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Abstract: Four previously undescribed highly oxygenated diterpenoids (1–4), zeylleucapenoids A–D,
characterized by halimane and labdane skeletons, were isolated from the aerial parts of Leucas zeylanica.
Their structures were elucidated primarily via NMR experiments. The absolute configuration of 1 was
established using theoretical ECD calculations and X-ray crystallographic analysis, whereas those for
2–4 were assigned using theoretical ORD calculations. Zeylleucapenoids A–D were tested for anti-
inflammatory activity against nitric oxide (NO) production in RAW264.7 macrophages, of which only
4 showed significant efficacy with an IC50 value of 38.45 µM. Further, active compound 4 was also
evaluated for the inhibition of the release of pro-inflammatory cytokines TNF-α and IL-6 and was found
to have a dose-dependent inhibitory effect, while it showed nontoxic activity for zebrafish embryos. A
subsequent Western blotting experiment revealed that 4 inhibited the expression of inducible nitric oxide
synthase (iNOS) and cyclooxygenase-2 (COX-2). Furthermore, molecular docking analysis indicated
that the possible mechanism of action for 4 may be bind to targets via hydrogen and hydrophobic
bond interactions.

Keywords: Leucas zeylanica; highly oxygenated; diterpenoids; anti-inflammatory activity; molecular
docking; zebrafish model

1. Introduction

Inflammation has been closely related to the immune defense response of patients
with chronic diseases [1,2]. The discovery of new anti-inflammatory agents gave hope for
the treatment of inflammation-linked diseases, such as metabolic syndromes, autoimmune
diseases, and so on. Medicinal plants were an important source for the development
of lead drugs. Hitherto, investigations of the chemical constituents of medicinal plants
have attracted much attention from chemists. Diterpenoids are a large group of naturally
occurring chemical constituents found in terrestrial plants, microbes, insects, and marine
organisms [3,4], which exhibit a wide variety of bioactivities, such as anti-inflammatory,
antimicrobial, antitumor, and analgesic activities [5,6].

Leucas species are perennial herbs and distributed mainly in East Africa and the sub-
tropical area of Asia [7]. There are about 125 Leucas species globally, of which 7 species grow
in southern China. Studies on a few species led to the isolation of diterpenoids as active
constituents, which exhibited anti-inflammatory and anti-mycobacterial activities [8,9]. The
aerial parts of L. zeylanica have been used as folk medicine in treating inflammatory diseases,
e.g., pertussis, asthma, headache and indigestion [10].

Our previous chemical investigations of L. zeylanica led to the identification of labdane
diterpenoids and flavonoids [11]. In search of novel, bioactive, and structurally diverse nat-
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ural products from traditional Chinese folk medicine, four undescribed highly oxygenated
diterpenoids, compounds 1–4, were isolated from the aerial parts of L. zeylanica. Among
them, compound 1 was elucidated to be a halimane-type diterpenoid, while 2–4 were
labdane-type diterpenoids (Figure 1). Here, we report the structures, anti-inflammatory
effects and the potential mechanisms of the isolated diterpenoids.
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2. Results and Discussion
2.1. Elucidation of the Chemical Structures of Zeylleucapenoids A–D (1–4)

Zeylleucapenoid A (1) was obtained as colorless crystals. Analysis of the HR-ESI-MS
spectrum showed it had a molecular formula of C24H36O6, indicating seven degrees of
unsaturation. The 1H and 13C-NMR spectral data of 1 (Table 1) suggested that they were
very similar to those of Leucasperone B [12], except for the absence of an oxygenated
methine at (δH 4.15/δC 71.3, CH) in Leucasperone B, and the additional presence of a
methylene at (δH 1.56/δC 30.0, CH2) in 1. Based on this, compound 1 was considered an
analogue of Leucasperone B. Further, the COSY cross-peak between H2-11/H2-12 confirmed
that the methine of C-11 in Leucasperone B was replaced by a methylene in 1, which was
supported by the key HMBC correlations from H2-11 to C-8/C-10/C-13, and from both H-8
and H3-20 to C-10/C-11 (Figure 2). The partial relative configuration of 1 was determined
via NOESY correlations showing cross-peaks between both H-6 and Me-17 with Me-19,
and H-8 with Me-20, which indicated that H-6 and Me-19 were in the same orientation
(Figure 3), while H-8 and Me-20 were in another orientation. Finally, a comparison of the
experimental and calculated ECD spectra of 1 suggested that the absolute configuration of
C-4/C-6/-C-8/C-9 in 1 was that of 4S,6R,8R,9R, which is attributed to the spectrum of the
isomer (4S,6R,8R,9R) of 1 which showed a similar trend to the experimental curve (Figure 4).
However, the absolute configuration of C-13 in 1 was still not assigned. Fortunately, a
single crystal of 1 was attained and the absolute configuration of 1 (Figure 5) was clearly
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defined to be (4S,6R,8R,9R,13S) via X-ray diffraction analysis (CCDC no. 2225700), and
named as zeylleucapenoid A.

