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Abstract: Psoriasis is a chronic and multifactorial skin disease which is caused by inflammatory
infiltrates, keratinocyte hyperproliferation, and accumulation of immune cells. As part of the Aconi-
tum species, Benzoylaconitine (BAC) shows potential antiviral, anti-tumor, and anti-inflammatory
effects. In this study, we investigated the effects and mechanisms of BAC on tumor necrosis factor-
alpha (TNF-α)/LPS-induced HaCaT keratinocytes in a imiquimod(IMQ)-induced mice model. The
results showed that BAC could relieve the symptoms of psoriasis by inhibiting cell proliferation,
the release of inflammatory factors, and the accumulation of Th17 cells, while no obvious effect on
cell viability and safety was observed both in vitro and in vivo. Additionally, BAC can markedly
inhibit the protein and mRNA levels of inflammatory cytokines in TNF-α/LPS-induced HaCaT
keratinocytes by inhibiting the phosphorylation of STAT3. In brief, our data indicated that BAC could
alleviate the progression of psoriasis and may be a potential therapeutic agent for treating psoriasis in
clinical practice.
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1. Introduction

Psoriasis is an auto-immune skin inflammation caused by genetic, immunological, or
environmental factors, which affects 1–4% of people worldwide [1,2]. The pathophysiology
of psoriasis includes erythematous plaque formation, epidermal hyperplasia, scaling, and
impaired differentiation of keratinocytes [3–5]. Several factors participate in psoriasis, such
as genetic susceptibility, pathogens, stress, drugs, etc. [6]. Moreover, most patients are
also at risk for other diseases, including psoriasis arthritis, inflammatory bowel disease,
cardiovascular disease, psychological status, and other comorbidities [7]. The current
treatments for psoriasis mainly focus on local treatment, systemic treatment, and photother-
apy [8]. Several studies have reported that the interleukin (IL) IL-17, IL-23, IL-22, and tumor
necrosis factor-α (TNF-α) play a vital role in the epidermis of patients [9]. Furthermore, the
accumulation of autoreactive skin T-cells and the activation of keratinocytes are key factors
leading to a pro-inflammatory state [10,11]. Topical therapy, a conventional approach
to treat psoriasis, is usually an incomplete lesion resolution [12]. Local treatment is not
suitable for all patients with psoriasis for several reasons: low skin retention rate of drug
preparations, poor skin permeability, oily texture of local carriers, and gastrointestinal
disorders. Regarding systemic treatment, methotrexate (MTX) remains the first choice for
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cost-effectiveness and long-term record in China [13]. However, MTX is accompanied by
side effects such as gastrointestinal discomfort, liver and kidney function damage, bone
marrow suppression, and pulmonary fibrosis [14]. Hence, it is urgent to explore new and
safe drugs that can counteract the symptoms of psoriasis.

Traditional Chinese Medicine (TCM) has been widely utilized for several years, and
resources are rich and valuable in China. At present, more and more attention has been
paid to exploring the utilization of TCM resources. Research enthusiasm for TCM has
been stimulated globally, especially after the discovery of artemisinin by Youyou Tu from
China [15]. Benzoylaconitine (BAC) is one of the most common TCMs widely used for its
antiviral, anti-tumor, and anti-inflammatory pharmacological effects [16]. BAC is a lower
toxic monoester type alkaloid considered to be the pharmacodynamic constituent of the
Aconitum species, which shows potential anti-inflammatory effects [17–20]. However, the
effects of BAC on psoriasis presently remain unknown. Thus, we investigated the role
of BAC in the TNF-α/LPS-induced inflammatory response in HaCaT cells based on the
imiquimod (IMQ)-induced mouse model. Moreover, the possible underlying mechanisms
were explored with the purpose of developing effective TCM agents.

