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Abstract: In the present work, we report the synthesis of isomeric heteronuclear terbium(III) and
yttrium(III) triple-decker phthalocyaninates [(BuO)8Pc]M[(BuO)8Pc]M*[(15C5)4Pc] (M = Tb, M* = Y or
M = Y, M* = Tb, [(BuO)8Pc]2−–octa-n-butoxyphthalocyaninato-ligand, [(15C5)4Pc]2−–tetra-15-crown-5-
phthalocyaninato-ligand). We show that these complexes undergo solvation-induced switching: the con-
formers in which both metal centers are in square-antiprismatic environments are stabilized in toluene,
whereas in dichloromethane, the metal centers M and M* are in distorted prismatic and antiprismatic
environments, respectively. This conclusion follows from the detailed analysis of lanthanide-induced
shifts in 1H NMR spectra, which makes it possible to extract the axial component of the magnetic
susceptibility tensor χTb

ax and to show that this term is particularly sensitive to conformational switching
when terbium(III) ion is placed in the switchable “M” site. This result provides a new tool for controlling
the magnetic properties of lanthanide complexes with phthalocyanine ligands.

Keywords: triple-decker phthalocyaninate; terbium; lanthanide-induced shift; axial magnetic anisotropy;
conformational switching; solvation

1. Introduction

Within the wide variety of coordination compounds containing paramagnetic metal
centers, lanthanide complexes occupy a special place because of their unique optical and
magnetic properties, which can be fine-tuned by changing the ligand environment [1–8].
Understanding the correlations between the composition and symmetry of the coordination
sphere of lanthanide ions is the ultimate prerequisite for providing such tuning on a rational
basis [9,10].

One of the manifestations of the magnetic properties of lanthanide ions is the shift of reso-
nance signals in the NMR spectra of their complexes in comparison with the spectra of isostruc-
tural diamagnetic counterparts [11]. The sign and magnitude of such a lanthanide-induced
shift (LIS, ∆δk) of a resonating nucleus “k” depend on the nature of both the lanthanide ion
and the ligand, and can be separated into the isotropic through-bond (contact, ∆δc

k [12,13])
and anisotropic through-space (dipolar or pseudo-contact, ∆δpc

k [14,15]) contributions.

∆δk = δ
para
k −δdia

k = ∆δc
k+∆δpc

k (1)

Importantly, the dipolar component is typically dominant in the total LIS value;
moreover, it is functionally related to the geometry of the complex [16,17]. This anisotropic
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part of LIS results from the removal of the spherical symmetry of the lanthanide ions Ln3+

upon the formation of coordination compounds. Thus, being placed into the origin, these
ions form the principal magnetic axis system where the internal polar coordinates θk, ϕk
and rk of the resonating nucleus can be considered. In the case of the axially symmetric
complexes possessing at least a three-fold symmetry axis, the functional correlation between
the dipolar LIS, the magnetic properties of the lanthanide ion and the geometry of the
complex can be expressed as:

∆δpc
k =

χLn
ax

12π
·Gk (2)

The geometric parameter Gk is a function of rk—the distance between the lanthanide

ion and the resonating nucleus k, and θk—an angle between the vector

(
−

Ln3+, k

)
and the

main symmetry axis:

Gk =
3cos2θk − 1

r3
k

(3)

The powerful Equation (2) suggests that NMR spectroscopy of paramagnetic lanthanide
complexes is not limited to routine confirmation of the composition and purity of newly
synthesized compounds, but can also be used to study the geometric structure of complexes
in solution [18,19]. This feature is useful, for instance, in structural biology by applying
lanthanide probes introduced into biomolecules [20–22]. Furthermore, NMR can provide
information on the magnetic properties of lanthanide ions in a given coordination environment
through the term χLn

ax , which is an axial component of the magnetic susceptibility tensor.
This information is complementary to the data typically obtained from magnetochemical
studies [23–26], and in this context, NMR spectroscopy can be used as a more affordable
analytical tool to guide the selection of complexes for further advanced measurements.