Table 1. 1H and 13C NMR spectral data of compounds 1–2.

Position
1 a 2 b

δH, Mult, (J in Hz) δC δH, Mult, (J in Hz) δC

1 2.47, m; 2.59, m 24.2 1.34, m; 1.59, m 35.9

2 2.51, m 38.4 1.41, m
1.55, m 18.4

3 - 214.7 1.10, m; 1.24, m 44.5
4 - 52.1 - 33.5
5 - 130.3 1.68, d, (2.4) 46.7
6 5.43, t, (2.8) 68.5 5.23, dd, (5.6, 2.8) 69.5

7 1.71, m 36.0 1.35, m
1.62, m 32.2

8 1.85, m 34.5 2.02, m 31.1
9 - 42.6 - 75.6

10 - 149.8 - 43.4

11 1.56, m 30.0 1.37, m
1.57, m 33.0

12 1.21, m
1.63, m 40.4 2.23, t, (7.2) 22.5

13 - 73.9 - 139.5
14 5.87, dd, (17.6, 10.8) 146.2 6.79, s 135.3

15 5.05, dd, (10.8, 2.0)
5.20, dd, (17.6, 2.0) 112.4 3.96, s 51.5

16 1.15, s 27.7 - 170.8
17 1.04, d, (7.2) 16.6 0.85, d, (6.8) 16.0

18 4.05, d, (10.8)
4.20, d, (10.8) 69.5 0.94, s 23.5

19 1.18, s 20.1 0.88, s 33.4
20 1.24, s 27.5 1.19, s 19.0
21 - 172.2 - 169.9
22 1.98, s 20.7 1.98, s 21.6
23 - 172.4 3.38, t, (5.8) 43.5
24 2.00, s 21.5 3.50, t, (5.8) 59.5

a measured in CD3OD at 400 MHz; b measured in DMSO-d6 at 400 MHz.
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Compound 2 was purified as a white powder. Its molecular formula, C24H39NO5,
was defined using the HR-ESI-MS spectrum with an ion peak at m/z 444.2725 [M+Na]+

(that calcd for C24H39NO5Na was 444.2726), corresponding to six degrees of unsaturation.
The 1H NMR data of 2 (Table 1) showed characteristic resonances for an olefinic proton at
δH 6.79 (H-14), three methines including an oxygenated proton at δH 5.23 (H-6), and five
methyls at δH 0.85 (H-17), 0.88 (H-19), 0.94 (H-18), 1.19 (H-20) and 1.98 (H-22). The 13C NMR
spectrum (Table 1) exhibited 24 carbon signals in total, including two amide/ester carbonyls
at δC 170.8 (C-16)/169.9 (C-21), two sp2 carbons at δC 139.5 (C-13)/135.3 (C-14), four methyls
at δC 33.4 (C-19)/23.5 (C-18)/21.6 (C-22)/16.0 (C-17), three sp3 methines at δC 69.5 (C-6)/46.7
(C-5)/31.1 (C-8), three sp3 quaternary carbons at δC 75.6 (C-9)/43.4 (C-10)/33.5 (C-4), and nine
methylenes. These spectral data indicated that 2 was an analogue of vitexlactam A [13], except
for the additional existence of an ethoxy moiety in 2. Further analysis of 2D-NMR spectra of
2 confirmed the assignment above. In the COSY spectrum, the correlation between H2-23 and
H2-24 was observable. In the HMBC spectrum, there were long-range correlations from H2-15
to C-23, and from H2-23 to C-15/C-16 (Figure 2), which suggested that the ethoxy moiety
was connected to the nitrogen atom. The relative configuration of 2 was determined to be
the same as that of vitexlactam A via an observation of NOESY correlations (Figure 3). In the
NOESY spectrum, there were cross-peaks between Me-20 and H-8/H2-11/Me-18, indicating
they were α-cofacial, while H-5/H-6/Me-19/9-OH were β-cofacial. The absolute configura-
tion of 2 was determined to be 5R/6S/8S/9S/10R via a comparison of its specific rotation
[α]25