2. Results
2.1. BAC Restrains the Abnormal Proliferation but Not the Survival of HaCaT Cells

Before BAC therapy, the viability of HaCaT cells was evaluated through Flow cytome-
try and CCK-8. The data demonstrated that cell viability was not altered after treatment
with different concentrations of BAC (0, 0.1, 1, 10, and 100 µM) compared with the negative
control (Con) group (Figure 1A–C). To explore the anti-proliferation effects of BAC on
keratinocytes, HaCaT cells were treated with TNF-α or LPS separately. The results showed
that BAC suppressed the proliferation of keratinocytes stimulated in a dose-dependent
manner (Figure 1D,E), which indicated that BAC might be a potential anti-proliferation
agent for keratinocytes.
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Figure 1. The chemical structure of BAC and its effects on cell proliferation and viability.
(A) The chemical structure of BAC. (B,C) Cell viability was measured by Flow cytometry and CCK-8.
(D) Detection of cell proliferation after treatment with TNF-α (10 ng/mL) and BAC (0, 10, 20, and
40 µM) for 24 h. (E) Detection of cell proliferation after treatment with LPS (100 ng/mL) and BAC
(0, 10, 20, and 40 µM) for 24 h (Mean ± SD; vs. Con, *** p < 0.001; vs. TNF-α, # p < 0.05, ## p < 0.01,
### p < 0.001; NS = not significant).



Molecules 2023, 28, 4473 3 of 11

2.2. BAC Suppressed the Production of Inflammatory Cytokines in TNF-α/LPS-Induced
HaCaT Cells

Massive production of pro-inflammatory cytokines is the main characteristic of psori-
asis [21]. To evaluate the anti-inflammatory effect of BAC on psoriatic keratinocytes, the
HaCaT cells were treated with TNF-α at different doses (0, 10, 20, and 40 µM) of BAC
treatments for 24 h separately. Then, IL-6 and IL-8 expression levels in TNF-α-induced
HaCaT cells were detected by qRT-PCR and ELISA. The results revealed that cytokines
were significantly enhanced after treatment with TNF-α, while BAC reduced the expression
levels of IL-6 and IL-8 compared with the TNF-α group (Figure 2A–D). Consistent with
previous results, BAC could mitigate the LPS-induced inflammatory response. As shown
in Figure 2E–H, both mRNA and protein expression of TNF-α and IL-17 were significantly
reduced after treatment with BAC, which means the BAC could inhibit the release of
inflammatory cytokines in LPS-stimulated HaCat cells.
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Figure 2. BAC significantly inhibited the gene and protein expression level of inflammatory cytokines
in TNF-α/LPS-induced HaCaT cells. (A–H) mRNA level of IL-6, IL-8, TNF-α, and IL-17, and the
protein level of IL-6, IL-8, TNF-α, and IL-17 in the treated cells with TNF-α (10 ng/mL) and BAC
(0, 10, 20, and 40 µM), respectively. (Mean ± SD; vs. Con, **** p < 0.0001, *** p < 0.001; vs. TNF-α,
# p < 0.05, ## p < 0.01, ### p < 0.001).

2.3. BAC Attenuated IMQ-Induced Murine Psoriasis-like Skin Inflammation

The accumulation of inflammatory factors, hyperproliferation of keratinocytes, and
abnormal expression of parakeratosis in the skin can lead to red scaly lesions, hyperpla-
sia, and micro-abscesses [22]. To evaluate the therapeutic effects of BAC, IMQ-induced
C57BL/6 mice with psoriasis-like skin inflammation were used as the disease model. Based
on this model, red scaly plaques and hyperplasia were observed in the C57BL/6 mice
(Figure 3A). Therapeutically, BAC overtly attenuated the experimental symptoms in a dose-
dependent manner compared with the MTX-treated group, including scales, thickness, and
erythema (Figure 3B–E). The HE results showed that epidermal hyperplasia and infiltration
of inflammatory cells significantly decreased the epidermal thickness and inflammatory
cell infiltration in the model group after treatment with BAC. In addition, compared with
the model group, the Ki-67 expression of the BAC group was significantly reduced, indicat-
ing that BAC could reverse the IMQ-induced increase of keratinocyte proliferation. BAC
increased keratin 1 expression and reduced the expression of keratin 17, which contributed
to an improvement in skin lesions (Figure 3F). The data indicated that BAC had an excellent
therapeutic effect on psoriasis.
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Figure 3. BAC attenuated IMQ-induced mouse psoriatic lesion. (A) The images of mouse back skin
in different groups. (B) PASI scores of skin lesion. (C–E) The daily scales, epidermal thickness, and
erythema, respectively. (F) H&E staining and statistics of Ki-67, Keratin 1 and Keratin 17-positive
cells (Scale bar = 100 µm (200×); Mean ± SD; vs. normal, **** p < 0.0001,*** p < 0.001; vs. vehicle,
# p < 0.05, ## p < 0.01, ### p < 0.001).

