 dilution, CST, #30632),
CHK1 (1/1000 dilution, CST, #2360), Phospho-CHK1 (Ser345) (1/1000 dilution, CST, #2348),
and β-tubulin (1/5000 dilution, CST, #5536).

3.2.9. Efficacy and Pharmacodynamics Studies in the LoVo Xenograft Model in Mice

Balb/c nude mice (18–22 g, female, 4 weeks old) were purchased from Hangzhou
Medical College (Hangzhou, China). All mice were inoculated subcutaneously in the right
flank with 5 × 106 LoVo cells to initiate tumor growth. When the mean tumor volume
reached approximately 100 mm3, all mice were randomly divided into 8 groups (n = 5 per
group) based on body weight and volume. AZD6738, Cisplatin, and ZH-12 were dissolved
in 10% DMSO, 5% Tween 80, 30% PEG300, and 55% saline as formulations. AZD6738
and ZH-12 were administered twice daily for 18 consecutive days at the indicated doses.
Cisplatin was administered twice a week at the indicated doses. Tumor size and animal
weight were measured every 3 days. Tumor volume was calculated as tumor volume
(cm3) = (length × width2)/2. Tumor inhibition rate (%) = (1 − mean tumor weight in
the treatment group/mean tumor weight in the control group) × 100%. The results were
obtained from 5 test mice (mean ± SD) and calculated using GraphPad 8.0 software.

3.2.10. H&E Staining

Tumor samples from LoVo xenograft model mice were collected on day 18 in the
balb/c mouse model. Tumor samples were fixed in 4% paraformaldehyde for 48 h, dehy-
drated in ethanol, immersed in xylene, embedded in paraffin, and sectioned longitudinally.
The paraffin-embedded sections were stained for H&E according to the manufacturer’s
instructions (Beyotime, Shanghai, China). Samples were photographed using a DM6B
positive fluorescence microscope (Leica, Wetzlar, Germany). Three images were randomly
captured per slide.
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3.2.11. Immunohistochemical Analysis

Tumors from LoVo xenograft model mice were embedded in paraffin and cut into
longitudinal sections. The paraffin-embedded sections were incubated with 0.3% hydrogen
peroxide for 30 min to block endogenous peroxidase and then 1.0% BSA to block it. Fol-
lowing blocking, the paraffin-embedded sections were incubated overnight at 4 ◦C with
the primary antibody (anti-γH2AX antibody), and the secondary antibody was incubated
for an additional 60 min at room temperature and then counterstained for 60 s with hema-
toxylin. Each group was examined using a DM6B positive fluorescence microscope (Leica,
Frankfurt, Germany). Five images were randomly collected per slide. The percentage of
stained spots was analyzed by Image J V1.8.0.112 software.

4. Conclusions

In conclusion, a series of novel ATR inhibitors containing a 5,6,7,8-tetrahydropyrido[4,3-
d]pyrimidin-4-yl scaffold was designed, synthesized, and evaluated for their biological
activities in vitro and in vivo. Among them, ZH-12 exhibited the most potent ATR in-
hibitory activity with an IC50 value of 0.0068 µM and high selectivity for ATR against 207
other protein kinases. In the in vitro assay, ZH-12 showed more potent antiproliferative
activity in ATM-deficient tumor cells than in ATM-normal tumor cells. Furthermore, in the
in vivo assay, ZH-12 showed good antitumor activity as a single agent or in combination
with cisplatin in xenograft LoVo tumor models. Overall, ZH-12 can be a promising lead
compound that deserves further in-depth study.

Supplementary Materials: The following supporting information can be downloaded at: https://
www.mdpi.com/article/10.3390/molecules28114521/s1, the synthesis conditions of intermediates
A2~A8 and the spectra for the target compounds.
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