In the present work, we used 1H NMR spectroscopy to study the magnetic properties
of the new heteronuclear trisphthalocyaninates [(BuO)8Pc]M[(BuO)8Pc]M*[(15C5)4Pc],
where M 6= M* are Tb or Y, [(BuO)8Pc]2- and [(15C5)4Pc]2- are octa-n-butoxy- or tetra-15-
crown-5-phthalocyaninato ligands. For brevity, these ligands are henceforth designated as
[B4] and [C4], where the letters “B” and “C” stand for BuO- and 15C5-substituted phthalic
units in the phthalocyanine rings, respectively, so that in this notation, the target complexes
will be designated as [B4]M[B4]M*[C4].

The interest to characterize the magnetic properties of these complexes using 1H NMR
arises from their specific conformational behavior depending on the solvation environment.
Thus, for the examples of the homonuclear complexes with M = M* = Tb or Y, we have
previously shown that the fragments [B4]M[B4] can adopt either staggered or gauche
conformations in aromatic or halogenated aliphatic solvents, respectively [27]. In turn, it
switches the coordination polyhedron of the metal center M from square-antiprismatic
(SAP) to distorted prismatic (DP). In contrast, the fragment [B4]M*[C4] is conformationally
invariant—it exists in the staggered conformation in both types of solvents, so the metal
center M* is always in the SAP environment. The difference in the conformational states
of these complexes results from solvent–solvate interactions stabilizing either a staggered
or a gauche arrangement of the adjacent ligand. It was definitively explained using single
crystal X-ray diffraction experiments performed for the solvates [B4]Y[B4]Y[C4]·10CH2Cl2
or [B4]Y[B4]Y[C4]·13C7H8 (Figure 1) [27]. Spectroscopic signatures of both gauche and
staggered conformers in solutions were identified using UV-vis and DFT calculations on
the examples of homoleptic complexes M2[B4]3 and M2[C4]3 (M = Tb, Y [28]) together with
1H NMR performed for Eu(III) counterparts [29].

Thus, in the present work, the availability of structural data providing the geomet-
ric parameters Gk for two conformers of [B4]Y[B4]Y[C4] allowed us to extract the axial
anisotropy terms χTb

ax from the 1H NMR spectra of the heteronuclear Tb(III)-containing
complexes in different solvents and to show that their magnetic anisotropy can be tuned by
controlling their conformational state.
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Figure 1. Symmetry of coordination polyhedra in two conformers of [B4]Y[B4]Y[C4] in solvates with
dichloromethane (CCDC 2243421, (a) and toluene (CCDC 2243422, (b) [27]. Hydrogen atoms and solvate
molecules are not shown for clarity. φ stands for the twist angle between the neighboring ligands.

Apart from the interest in correlations between the structure and magnetic properties
of lanthanide complexes, the tuning of anisotropy provides some useful practical outcomes.
For example, we have previously demonstrated the thermosensing properties of a wide
range of paramagnetic complexes of lanthanides with tetra-15-crown-5-phthalocyanine
Ln2[C4]3, Ln = Nd, Tb, Dy, Ho, Er, Tm for in situ NMR thermometry [30–32]. It was shown
that the best sensitivity gain up to 1.1 ppm/K was obtained for the Tb(III) complex, which
shows the highest anisotropy.

2. Results

The synthesis of the target heteronuclear complexes [B4]M[B4]M*[C4], where M 6= M*
are Tb or Y was straightforward (Scheme 1) due to the previously reported procedure
for the homonuclear counterparts [27]. Briefly, butoxy-substituted double-deckers M[B4]2
(M = Tb or Y) were treated with tetra-15-crown-5-phthalocyanine H2[C4] and acetylaceto-
nates bearing another metal ion M*(acac)3·nH2O (M* = Y or Tb) in the refluxing mixture of
1,2,4-trichlorobenzene and 1-octanol (9:1 v/v). The resulting target complexes were readily sep-
arated in high yields using column chromatography on alumina from the unreacted starting
double-deckers and the sole by-products—homonuclear trisphthalocyaninates M*2[C4]3.
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Scheme 1. Synthesis of heteronuclear triple-decker complexes [B4]M[B4]M*[C4], where M 6= M* are
Tb or Y together with labeling of protons used for the assignment of 1NMR spectra.

The isolated isomeric complexes were characterized using a variety of physicochemical
methods. MALDI-TOF MS confirmed the presence of the desired set of phthalocyanine
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ligands and metal ions (Figures S1 and S2), but apparently failed to distinguish between
the isomers.