2.4. BAC Inhibited the Th17 Cells Accumulation in Model Mice

Previous data have attested that among immune cells, IL17A-producing Th17 helper
(Th17) cells play an important role in the progression of psoriasis [23,24]. Moreover, the
accumulation of Th17 cells was analyzed to verify the effects of BAC on them. The data
demonstrated that a higher population of CD3+CD4+IL17A+Th17 cells was observed in
IMQ-induced mice, while the trend was reversed after BAC treatment in the spleen and skin,
which indicated that BAC inhibited the immunoreaction in the mouse model (Figure 4A–D).

2.5. BAC Reduced the Release of Inflammatory Cytokines in IMQ-Induced Mouse Skin

Pathogenesis of psoriasis is caused by the changes in concentration and distribution
of IL-12, IL-23 and IL-17. Apart from IL-12 and IL-23, IL-17, IL-6, IL-8 and interferon-
γ (IFN-γ) play a vital role in the psoriatic cytokine network [24]. To deeply understand
the influence of BAC on psoriasis, the release of different inflammatory cytokines was
determined [25,26]. As we expected, both the gene and protein of inflammatory cytokines,
including IL-6, TNF-α, IL-23, and IL-17, were increased in the skin extracts (Figure 5A–D),
and the secretion of these cytokines was reduced by BAC (Figure 5E–H), which is consistent
with the in vitro results.
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2.6. Safety of BAC Administration 

Figure 4. BAC reduced the accumulation of Th17 cells in IMQ-induced mice. (A,B) The frequency of
Th17 cells in the spleen in IMQ-induced mice after analysis of flow cytometry. (C,D) The frequency of
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**** p < 0.0001; vs. Vehicle, ## p < 0.01, ### p < 0.001, #### p < 0.0001).
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2.6. Safety of BAC Administration 

Figure 5. BAC significantly inhibited the gene and protein expression level of inflammatory cytokines
in IMQ-induced mice. (A–H) The mRNA level of IL-6, TNF-α, IL-23, and IL-17A, and the protein
level of IL-6, TNF-α, IL-23, and IL-17A, respectively (Mean ± SD; vs. Normal, **** p < 0.0001; vs.
Vehicle, # p < 0.05, ## p < 0.01, ### p < 0.001).

2.6. Safety of BAC Administration

To evaluate the potential dose toxicity of BAC, the body weight of all mice was moni-
tored daily. From the first day of feeding, the weight of the mice was significantly reduced
in the IMQ group, but the phenomenon was improved with the treatment of MTX and
BAC. Interestingly, it showed that mice lost less weight after treatment with BAC compared
with MTX (Figure 6A). The indexes of renal and liver function indicators include serum
creatinine (Cr), alkaline phosphatase (ALP), alanine aminotransferase (ALT), glutamic ox-
aloacetic transaminase (GOT), blood urea nitrogen (BUN), etc. [27]. Moreover, no obvious
change was found in the renal and liver functions between each group (Figure 6B–D). We
might conclude that dosing BAC at 2 mg/kg and 4 mg/kg is relatively safe in mice.
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2.7. BAC-Regulated STAT3 Pathways in Keratinocytes

STAT3 distinctly contributes to the inflammatory response in psoriasis. It has been
reported that sunitinib reduces imiquimod-induced psoriasis-like inflammation by inhibit-
ing p-STAT3 [28,29]. As shown in Figure 7, the data suggested that both p-STAT3 Tyr705

and p-STAT3 Tyr727 were significantly increased after exposure to TNF-α, especially p-
STAT3 Tyr727. On the contrary, BAC treatment strongly inhibited STAT3 phosphorylation
in TNF-α-treated HaCaT cells.
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Figure 7. The suppression of STAT3 phosphorylation by BAC in TNF-α stimulated HaCaT cells.
(A) The expression level of p-STAT3Tyr 705, p-STAT3Ser727, STAT3, and Actin with WB analysis in
TNF-α- induced HaCaT cells. (B) Histogram of p-STAT3Tyr705, p-STAT3Ser727, and STAT3 expression
levels in TNF-α-induced HaCaT cells (Mean ± SD; vs. Con, **** p < 0.0001; vs. TNF-α, ### p < 0.001).