D + 51.7 (c 2.1, MeOH) with that of vitexlactam A [α]25
D−10.7 (c 0.42, CHCl3) [13], show-

ing an opposite sign. Furthermore, a comparison of the calculated optical rotatory dispersion
(ORD) spectrum of 2 tothe experimental one also supported that assignment, in which the
calculated ORD spectrum of 5R,6S,8S,9S,10R of 2 agreed well with the experimental curve for
2 (Figure 6). Thus, 2 was elucidated as shown in Figure 1, and named zeylleucapenoid B.
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Compound 3 was isolated as a colorless gum. Its molecular formula was deter-
mined to be C23H34O6 using HR-ESI-MS data at m/z 429.2256 (calcd as 429.2253 for
C23H34O6Na). The 1H and 13C NMR data (Table 2) of 3 were found to be similar to
those for 6β-acetoxy-9α,13-epoxy-16-norlabd-13Z-en-15-al, as previously reported from
L. zeylanica by our team [11], except for an additional appearance of an acetyl group
(δH 2.03/δC 20.5, δC 173.1) and an oxygenated methylene (δH 4.48/δC 67.6) in 3, and the
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absence of a methyl (δH 1.05/δC 24.0) in 6β-acetoxy-9α,13-epoxy-16-norlabd-13Z-en-15-al.
These data indicated that the methyl group in 6β-acetoxy-9α,13-epoxy-16-norlabd-13Z-
en-15-al was oxygenated with an acetyl group in 3. This was supported by the HMBC
correlations from H-5 to C-18, H2-18 to C-3/C-4/C-19 and C-21, Me-19 to C-4/C-5 and
C-18, and Me-22 to C-21. The (Z) configuration of the ∆13(14) double bond was defined
by the NOESY correlation of H2-12/H-14 (Figure 3). The relative configuration of 3 was
assigned to be the same as that of 6β-acetoxy-9α,13-epoxy-16-norlabd-13Z-en-15-al, based
on the NOESY correlations. The absolute configuration of 3 was established via a com-
parison of the experimental and calculated ORD spectra for it, which indicated that the
calculated ORD spectrum (Figure 6) of 4R,5R,6S,8S,9S,10R of 3 agreed well with the experi-
mental curve for 3. Thus, the structure of zeylleucapenoid C (3) was established as shown
in Figure 1.

Table 2. 1H and 13C NMR spectral data of compounds 3–4.

Position
3 a 4 a

δH, Mult, (J in Hz) δC δH, Mult, (J in Hz) δC

1 1.25, m; 1.51, m 33.7 1.21, m; 1.48, m 33.7
2 1.55, m; 1.72, m 18.9 1.66, m; 1.53, m 18.9
3 1.89, m; 1.75, m 37.4 1.87, m 37.3
4 - 39.3 - 39.2
5 1.86, d, (2.4) 51.7 1.81, d, (2.4) 51.4
6 5.51, dd, (5.6, 2.8) 70.7 5.48, q, (2.4) 70.7
7 1.75, m; 1.00, m 37.1 1.70, m; 0.97, m 37.0
8 2.24, m 33.2 2.27, m 33.1
9 - 103.3 - 101.5

10 - 44.2 - 43.9
11 2.31, m; 1.98, m 25.8 2.36, m; 2.06, m 26.7
12 2.96, m 30.1 3.20, m 30.9
13 - 183.6 - 186.6
14 5.09, d, (8.8) 100.7 5.55, dt, (8.0, 2.0) 101.7
15 9.86, d, (8.8) 190.7 9.49, d, (8.0) 193.2
17 0.88, d, (6.4) 15.8 0.85, d, (6.4) 15.7

18 4.13, dd, (11.2, 1.6)
4.48, d, (11.2) 67.6 4.41, dd, (11.2, 1.6)

4.47, d, (11.2) 67.6

19 1.05, s 27.4 1.03, s 27.4
20 1.33, s 20.7 1.34, s 20.7
21 - 173.1 - 173.1
22 2.03, s 20.5 2.03, s 20.6
23 - 172.0 - 172.0
24 2.10, s 21.8 2.09, s 21.8

a measured in CD3OD at 400 MHz.

Compound 4 was isolated as a colorless gum. Its molecular formula was determined to
be C23H34O6 using HR-ESI-MS data at m/z 429.2260 (calcd to be 429.2253 for C23H34O6Na).
The 13C NMR data (Table 2) closely resemble those of 3 except for a few deviations of
chemical shifts from the signals for C-9 (∆δC +1.8), C-11 (∆δC −0.9), C-12 (∆δC −0.8),
C-13 (∆δC −3.0), C-14 (∆δC −1.0), and C-15 (∆δC −2.5) in 4. Analysis of its 2D NMR spectra
showed that 4 is a stereoisomer of 3. The main difference was the geometrical configuration
of the ∆13(14) double bond. The lack of NOESY correlations observed between H2-12 and
H-14 and the 3J12,14 = 2.0 Hz (3J12,14 = 0 Hz in 3) also verified that the ∆13(14) double bond
was E-formed. Because the experimental ORD spectrum (Figure 6) of 4 was similar to that
of 3, the absolute configuration of 4 was determined to be (4R,5R,6S,8S,9S,10R), and named
zeylleucapenoid D.