UV-vis characterization of the complexes was performed in toluene, as a representative of
aromatic solvents, and dichloromethane as a halogenated alkane (Figure 2 and Figures S3–S6).
Thus, in toluene, both complexes showed well-resolved intense split Q-bands at 643 and 696 nm
together with less intense Soret and N-bands at 362 and 293 nm. In contrast, the spectra in
CH2Cl2 were dramatically different—the intensity of their strongly broadened Q-bands was
significantly decreased in comparison with the Soret and N-bands. Several inflexions were
observed on both the long- and short-wavelength sides of the Q-bands. Overall, the observed
solvatochromic behavior was consistent with the existence of the synthesized complexes in
different conformers in the studied solvents, namely, fully staggered in toluene (Figure 1a) and
gauche/staggered in both CH2Cl2 and CHCl3 (Figure 1b) [27].
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Figure 2. UV-vis spectra of the heteronuclear triple-decker complexes [B4]M[B4]M*[C4] in toluene,
dichloromethane and chloroform.

The synthesized heteronuclear complexes were characterized using 1H NMR in deuter-
ated toluene and dichloromethane. Due to the paramagnetic nature of the Tb3+ ions, the
resonance signals in the spectra of these complexes were spread over wide ranges of chemi-
cal shifts—from strongly positive to very strongly negative, and these ranges also depended
on the solvent used for recording the spectra (Figure 3).
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Figure 3. 1H-NMR spectra of the heteronuclear triple-decker complexes [B4]M[B4]M*[C4] in toluene-
d8 and CD2Cl2. The dots show the positions of the calculated chemical shifts of the selected protons
(vertical axes) vs. the experimental values (horizontal axes). The solid grey lines represent perfect fits
between experimental and calculated values. The labeling of protons is given in Scheme 1.
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To assign these spectra, we used the transformation of equation (2), which suggests
that if we consider LIS to be essentially dipolar, then the ratio of LIS for a pair of protons,
Hk and Hl, can be approximated using a ratio of their geometric parameters.

∆δk
∆δl
≈

∆δpc
k

∆δpc
l

=
Gk
Gl
≡ Rkl (4)

In turn, Equation (4) suggests that the approximate position of the resonance signals of
the protons Hk can be calculated from the resonance signal of at least one firmly assigned
proton Hl in the spectrum of the paramagnetic complex:

δ
para
k ≈ δdia

k + ∆δl·Rkl (5)

The geometric parameters Gk,l were obtained by averaging the polar coordinates of
the selected protons in the structures of solvates of [B4]Y[B4]Y[C4] with either toluene or
dichloromethane; thus, providing the axially symmetric structures that can be considered
as models of the heteronuclear complexes in solutions [33]. The set of diamagnetic chemical
shifts was obtained from the spectra of [B4]Y[B4]Y[C4] measured in the corresponding
solvents [27].

The aromatic protons of the phthalocyanine macrocycles and the methylene protons
of the substituents proximal to the Pc ligands were used for further analysis. In all cases,
the largest absolute values of Gk corresponded to the aromatic protons of the inner ph-
thalocyanine ligand bHPc

i, so that the most upfield shifted signal was assigned to these
protons. In turn, it allowed us to assign the rest of the required signals. The accuracy of the
assignments was checked using 1H-1H COSY (Figures S7–S10), and in general, the plots of
the calculated chemical shifts vs. the experimental values were characterized by perfect
linearities with R2 greater than 0.99. Altogether, these results justified the validity of the
dipolar approximation of LIS for the heteronuclear complexes studied herein.

Plotting the averaged coordinates of the selected protons on the contour maps of
G(r; θ ) (Figure 4) gives a clear graphical explanation as to why some signals in the spectra
of heteronuclear complexes are shifted upfield and most of them are shifted downfield
(entries in bold and regular font styles in Table 1). This is because protons get into areas
with either negative or positive values of the function G(r; θ ) [33,34].
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Figure 4. Contour maps, showing distributions of G(r; θ ) around the paramagnetic metal centers in
heteronuclear complexes [B4]M*[B4]M[C4] together with the averaged coordinates of the selected
types of protons extracted from the X-ray structures of solvates [B4]Y[B4]Y[C4]·10CH2Cl2 (CCDC
2243421) and [B4]Y[B4]Y[C4]·13C7H8 (CCDC 2243422). The black solid lines indicate the areas where
the functions G(r; θ ) change sign. The labeling of protons is given in Scheme 1.
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Table 1. Values of chemical shifts and averaged geometric factors Gk for selected types of pro-
tons extracted from X-ray structures of solvates [B4]Y[B4]Y[C4]·10CH2Cl2 (CCDC 2243421) and
[B4]Y[B4]Y[C4]·13C7H8 (CCDC 2243422). The labeling of protons is given in Scheme 1. Regular and
bold font styles correspond to resonance signals with negative and positive LIS values, respectively.