3. Discussion

Psoriasis is a disease that is regulated by multiple genes and inflammation. Abnormal
proliferation and the differentiation of keratinocytes result in hyperplasia of the epider-
mis. As for patients with psoriasis, topical therapy is the conventional treatment, but its
efficacy is not satisfactory owing to severe side effects, making it paramount to discover
new agents [30]. TCMs, such as Aloe vera, Cogon rhizome, and Angelica sinensis, are at-
tracting attention for the treatment of psoriasis [31]. BAC, one of the Aconitum herbs, has
pharmacological anti-inflammatory effects [32]. For example, BAC inhibits the release of
inflammatory cytokines in rheumatoid arthritis (RA). In the present study, we found that
BAC could relieve symptoms of psoriasis through the suppression of proliferation and
production of cytokines in TNF-α/LPS-induced HaCaT cells. Specifically, the proliferation
rate was notably increased after stimulating with TNF-α/LPS, while BAC suppressed the
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proliferation and pro-differentiation in a dose-dependent manner, indicating that BAC
could be a promising agent for the treatment of psoriasis.

Cytokines, including IL-6, IL-8, TNF-α, IL-23, and IL-17, are beneficial for accumulat-
ing immune cells and aggravating keratinocyte proliferation [33,34]. It has been reported
that IL-6 expression could be reduced by thalidomide, leading to inhibition of the in-
flammatory response in psoriasis [35]. TNF-α, involved in the regulation of immune
and inflammatory responses, is related to the development of psoriasis [36]. IL-23, se-
creted by myeloid dendritic cells (mDCs), is increased when psoriasis persists or worsens
and promotes Th17 cells differentiation to produce more IL-17A and IL-17F, which are
pathophysiological evidence of psoriasis [37]. The suppressive function of BAC on the
inflammatory response has been identified in some disease models [38]. Given the anti-
inflammatory effect of BAC, we examined the production of inflammatory cytokines in
TNF-α/LPS-induced HaCaT cells accordingly. Our results indicated that BAC could reduce
the expression of various inflammatory factors secreted from both TNF-α and LPS-treated
HaCaT cells, benefiting from improving the inflammatory environment in skin lesions.

At present, IMQ is one of the methods widely used to establish psoriasis animal
models because of its better replication of inflammatory cytokine response and immune
cell infiltration in human psoriasis [39]. Therefore, we established psoriasis-like dermatitis
by applying IMQ on the mice’s backs. The results clearly indicated that BAC ameliorated
IMQ-induced psoriatic lesions. The PASI difference between the control group and the IMQ
group narrowed after 7 days of administration of BAC. H&E staining also showed that the
epidermal hyperplasia and infiltration of inflammatory cells significantly decreased the
epidermal thickness and inflammatory cell infiltration in the model group after treatment
with BAC. Additionally, Ki-67, keratin 1, and keratin 17 stainings were used to determine
the proliferation and differentiation in IMQ-induced mice. Compared to the IMQ group,
BAC reduced Ki67 and keratin 17 and promoted keratin 1 positive cells. Dependent on the
IL-23/IL-17 axis, IMQ could induce inflammation in the skin and result in proinflammatory
cytokine release and infiltration of immune cells. Because the T lymphocytes (especially
Th17 cells) play an important role in the pathogenesis of psoriasis, our results demonstrated
that BAC could reduce the infiltration of Th17 cells and reduce the serum level of IL-6, TNF-
α, IL-23 and IL-17 in IMQ-induced mice, indicating that BAC could suppress inflammation
on both cutaneous and systemic level.