2.2. Anti-Inflammatory Activity

Considering the traditional anti-inflammatory efficacy of L. zeylanica, compounds 1–4
were examined for their ability to inhibit nitric oxide (NO) production [14]. Prior to the
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bioassay, the in vitro cytotoxic effects against cell viability were detected using the MTT
method, and compounds 1–4 showed no cytotoxic activity with CC50 values of >100 µM.
At non-cytotoxic concentrations, compound 4 exhibited significant effects on reducing the
LPS-induced NO production with an IC50 value of 38.45 µM in RAW264.7 macrophages,
while the positive control dexamethasone showed an IC50 value of 79.34 µM (Figure 7).
Meanwhile, the zebrafish embryo toxicity test was thought to be suitable for the evaluation
of the toxic property of drug candidates. Herein, active compound 4 was evaluated for
toxicity activity using the zebrafish embryo model, which indicated that 4 showed nontoxic
activity at the concentrations of 12.5, 50 and 100 µM, respectively (Figure 8). A subsequent
ELISA assay uncovered that 4 could strongly suppress the secretion of LPS-induced TNF-α
and IL-6 cytokines in a dose-dependent manner for RAW264.7 macrophages (Figure 9).
In order to understand the possible anti-inflammatory mechanism, the effects of 4 on
iNOS and COX-2 protein expression levels were examined via Western blotting, which
indicated that compound 4 dose-dependently attenuated the levels of the inflammatory
mediators iNOS and COX-2 (Figure 10). Based on the above, these data disclosed that
compound 4 played an important role through the downregulation of pro-inflammatory
enzyme expression, leading to an anti-inflammatory effect. To the best of our knowledge,
there are a few reports of halimane-type diterpenoids without anti-inflammatory activity
against NO release [15]. Combining our results of anti-inflammatory activity for 1–4, it
may be concluded that the substituent with a spiro-ring unit at C-9 was a potentially func-
tionalized group. In addition, our discovery of non-toxicity against zebrafish embryos and
binding with iNOS and COX-2 for 4 will promote the yield of lead compounds via further
structural prioritization.
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(B) Effect of compound 4 on the development and morphology of zebrafish embryos.
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Figure 9. Impact of compound 4 on cytokine secretion in LPS-treated RAW264.7 cells. Cell pre-
treatment was performed for 1 h using different concentrations compound 4 concentrations (12.5, 25,
and 50 µM) followed by LPS (1 µg/mL) treatment for 24 h. Supernatants of the cell cultures were
obtained and used to determine IL-6 and TNF-α levels via ELISA. ## p < 0.01 vs. Con, and ** p < 0.01
vs. LPS. n ≥ 3.
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Figure 10. Inhibition of LPS-induced iNOS and COX-2 gene expression in RAW264.7 cells for
compound 4. RAW264.7 cells were preincubated using compound 4 for 1 h, followed by being
co-treated with LPS for 24 h, and analyzed via Western blotting. (A) Western blotting; (B) iNOS
expression; (C) COX-2 expression. Data are expressed as mean ± SD (n ≥ 3). ## p < 0.01 vs. Con,
* p < 0.05, and ** p < 0.01 vs. LPS. n ≥ 3.

2.3. Predicted Binding Modes of Compound 4 and Both iNOS and COX-2 Using Molecular
Docking Analysis

To further recognize the possible binding modes of anti-inflammatory activity for 4,
a molecular docking study was performed on 4 and both iNOS and COX-2 proteins. The
result showed that 4 was well-accommodated in the binding pocket of iNOS, primarily
interacted with Tyr341 and Arg375 residues through stable hydrogen bonds, and interacted
with residues Trp84 and Val346 through hydrophobic bonds (Figure 11). Meanwhile, in
the binding pocket of COX-2, compound 4 mainly formed stable hydrogen bonds with
Tyr348, Val523 and Arg120 residues, and formed hydrophobic bonds with residues Val523
and Tyr355 (Figure 11). The lower binding energies of −5.862 and −6.722 kcal/mol also
provided reliable evidence to confirm their strong affinity (Table 3). Therefore, the molecular
docking analysis provided a perspective on the potential targets for 4, which will be helpful
for discovering the specific binding site in a follow-up experiment.

Table 3. Logarithms of free binding energies (FBE, kcal/mol) between compound 4 and the active
cavities of both iNOS (PDB code, 3E6T) and COX-2 (PDB code, 1PXX) via targeting residues.