[B4]Tb[B4]Y[C4], [B4]Y[B4]Tb[C4],
Toluene-d8 CD2Cl2 Toluene-d8 CD2Cl2

Proton Gk, Å−3 δ, ppm Gk, Å−3 δ, ppm Gk, Å−3 δ, ppm Gk, Å−3 δ, ppm

bHPco −2.85 × 10−3 −51.0 −3.28 × 10−3 −69.7 8.36 × 10−4 25.2 7.10 × 10−4 25.9
bHPc

i −3.34 × 10−3 −59.3 −3.46 × 10−3 −79.6 −3.46 × 10−3 −64.6 −3.27 × 10−3 −68.2
cHPc

o 8.72 × 10−4 24.8 7.19 × 10−4 26.7 −2.70 × 10−3 −52.1 −3.23 × 10−3 −67.0
1o −8.28 × 10−4 −13.8 −1.26 × 10−3 −21.8 2.94 × 10−4 9.4 −6.11 × 10−5 9.1
1o’ −1.53 × 10−3 −25.7 −1.55 × 10−3 −33.2 −4.08 × 10−4 1.5 −1.86 × 10−4 0.0
1ib −1.88 × 10−3 −33.6 −1.88 × 10−3 −43.7 −1.25 × 10−3 −23.2 −1.15 × 10−3 −18.2
1ic −1.31 × 10−3 −20.9 −1.36 × 10−3 −28.9 −1.85 × 10−3 −36.5 −1.66 × 10−3 −31.0
αo −3.03 × 10−4 2.1 −3.45 × 10−4 −0.2 −1.51 × 10−3 −25.2 −1.74 × 10−3 −33.0
αo’ 2.89 × 10−4 9.9 1.23 × 10−4 10.7 −8.77 × 10−4 −13.3 −1.18 × 10−3 −20.7

Finally, the availability of structural and NMR data for both conformers of two het-
eronuclear complexes allowed us to find the axial component of the magnetic susceptibility
tensors χTb

ax to correlate it with the symmetry of the coordination polyhedron of the Tb3+

ions. With this aim, the dependencies of LIS vs. Gk were plotted and least square lin-
earization was used to find the slopes of these dependencies and convert them into χTb

ax in
accordance with equation 2 (Figure 5a,b).
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[B4]M[B4]M*[C4] in toluene-d8 and CD2Cl2 aiming to find the axial components of magnetic suscep-
tibility tensors χTb

ax . (c)—Change of χTb
ax for the studied heteronuclear complexes upon transition from

toluene-d8 to CD2Cl2.

The derived values of χTb
ax (Figure 5c) clearly show that switching between two con-

formers has a profound effect on the magnetic properties of the Tb3+ ions, and the mag-
nitude of this effect depends on whether it is placed in the switchable site [B4]/[B4] or
the invariant site [B4]/[C4]. Thus, the transition from toluene-d8 to CD2Cl2 in the case of
[B4]Tb[B4]Y[C4] due to the switching of the Tb3+ coordination polyhedron from SAP to
DP increases χTb

ax by 23%—from 7.77 ± 0.18 × 10−31 to 9.56 ± 0.26 × 10−31 m3.
Interestingly, although the polyhedron of the paramagnetic center in [B4]Y[B4]Tb[C4]

is not switched, minor structural perturbations of its coordination sphere associated with
the overall reorganization of the molecule also cause a smaller but still noticeable increase
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in axial anisotropy χTb
ax by 10%—from 8.20 ± 0.28 × 10−31 to 9.02 ± 0.20 × 10−31 m3. These

results suggest that the effects of symmetry breaking and coordination sphere reorga-
nization act simultaneously [35] and further in-depth analysis using quantum-chemical
calculations may shed light on the contribution of each of these effects to the control of the
axial anisotropy.