Drug biological safety needs to be considered when developing an ideal agent to
treat psoriasis [40]. For weight statistics and evaluation, our data demonstrated that body
weight is not affected by BAC treatment. Renal and liver function assessment is also
an important focus for a drug application. Moreover, renal and liver function did not
obviously change between each group, which suggested that BAC is most likely a safe and
effective drug. Studies reported that STAT3 plays a crucial role in inducing the signaling
cascades of multiple cytokines and growth factors [41]. Furthermore, the STAT3 pathway
was involved in the IL-6-stimulated inflammatory and catabolic phenotype of AF cells,
and specifically mediates the signal transduction of many cytokines and growth factors
from the cell membrane to the nucleus. This study demonstrated that BAC might act as an
inhibitor of STAT3 in psoriasis to inhibit STAT3 phosphorylation in TNF-α-induced HaCaT
cells to regulate the proliferation and expression of inflammatory cytokines.

In summary, our data demonstrated that BAC alleviated progression by inhibiting
HaCaT cell proliferation, reducing the release of inflammatory cytokines and accumulation
of Th17 cells via the STAT3 pathway to improve psoriasis. Both in vitro and in vivo studies
implied that BAC could be used as a potentially effective therapeutic agent for psoriasis in
the future.

4. Materials and Methods
4.1. Mice

In the present experiments, 8–10 weeks old C57BL/6 mice were purchased from
Shanghai Laboratory Animal Center (Shanghai, China). Subsequently, all mice were bred
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and maintained under specific pathogen-free (SPF) conditions. All animal experiments in
this study were approved by the Center of Animal Experiments and performed according
to the institutional guidelines of Animal Ethics Certification of the Henan University of
Chinese Medicine.

4.2. Detection of Cell Viability

HaCaT cells were purchased from Shanghai Blowing Applied Biotechnology Co., Ltd.
and cultured in Dulbecco’s modified Eagle’s medium supplemented with 10% fetal bovine
serum and 1% penicillin and streptomycin (Sigma-Aldrich; Merck KGaA, Darmstadt,
Germany), and then incubated at 37 ◦C in a humidified incubator containing 5% CO2. Cell
Counting Kit-8 (CCK-8; Dojindo Molecular Technologies, Inc., Kumamoto, Japan) was used
to detect the viability of HaCaT cells. The main manipulation steps were as follows: HaCaT
cells were seeded into a 96-well plate at a density of 8 × 103 cells/well and then were treated
with TNF-α (10 ng/mL), various concentrations of BAC (0–100 µM), and a combination
of TNF-α (10 ng/mL) and BAC (0, 10, 20 and 40 µM) for 24 h separately. Consequently, a
CCK-8 solution (10 µL) was added to each well for an additional 2 h. Finally, absorbance
values at 450 nm were measured for each well using a microplate reader.

4.3. RNA Extraction and RT-qPCR

Total RNAs were extracted from HaCaT cells and mouse skin using Trizol reagent
(Thermo Fisher Scientific, Waltham, MA, USA), and then 1000 ng RNA was subjected
to cDNA synthesis using the High-Capacity cDNA Reverse Transcription Kit (Applied
Biosystems, Foster City, CA, USA) according to the manufacturer’s instructions. Real-time
PCR reactions were performed in an Applied Biosystems 7500 Real-Time PCR System.
Reaction cycle conditions were as follows: 95 ◦C for 10 min of pre-denaturation conditions,
40 cycles at 95 ◦C for 15 s, 60 ◦C for 20 s, 72 ◦C for 30 s, and termination at 4 ◦C. The primers
were designed via the website (https://pga.mgh.harvard.edu/primerbank/) (accessed on
10 August 2022) and listed in Supplementary Material Table S1.

4.4. Measurement of Inflammatory Cytokines by ELISA

HaCaT cells were treated with different doses (10, 20, and 40 µM) of BAC for 24 h,
and then the supernatants were collected. Back skin extracts were prepared using Tissue
Extraction Reagent I (Invitrogen, Camarillo, CA, USA). The protein levels of inflammatory
factors were measured using ELISA kits from BioLegend (San Diego, CA, USA)/R&D
systems (Minneapolis, Minnesota, MN, USA) as manufacturers’ protocols.