Compounds Protein −Log(FBE) Targeting Residues

4
iNOS −5.862 Tyr341 Arg375 Trp84 Val346

COX-2 −6.722 Tyr348 Val523 Arg120 Tyr355
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Figure 11. The binding mode of 4 with iNOS and COX-2. (A) The 2D binding mode of 4 with
iNOS and COX-2. The green and light-green dash lines are depicted as hydrogen bond. The pink
dash line is depicted as hydrophobic. (B,C) The 3D surface and cartoon binding mode of 4 with
iNOS and COX-2. (D) The detailed 3D binding mode of 4 with iNOS and COX-2. Compound is
depicted as yellow sticks, the surrounding residues in the binding pockets are depicted as green
sticks, the backbone of the receptor is depicted as lightblue and deepblue cartoon. The hydrogen and
hydrophobic bonds are depicted as green and pink dashed lines.

3. Materials and Methods
3.1. General Experimental Procedures

The optical rotation value was tested through a JASCO P-1020 digital polarimeter
(JASCO, Tokyo, Japan), while the acquisition of ECD spectra was carried out using a
Jasco J-815 (JASCO, Tokyo, Japan) circular dichroism spectrometer at room temperature.
Briefly, 1D and 2D NMR data were recorded on a Bruker AV (Bruker Corporation, Basel,
Switzerland) spectrometer (400 MHz for 1H and 100 MHz for 13C), while TMS was used
as an internal reference. The acquisition of HRESIMS data was carried out via a Q-TOF
Ultima Global GAA076 LC (Billerica, MA, USA) mass spectrometer. Semi-preparative
HPLC was carried out on an Agilent 1260 LC (Agilent Corporation, Santa Clara, CA, USA)
infinity series, by loading an Agilent Eclipse XDB-C18 column (9.4 × 250 mm, 5 µm, Agilent
Corporation, Santa Clara, CA, USA), using a DAD-UV detector. Silica gel (Qing Dao Hai
Yang Chemical Group Co., Qing dao, China; 100–200, 200–300 mesh) was employed in
column chromatography (CC). Thin-layer chromatography (TLC) (Yan Tai Zi Fu Chemical
Group Co., Yan Tai, China, G60, F-254) was used to monitor the separation of samples.
Anti-inflammatory activity was evaluated using a Microplate spectrophotometer (Bio-Rad,
California, USA) as a template reader.

3.2. Plant Material

The aerial parts of Leucas zeylanica (Lamiaceae) were collected from Changjiang city,
Hainan province of China, in July 2020, and were authenticated by Professor Yu-Kai
Chen (School of Hainan Normal University, Changjiang, Hainan, China). The specimens
(no. C20-L02) were deposited at the Key Laboratory of Tropical Medicinal Resource
Chemistry of Ministry of Education, Hainan Normal University (Haikou, Hainan, China).

3.3. Extraction and Isolation

The aerial parts of L. zeylanica (10.0 kg) were extracted with 95% EtOH (3 × 25 L). A
dark-brown crude extract (1.1 kg) was obtained after concentration in vacuo to remove
most of the EtOH. The crude extract was suspended in distilled water and partitioned with
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PE (60–90) (3.0 × 1.0 L), EtOAc (3.0 × 1.0 L) and n-BuOH (3.0 × 1.0 L), yielding 90, 295 and
354 g of residues, respectively.

The PE-soluble fraction (87 g) was subjected to silica-gel column chromatography (CC)
(100–200 mesh) with gradient elution (petroleum ether/ethyl acetate, 100:0, 90:10, 80:20,
70:30, 60:40, and 0:100; v/v, 6 L each) to obtain four major fractions (Fr. P1-P4).

The Fr. P-3 (15 g) part was separated by a silica-gel column and eluted with gradient
mixtures of petroleum ether–acetone (from 5:1 to 1:1) to obtain fractions (Fr. P3-1-P3-5).
Fraction Fr. P3-3 (6 g) was separated on Sephadex LH-20 (Pharmacia, Beijing, China)
(CHCl3: MeOH, 1:1) and a RP-C18 silica-gel column (Qing Dao Hai Yang Chemical Group
Co., Qingdao, China) (MeOH/H2O, from 70% to 100%) to obtain fractions of Fr. P33-1-P33-6
on the basis of TLC analysis. Fraction Fr. P3.3-3 (160 mg) was purified via semi-preparative
HPLC with MeOH/H2O (60:40 v/v) as an eluent to obtain compound 1 (12 mg).

The EtOAc-soluble fraction (290 g) was subjected to silica gel column chromatography
(CC) (100–200 mesh) with gradient elution (petroleum ether/ethyl acetate and chloro-
form/methanol, 100:0, 90:10, 80:20, 70:30, 60:40, and 0:100; v/v, 8 L each) to obtain six major
fractions (Fr. E1-E2).