3. Discussion

Previously, we have demonstrated the possibility of tuning the axial anisotropy of Tb3+

ions introduced into heteroleptic crown-substituted trisphthalocyaninates–[C4]M*[C4]M(Pc),
where M and M* = Tb or Y [36]. These complexes have been shown to act as supramolecular
receptors with switchable rotational states—in the native state, both metal centers M and
M* adopt square antiprismatic environments with a twist angle of 45◦ between the adja-
cent macrocycles. However, the addition of potassium cations resulted in their intercalation
between the crown-substituted decks, reducing the twist angle to zero and providing the
M* center with a square prismatic (SP) environment. Similar to the results studied here,
the change from SAP to SP also caused a spectacular increase in the χTb

ax by 25%—from
8.36 ± 0.15 × 10−31 to 10.63 ± 0.27 × 10−31 m3. In contrast, the square-antiprismatic poly-
hedron of the M metal center remained intact upon binding of K+ cations, and such binding
has a much smaller effect on χax of Tb3+ in this site—it increased from 9.43 ± 0.19 × 10−31 to
9.61 ± 0.16 × 10−31 m3.

The correlations between the magnetic behavior of single molecules and the magnitude
of the anisotropy have also been emphasized by several authors [37–40]. For example, the
triple-decker binuclear Tb(III) complex with fused phthalocyaninate ligands is characterized
by record-high values of both the energy barrier for spin reversal, Ueff (588 cm−1), and the
axial magnetic anisotropy χTb

ax (10.39 × 10−31 m3), which is achieved by the geometric spin
arrangement [37]. For comparison, a significantly lower value of Ueff—230 cm−1 was found
for diterbium(III) tris-octabutoxyphthalocyaninate Tb2[B4]3, which is also characterized by
lower χTb

ax —0.86 × 10−30 m3 [41].
Taken together, these results suggest that control over the rotational state of phthalo-

cyanine ligands in sandwich complexes together with their magnetic anisotropy can be
used to control their magnetic properties and that these complexes are attractive models
for studying the influence of both large and small molecular motions on the magnetic
properties of lanthanide complexes. Thus, further magnetochemical measurements of the
synthesized heteronuclear complexes will be useful to verify these correlations, paving the
way to the rational design of magnetic materials via anisotropy tuning.

Finally, due to the presence of crown-ether substituents in the synthesized complexes,
they can be used as molecular building blocks to form supramolecular dimers in the pres-
ence of alkali metal ions [42,43] to study the long-range interactions between paramagnetic
metal centers.

4. Materials and Methods
4.1. Materials

Starting phthalocyanines Y[B4]2, Tb[B4]2 and H2[C4] were synthesized according to
the previously reported procedures [44,45]. 1,2,4-trichlorobenzene (TClB, for synthesis,
Sigma-Aldrich), 1-octanol (for synthesis, Sigma-Aldrich, Burlington, MA, USA), yttrium(III)
and terbium(III) acetylacetonanes (99.95 and 99.9%, respectively, Sigma-Aldrich), neutral
alumina (50–200 µm, Macherey-Nagel, Düren, Germany) were used as received from the
commercial suppliers. Chloroform (reagent grade, Ekos-1, Staraya Kupavna, Russia) was
distilled over CaH2.

4.2. Methods

Matrix-assisted laser desorption ionization time-of-flight (MALDI-TOF) mass spectra were
measured on a Bruker Daltonics Ultraflex spectrometer. Mass spectra were registered in positive
ion mode using 2,5-dihydroxybenzoic acid as a matrix. UV-vis spectra in the 250–900 nm range



Molecules 2023, 28, 4474 8 of 11

were measured using a JASCO V-770 spectrophotometer in quartz cells with a 0.5–1 cm optical
path. NMR spectra were recorded using a Bruker Avance III spectrometer with a 600 MHz
proton frequency at 303 K with the residual solvent resonances as internal references (δ toluene
7.09 ppm, dichloromethane 5.32 ppm). Typically, 5 mg of complexes were dissolved in 0.6 mL
of the corresponding deuterated solvent to provide ca. 2.3 mM concentration. The applied
deuterated dichloromethane (99.5 atom% D, ABCR, Karlsruhe, Germany) and chloroform
(99.8 atom% D, ZEOchem, Uetikon am See, Switzerland) were filtered prior to use through the
Pasteur pipettes filled with alumina to remove possible acidic impurities. Deuterated toluene
(99.5 atom% D, ABCR) was used without additional purification.