4.5. IMQ-Induced Psoriasis-like Skin Inflammation in Mice

The mice were treated with 62.5 mg IMQ on the shaved back skin and simultane-
ous oral administration of BAC or MTX for six consecutive days to establish a psoriasis
model. The mice were randomly divided into five groups: (i) Con group; (ii) IMQ stimu-
lated psoriasis model group; (iii) MTX (1 mg/kg); (iv) BAC-L (1 mg/kg); and (v) BAC-H
(3 mg/kg) pre-treated psoriasis groups. The murine skin was evaluated by independent
investigators with clinical severity scoring of erythema, scaling and thickening, based
on the Psoriasis Area and Severity Index (PASI) scores (0, none; 1, slight; 2, moderate;
3, marked; and 4, very marked). The total clinical severity score was the sum of the three
scores and served as a measure of disease severity (scale 0–12).

4.6. Skin Cell Preparation and Flow Cytometry

Cells isolated from skin lesions and spleens were prepared according to previous
studies (Miroddi et al., 2015 [20]). Briefly, cells were first stained with the following different
cell surface markers, Alexa Fluor 700 anti-CD45 mAb (BioLegend, USA), FITC anti-CD3
mAb (BioLegend, USA), or APC anti-CD4 mAb (BioLegend, USA). For intracellular staining
of IL-17, cells were stimulated with phorbol 12-myristate 13-acetate/ionomycin for 4 h
in the presence of GolgiPlug (BD Biosciences, Franklin Lakes, NJ, USA). Samples were

https://pga.mgh.harvard.edu/primerbank/
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analyzed using an LSRFortessa flow cytometer (BD Biosciences) and FlowJo software
10 (TreeStar, Woodburn, OR, USA).

4.7. Western Blotting

HaCaT cells were lysed in lysis buffer and centrifuged at 12,000 rpm for 20 min to
collect the supernatants. After measuring protein concentration using the Bio-Rad protein
assay kit (Bio-Rad, Hercules, CA, USA), 20 µg protein supernatants were separated by
10% SDS-PAGE and transferred to polyvinylidene difluoride (PVDF) membrane filters
(Millipore, Billerica, MA, USA). The membranes were blocked by 5% non-fat skim milk
for 1 h at room temperature (RT). After washing with TBST buffer, the membranes were
incubated with the following primary antibodies (Cell Signaling Technology, Berkeley, CA,
USA) overnight at 4 ◦C: anti-p-STAT3Tyr705 (1:1000) (#9145), anti-p-STAT3Ser727 (1:1000)
(#49081), anti-STAT3 (1:1000) (#9139), and anti-Actin (1:5000) (#3700). After washing with
TBST buffer, the membranes were incubated with secondary antibodies for 1 h at RT.
The band density was evaluated with a computer-assisted image analysis system (Adobe
Systems, San Jose, CA, USA).

4.8. Skin Histopathological Analysis

Back skin excised from the animals was fixed in 4% paraformaldehyde overnight and
embedded in paraffin blocks. After sectioning, all samples were stained with hematoxylin
and eosin (HE) to determine the inflammation infiltration. As for the HE dyeing, antibody
rabbit anti-Ki-67 and polymer-horseradish peroxidase-labeled goat anti-rabbit IgG were
used as the primary antibody and the secondary antibody (DAKO, Glostrup, Denmark),
respectively. The positively stained epidermis was quantified by ImageJ software (National
Institutes of Health, Bethesda, MD, USA).

4.9. Drug Safety Analyses

To determine the toxicity of BAC in vivo, the body weight of mice was monitored
daily. The serum level of Cr, BUN, ALT/ALP, and the total and differential number of
leucocytes were detected using a Roche Cobas C311.

4.10. Statistical Analysis

All data were analyzed with Graph Prism 6.0, and statistics were compared using
the one-way ANOVA test (mean ± SD). Statistically significant difference was defined as
p < 0.05. Each experiment consisted of at least three replicates per condition.

5. Conclusions

In summary, our data demonstrated that BAC alleviated progression through in-
hibiting HaCaT cell proliferation, reducing the release of inflammatory cytokines and
accumulation of Th17 cells via STAT3 pathways to improving psoriasis. Both in vitro and
in vivo studies implyed that BAC could be used as a potential effective therapeutic agent
for psoriasis in future.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/molecules28114473/s1, Table S1: Primer sequence.
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