Fr. E-3 (24.2 g) was subjected to an ODS column and eluted with MeOH/H2O
(from 10:90 to 100:0 v/v), obtaining seven sub-fractions (Fr. E3-1-Fr. E3-7). Fr. E3-3
(1.7 g) was purified on a silica-gel column (200-300 mesh, petroleum ether–EtOAc, 100:0,
90:10, 80:20, 70:30, 60:40, and 0:100 v/v) to yield five additional fractions (Fr. E33-1-Fr.
E33-5). Fr. E33-3 (336 mg) was decolorized using a silicone column and eluted via gradient
elution (MeOH-H2O, from 80:20 to 100:0 v/v), to yield three subfractions (Fr. E333-1-Fr.
E333-3). Compounds 3 (2.1 mg) and 4 (5.6 mg) were obtained from Fr. E333-2 (87 mg) via
HPLC (MeOH-H2O, 61:39 v/v).

Fr. E-5 (1.2 g) was subjected to silica-gel column chromatography (CC) (200–300 mesh)
using CHCl3-MeOH (100:0, 90:10, 80:20, 70:30, 60:40, and 0:100; v/v) with gradient elution
to retrieve five fractions (Fr. E5-1-Fr. E5-5). Fr. E5-3 (540 mg) was subjected to an ODS
column eluting with MeOH/H2O (from 20:80 to 100:0 v/v) to obtain four subfractions
(Fr. E53-1-Fr. E53-4). Fr. E53-3 (118 mg) was further purified via HPLC (MeOH-H2O, 68:32)
to obtain compound 2 (7.8 mg).

3.3.1. Zeylleucapenoid A (1)

Colorless block crystals; [α]25
D +11.43 (c 0.14, MeOH); mp 156.6–157.9 ◦C; UV (MeOH)

λmax (log ε) 220 (3.91), 266 (3.02), 275 (2.95) nm; CD (c 0.0005, MeOH) λmax (∆ε) 205 (+59.40),
293 (+9.90) nm; 1H NMR (400 MHz, CD3OD) and 13C NMR (100 MHz, CD3OD), see Table 1;
HR-ESI-MS m/z 443.2415 (calcd as 444.2410 for C24H36O6Na).

3.3.2. Zeylleucapenoid B (2)

White powder; [α]25
D +51.7 (c 2.1, MeOH); UV (MeOH) λmax (log ε) 222 (3.99),

306 (3.02), 318 (2.93) nm; 1H NMR (400 MHz, CD3OD) and 13C NMR (100 MHz, CD3OD),
see Table 1; HR-ESI-MS m/z 444.2725 (calcd as 444.2726 for C24H39NO5Na).

3.3.3. Zeylleucapenoid C (3)

Colorless gum; [α]25
D +24.84 (c 1.0, MeOH); UV (MeOH) λmax (log ε) 220 (3.90),

266 (3.25) nm; 1H NMR (400 MHz, CD3OD) and 13C NMR (100 MHz, CD3OD), see Table 2;
HR-ESI-MS m/z 429.2256 (calcd as 429.2253 for C23H34O6Na).

3.3.4. Zeylleucapenoid D (4)

Colorless gum; [α]25
D +20.53 (c 1.5, MeOH); UV (MeOH) λmax (log ε) 219 (3.95),

267 (3.69) nm; 1H NMR (400 MHz, CD3OD) and 13C NMR (100 MHz, CD3OD), see Table 2;
HR-ESI-MS m/z 429.2260 (calcd as 429.2253 for C23H34O6Na).
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3.4. X-ray Crystallographic Analysis

Crystals of compound 1 were obtained from MeOH at room temperature. Single-crystal
X-ray diffraction data were collected on a Rigaku, Oxford, diffractometer (Oxford Diffraction
Ltd.: Abingdon, England, UK) with Cu Kα radiation (λ = 1.54184 Å) at 100.00(10) K, respec-
tively. Using the direct methods (ShelXS) and refinement with the ShelXL program, structure
determination and refinement were performed. Crystallographic data of compound 1 were
deposited in the Cambridge Crystallographic Data Centre (CCDC numbers: 2225700 for 1).
The data can be obtained free of charge from the Cambridge Crystallographic Data Centre
(https://www.ccdc.cam.ac.uk/, accessed on 11 December 2022).

Crystal data of compound 1: C24H36O6, Mr = 420.53; colorless block crystals from
CH3OH; crystal size = 0.25 × 0.16 × 0.14 mm3; T = 100.00(10) K; space group P21; monoclinic,
a = 9.33510 (10) Å, b = 9.69210 (10) Å, c = 13.5574 (2) Å, α = 90◦, β = 107.5540(10), γ = 90◦,
V = 1169.51(3) Å3, Z = 2, Dcalc = 1.194 g/cm3, F (000) = 456.0, and µ (Cu Kα) = 0.685 mm−1.
Independent reflections: 4731 unique (Rint = 0.0227, Rsigma = 0.0194). The final R1 was 0.0288
and wR2 was 0.0751 [I ≥ 2σ (I)] (all data). Flack parameter = 0.00(5). CCDC no. 2225700
(Table S1 in the Supporting Information).