1H NMR spectra were acquired with a standard Bruker zg30 pulse program for a 30-degree
flip angle. The acquisition and relaxation delays were 1 s and the number of scans was 32. The
spectra were recorded with 192,298 points resolution and a line broadening factor of−0.5 Hz for
Fourier transformation. 1H-1H COSY spectra were acquired with a standard Bruker gradient-
enhanced quantum-filtered COSY pulse sequence cosygpqf. The acquisition and relaxation
delays were 0.137 s and 1 s in each scan, respectively, with 4 scans per increment. The spectra
were recorded with 16,384 × 512 points resolution.

4.3. Synthesis and Characterization of the Triple-Decker Complexes

Trisphthalocyaninate [B4]Y[B4]Tb[C4]. Yttrium(III) bis(octa-butoxyphthalocyaninate)
Y[B4]2 (88 mg, 39 µmol) and tetra-15-crown-5-phthalocyanine H2[C4] (62 mg, 49 µmol)
were dissolved in a mixture of 4.5 mL 1,2,4-trichlorobenzene and 0.5 mL 1-octanol. The
resulting solution was brought to gentle reflux under a slow stream of argon and terbium
acetylacetonate (69 mg, 0.15 mmol) was added. After 7 min, the consumption of the start-
ing reagents stopped, as evidenced using UV-vis spectroscopy; the reaction mixture was
cooled to room temperature and the resulting dark blue solution was transferred to the chro-
matographic column filled with alumina in a mixture of chloroform and hexane (1:1 v/v).
Gradient elution with a mixture of CHCl3 with hexane followed by a mixture of CHCl3 with
0→ 2% methanol afforded the target complex as a dark blue powder (94 mg, yield 65%).
MALDI TOF MS: m/z calculated for C192H232N24O36TbY 3699.5, found 3700.5 [M+]. UV-vis
(Toluene) λmax (nm) (log ε): 696 (4.75), 643 (5.53), 527 (4.36), 362 (5.34), 292 (5.21). UV-vis
(CH2Cl2) λmax (nm) (log ε): 641 (5.05), 553 (4.58), 352 (5.25), 293 (5.20). 1H NMR (600 MHz,
Toluene-d8) δ 25.22 (s, 8H, bHPc

o), 9.47 (d, 8H, J = 58.5 Hz, 1o’), 1.48 (d, J = 58.7 Hz, 8H, 1o),
0.48—−0.05 (m, 32H, 2o,o’ and 3o,o’), −0.23 (s, 24H, CH3

o), −2.07, −2.61, −3.02,
−4.73 (4s, 4 × 8H, γo,o’ and δo,o’), −7.53 (s, 8H, βo’), −10.48 (s, 8H, βo), −10.75 (s, 24H,
CH3

i), −13.29 (d, J = 44.0 Hz, 8H, αo’), −14.47 and −14.78 (2s, 2 × 8H, 3ib,ic), −15.77 and
−16.38 (2s, 2 × 8H, 2ic,ic), −23.23 (d, J = 68.0 Hz, 8H, 1ib), −25.23 (d, J = 52.0 Hz, 8H, 1ic),
−36.46 (d, J = 66.6 Hz, 8H, αo), −52.05 (s, 8H, cHPc

o), −64.58 (s, 8H, bHPc
i). 1H NMR

(600 MHz, Methylene Chloride-d2) δ 25.91 (s, 8H, bHPc
o), 9.05 (s, 8H, 1o’), 0.9—−0.24 (br

m, 64H, 1o, 2o,o’, 3o,o’ and CH3
o), −8.41 (br s, 24H, CH3

i), −12.03 and −12.26 (2s, 2 × 8H,
3ib,ci), −14.15 and −14.79 (2s, 2 × 8H, 2ib,ic), −18.19 (br s, 8H, 1ib), −20.68 (br s, 8H, αo’),
−30.95 (br s, 8H, αo), −32.98 (1ic), −67.00 (br s, 8H, cHPc

o), −68.21 (s, 8H, bHPc
i).