3.5. Anti-Inflammatory Activity
3.5.1. NO Measurement

All isolated compounds were evaluated for their inhibition of nitric oxide (NO) produc-
tion in RAW264.7 cells activated by lipopoly saccharide (LPS) using the Griess assay with
dexamethasone (DEX) as a positive control [16,17]. RAW 264.7 cells were seeded in 96-well
plates at a density of 2 × 105 cells/mL. After 12 h of incubation, the cells were pre-treated
with the compounds (50 µM) and DEX (50 µg/mL) for 1 h and following additional LPS
(1 µg/mL) treatment for 24 h at 37 ◦C. After 24 h, the quantity of NO accumulated in the
culture medium was measured. Briefly, to the cell culture medium (50 µL) was added an
equivalent volume of the Griess reagent. The absorbance was measured using a microplate
reader at 540 nm wavelength.

3.5.2. The MTT Assay

Briefly, RAW264.7 cells were seeded in 96-well plates at a density of 1 × 105 cells/mL.
Incubation was performed for 12 h after which the compounds (50 µM) were used to
treat the cells for 24 h. Subsequently, 20 µL of the MTT stock solution (5 mg/mL) was
added to the wells. After 4 h incubation, the supernatants were aspirated. The formazan
crystals in each well were dissolved in DMSO (150 µL), and the absorbance was measured
at a wavelength of 570 nm using a microplate reader. The data were expressed as mean
percentages of the viable cells compared to the respective control.

3.5.3. Zebrafish Maintenance

Adult wild-type zebrafish (Danio rerio) were raised at a standard facility, which allows
the control of stationary light and temperature. The zebrafish were treated with a light/dark
photoperiod in 14:10 h cycles, and fed live brine shrimp 2 times a day. Further, the embryos
were produced from the spawning of adult fish using a hatch box, and the incubation
process from embryo to larvae was maintained at 28 ◦C. The larvae were collected and used
for the toxic experiments. All the zebrafish procedures were approved by the Institutional
Animal Care and Committee of Hainan Normal University.

3.5.4. Toxic Effects in Zebrafish

Although the anti-inflammatory activity of diterpenoids in zebrafish models has been
reported previously [18–20], it is still not very common. Compound 4 was evaluated for
zebrafish larval toxicity studies. Four hours post-fertilization (hpf) larvae were placed in
6-well plates at a count of 10 fish/well and compounds were added in the fish water at 4
different concentrations (12.5, 25, 50, and 100 µM). The EVOS digital microscope (4×) was
used to detect toxic activity for the larval zebrafish up to 120 hpe (hours post-exposure).

https://www.ccdc.cam.ac.uk/
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Prior to the test, larval zebrafish were checked for their viability, where a lack of heartbeat
was considered death (acute toxic dose). Other indications of toxicity involved swim
position, and morphological deficits such as malformations, larval length, tail curvature,
and swim bladder inflation level.

3.5.5. ELISA Assay

Cytokine levels were quantified using ELISA kits in accordance with the manufac-
turer’s protocol [21,22]. After pretreatment with compound 4 (12.5, 25 and 50 µM) and
DEX (50 µg/mL) for 1 h, cells were incubated with compound 4 and LPS for an additional
24 h, and cell culture supernatants were collected. The expression levels of IL-6 and TNF-α
in the culture medium were assessed by measuring the absorbance at 450 nm using a
microplate reader.

3.5.6. Western Blot Analysis

RAW264.7 cells were seeded at a density of 1 × 106 cells/well in 6-well plates for
24 h [23,24]. Cells were then pretreated with compound 4 for 1 h and stimulated with LPS
(1 µg/mL). After 24 h of continuous incubation, cells were washed twice with cold PBS
and collected. Cells were lysed with a lysis buffer containing a freshly added protease
inhibitor cocktail and phenylmethyl sulfonylfluoride. The lysate was then centrifuged
at 12,000 rpm for 10 min and the supernatant was collected to obtain the total protein
concentration. Protein concentrations were determined using BCA Protein Assay Kit
(Beyotime Biotechnology, Shanghai, China). Equal amounts of protein were separated via
SDS-PAGE(Beijing Liuyi Biotechnology Co., Ltd., Beijing, China) gel electrophoresis and
transferred to polyvinylidene difluoride membranes. Membranes were blocked with 5%
skimmed milk for 2 h at room temperature and then the membranes were further incubated
with a primary antibody (iNOS and COX-2) at 4 ◦C overnight followed by incubation
with a horseradish peroxidase-conjugated secondary antibody. Finally, protein blots were
visualized using an ECL detection kit (Beyotime Biotechnology). β-actin was used as an
internal reference. Each band was quantified using Image J software.

3.5.7. Molecular Docking Studies

Molecular docking was conducted in AutoDock using the hybrid Lamarckian Genetic
Algorithm (LGA) [25,26]. The 3D structure of iNOS (PDB:3E6T) and COX-2 (PDB:1PXX) was
downloaded from RCSB PDB (https://www.rcsb.org/, accessed on 5 December 2022). The
3D structure of 4 was drawn in ChemDraw (https://www.chemdraw.com.cn/, accessed on
5 December 2022) as ligands. The protein and ligand were converted to a PDBQT format
using AutoDockTools. The ligands were set to flexible; the receptor was set to rigid. The
conformation with the lowest binding free energy was finally identified as the best probable
binding mode. Water molecules and the original ligand of the receptor were manually
removed using PyMol software. Prepare_ligand4.py and prepare_recptor4.py scripts from
AutoDockTools 1.5.6 were used to prepare the initial files of ligands including adding
charges and hydrogen atoms.

4. Conclusions

Chemical investigations of the 95% EtOH extract of L. zeylanica allowed the obten-
tion of four undescribed highly oxygenated halimane-type and labdane-type diterpenoids
(1–4). The absolute configuration of the new compound, 1, was determined using theo-
retical ECD calculations and single-crystal diffraction. The absolute configuration of new
compounds 2–4 was determined using theoretical ORD calculations. Among them, com-
pound 4 showed significant anti-inflammatory activity against LPS-induced NO, TNF-α
and IL-6 production, and the inhibition of iNOS and COX-2 protein expression levels.
The molecular docking analysis indicated that 4 had a strong affinity with both iNOS
and COX-2 through hydrogen and hydrophobic bond interactions with a few amino acid

https://www.rcsb.org/
https://www.chemdraw.com.cn/
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residues. These results were significative of the discovery of anti-inflammatory target and
lead compounds for the treatment of inflammation-linked diseases.

Supplementary Materials: The following supporting information can be downloaded at https://www.
mdpi.com/article/10.3390/molecules28114472/s1. Table S1: Crystal data and structure refinement for
compound 1 using autored. Table S2: Fractional atomic coordinates (×104) and equivalent isotropic
displacement parameters (Å2 × 103) for compound 1 using autored. Ueq is defined as 1/3 of the
trace of the orthogonalised UIJ tensor. Table S3: Anisotropic displacement parameters (Å2 × 103)
for LE35113_A_autored. The anisotropic displacement factor exponent takes the form −2π2 [h2a ×
2U11 + 2hka × b × U12 + . . . ]. Table S4: Bond lengths for compound 1 determined using autored.
Table S5: Bond angles for compound 1 determined using autored. Table S6: Hydrogen bonds for
compound 1 determined using autored. Table S7: Torsion angles for compound 1 determined using
autored. Table S8: Hydrogen Atom coordinates (Å × 104) and isotropic displacement parameters
(Å2 × 103) for compound 1 determined using autored. Computational Section—Table S9: Energies
of the dominative conformers of compound 1. Table S10: Energies of the dominative conformers of
compounds 2 and 3. Table S11: Calculated and measured OR values of compounds 2 and 3 at different
wavelengths. Table S12 The docking pockets. Figure S1: UV Spectrum of compound 1. Figure S2:
(+)-HRMS(ESI) spectroscopic data of compound 1. Figure S3: 1H NMR Spectrum of compound 1
in CD3OD. Figure S4: 13C NMR spectrum of compound 1 in CD3OD. Figure S5: DEPT spectrum of
compound 1 in CD3OD. Figure S6: HSQC spectrum of compound 1 in CD3OD. Figure S7: 1H-1H COSY
spectrum of compound 1 in CD3OD. Figure S8: HMBC spectrum of compound 1 in CD3OD. Figure S9:
NOESY spectrum of compound 1 in CD3OD. Figure S10: UV spectrum of compound 2. Figure S11:
(+)-HRMS(ESI) spectroscopic data of compound 2. Figure S12: 1H NMR spectrum of compound 2 in
DMSO-d6. Figure S13: 13C NMR spectrum of compound 2 in DMSO-d6. Figure S14: DEPT spectrum of
compound 2 in DMSO-d6. Figure S15: HSQC spectrum of compound 2 in DMSO-d6. Figure S16: 1H-1H
COSY spectrum of compound 2 in DMSO-d6. Figure S17: HMBC spectrum of compound 2 in DMSO-d6.
Figure S18: NOESY spectrum of compound 2 in DMSO-d6. Figure S19: UV spectrum of compound
3. Figure S20: (+)-HRMS(ESI) spectroscopic data of compound 3. Figure S21: 1H NMR spectrum of
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