Trisphthalocyaninate [B4]Y[B4]Tb[C4]. Terbium(III) bis(octa-butoxyphthalocyaninate)
Tb[B4]2 (88 mg, 38 µmol) and tetra-15-crown-5-phthalocyanine H2[C4] (60 mg, 47 µmol)
were dissolved in a mixture of 4.5 mL 1,2,4-trichlorobenzene and 0.5 mL 1-octanol. The
resulting solution was brought to gentle reflux under a slow stream of argon and terbium
acetylacetonate (57 mg, 0.14 mmol) was added. After 7 min, the consumption of the starting
reagents stopped, as evidenced using UV-vis spectroscopy, the reaction mixture was cooled
to room temperature and the resulting dark blue solution was transferred to the chro-
matographic column filled with alumina in a mixture of chloroform and hexane (1:1 v/v).
Gradient elution with a mixture of CHCl3 with hexane followed by a mixture of CHCl3
with 0→ 2% methanol afforded the target complex as a dark blue powder (102 mg, yield
74%). MALDI TOF MS: m/z calculated for C192H232N24O36TbY 3699.5, found 3699.1 [M+].
UV-vis (Toluene) λmax (nm) (log ε): 696 (4.74), 643 (5.53), 527 (4.34), 362 (5.33), 293 (5.20).
UV-vis (CH2Cl2) λmax (nm) (log ε): 644 (5.10), 545 (4.57), 352 (5.26), 293 (5.21). 1H NMR
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(600 MHz, Toluene-d8) δ 24.81 (s, 8H, cHPc
i), 9.85 (s, 8H, αo’), 4.02 and 1.61 (2s, 2 × 8H, βo’

and βo), 4.17, 3.73, 3.30, 2.45 (4s, 4× 8H, γo,o’ and δo,o’), 2.09 (overlapped with CHD2 signal
of toluene-d8, αo), −6.56 (s, 24H, CH3

o), −9.44 (s, 16H, 3o,o’), −9.79 (s, 24H, CH3
i), −11.28

and −11.17 (2s, 2 × 8H, 2o,o’), −13.13 and −13.55 (2s, 2 × 8H, 3ib,ic), −13.80 (d, J = 46.2 Hz,
8H, 1o’), −14.35 and −15.02 (2d, J = 25 Hz, 2 × 8H, 2ib,ic), −20.90 (d, J = 64.5 Hz, 8H, 1ic),
−25.65 (d, J = 51.4 Hz, 8H, 1o), −33.64 (d, J = 63.4 Hz, 8H, 1ib), −50.96 (s, 8H, bHPc

o),
−59.33 (d, 8H, bHPc

i). 1H NMR (600 MHz, Methylene Chloride-d2) δ 26.74 (s, 8H, cHPc
i),

10.69 (s, 8H, αo’), 3—−0.3 (br m, 56H, αo, βo,o’, γo,o’ and δo,o’), −8.82 (s, 24H, CH3
o),

−12.52 (d, J = 59.0 Hz, 16H, 3o,o’), −13.15 (s, 24H, CH3
i), −14.81 and −15.41 (2d, J = 32.9

and 27.3 Hz, 2 × 8H, 2o,o’), −18.08 and −18.32 (2s, 2 × 8H, 3ib,ic), −20.27 and −20.63 (2s,
2 × 8H, 2ib,ic), −21.76 (d, J = 77.5 Hz, 8H, 1o’), −28.93 (d, J = 62.9 Hz, 8H, 1ic), −33.19 (d,
J = 76.3 Hz, 8H, 1o),−43.80 (d, J = 83.1 Hz, 8H, 1ib),−69.66 (s, 8H, bHPc

o),−79.56 (s, 8H, bHPc
i).

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/molecules28114474/s1, Figures S1 and S2: MALDI TOF mass-
spectra of the synthesized complexes. Figures S3–S6: Concentration-dependent UV-Vis spectra of the
synthesized complexes and Bouguer-Lambert-Beer plots of A/l vs. C in toluene and dichloromethane.
Figures S7–S10: 1H-1H COSY of the synthesized complexes in toluene-d8 and CD2Cl2.
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