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Abstract: Traditionally, drugs were obtained by extraction from medicinal plants, but more recently
also by organic synthesis. Today, medicinal chemistry continues to focus on organic compounds
and the majority of commercially available drugs are organic molecules, which can incorporate
nitrogen, oxygen, and halogens, as well as carbon and hydrogen. Aromatic organic compounds
that play important roles in biochemistry find numerous applications ranging from drug delivery to
nanotechnology or biomarkers. We achieved a major accomplishment by demonstrating experimen-
tally/theoretically that boranes, carboranes, as well as metallabis(dicarbollides), exhibit global 3D
aromaticity. Based on the stability–aromaticity relationship, as well as on the progress made in the
synthesis of derivatized clusters, we have opened up new applications of boron icosahedral clusters
as key components in the field of novel healthcare materials. In this brief review, we present the
results obtained at the Laboratory of Inorganic Materials and Catalysis (LMI) of the Institut de Ciència
de Materials de Barcelona (ICMAB-CSIC) with icosahedral boron clusters. These 3D geometric shape
clusters, the semi-metallic nature of boron and the presence of exo-cluster hydrogen atoms that can
interact with biomolecules through non-covalent hydrogen and dihydrogen bonds, play a key role in
endowing these compounds with unique properties in largely unexplored (bio)materials.

Keywords: carboranes; metallabis(dicarbollide); BNCT; proton therapy; PBFR; COSAN; FESAN; PET;
SPECT; antimicrobial; luminescence; bioimaging; photodinamic therapy (PDT)

1. Introduction

Boron was isolated in Penzance (Cornwall, England) in 1808 by the English chemist
Humphry Davy [1], but boron as an element was identified by Jöns Jakob Berzelius in
1824 [2]. Boron is extracted as borate salts of different cations from minerals (Kaliborite,
Karlite, Kernita and Kurnakovite, among others) [3,4]. Turkey (deposits existing in Kırka,
Emet, Bigadiç, and Kestelek) has the largest world boron reserves, followed by the United
States (“Death Valley” desert in California) and Russia at the second position [5], being
Turkey the major country in boron production from 2010 to 2022 [6].

Borax (Na2B4O7·10H2O) was one of the first minerals to be exchanged in the times
of the Ancient World. In the Egypt of the phaaraohs, the deceased were embalmed with
mummification salts, being those containing borate the most reliable for preservation. Boric
acid (H3BO3), which was produced from borax by the Dutch chemist William Homberg
in 1702, has been widely used for topical administration since the 18th century due to its
strong bactericidal and fungicidal activity [7].

Boron, which is located to the left of carbon on the periodic table, possesses and
forms stable compounds with a wide variety of elements. Natural boron is composed of
two stable isotopes 10B and 11B, the latter of which make up about 80% of natural boron.
Boron, like carbon, can bond with itself, forming B-B bonds that give rise to boranes and
heteroboranes (being the most known carboranes and metallacarboranes). These boron
clusters form 3D aromatic [8–10], polyhedral structures with triangular faces in which
the bonds that hold the cluster together are tricentric bonds with two electrons (3c-2e).
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William Lipscomb received the Nobel Prize in Chemistry in 1976 for his studies on the 3c-2e
bonding of borane structures [11]. These 3D molecular structures of boron clusters possess
extraordinary chemical, biological, thermal, and photochemical stability that make them
have unique applications in (nano)materials not possible with other elements, including
carbon [12–17].

The traditional use of organic chemistry as the basis for all aspects of contemporary
biomedical chemistry has provided truly miraculous results. Nowadays, most commercial
drugs are purely organic molecules, but nitrogen, oxygen, phosphorus, sulfur, and halogens,
all neighbors of carbon to the right, are part of a wide variety of the active principles of
medicines. In the middle of the 20th century [18–21], the first investigations of boron
compounds for their use in medicine were directed mainly towards the treatment of cancer
by the therapy called BNCT (Boron Neutron Caption Therapy), but currently, a vibrant and
growing research is being developed to employ boron-containing compounds in medicinal
chemistry and chemical biology [22–33].

This mini-review focuses on the large research activity of the Inorganic Materials
and Catalysis Laboratory (LMI) at the Institut de Ciència de Materials de Barcelona
(ICMAB-CSIC) [34] with icosahedral boron clusters, which due to their geometric shape
and the semi-metal nature of boron provide these compounds with unique properties in
(bio)materials largely unexplored.

2. Characteristics of Icosahedral Neutral Carboranes and Anionic Metallabis(Dicarbollides)
2.1. Icosahedral Closo-Borane and Heteroborane Clusters

Figure 1 shows the inorganic icosahedral closo-dodecaborate ([B10H12]2−), the dicarba-
closo-dodecaborane (closo C2B10H12), which exists in three isomeric forms that are named
based on the positioning of the two CH vertices: 1,2- or ortho-, 1,7- or meta-, and 1,12- or
para-carborane and, the sandwich metallabis(dicarbollides) [M(C2B9H11)2]− (M = Co3+,
Fe3+). Five different conformations can be found in the metallabis(dicarbollides): cisoid-1,
gauche-1, transoid, gauche-2 and cisoid-2. However, cisoid-1 and cisoid-2, as well as gauche-1
and gauche-2, are equivalent in the non-substituted or symmetrically disubstituted
clusters [35].
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Teixidor and Viñas believed that one of the main reasons for the lack of knowledge
and poor application of these boron compounds is the lack of synthetic processes for their
functionalization. Without these processes, the chemistry of boron is marginalized when
its possibilities are enormous, and in many cases, complementary to the organic chemistry
compounds.

2.2. Towards the Derivatization of the Icosahedral Boron Clusters

The neutral icosahedral closo C2B10H12 carboranes have the potential for the incorpora-
tion of a large number of substituents at its 12 vertices (2 C-H and 10 B-H). The reactivity of
the B-H vertices depends on the distance of each B-H vertex to the C-H ones. Most reactions
that occur at the boron vertices do not affect the carbon vertices, and vice versa. Conse-
quently, o-carborane offers the possibility to develop chemistry of neutral closo-carboranes
at the C vertices, at the B vertices, as well as in both C and B vertices (Figure 2) [35].
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Since 1982, Teixidor and Viñas have put emphasis on improving protocols of synthe-
ses because their main objective was the application of icosahedral boron clusters [36],
and clusters’ derivatization was a necessary and key step to proceed on their use in
(bio)materials [37]. Recently, several reviews summarizing the different synthetic proce-
dures to achieve the substitution at the cluster vertices of the icosahedral boron clusters
appeared [38–47].

3. Focusing on the Synthesis of Icosahedral Neutral Carborane and Anionic
Metallabis(Dicarbollide) Derivatives for Medicinal Application

Teixidor and Viñas group carried out remarkable work in the synthesis of icosahedral
carborane and metallacarborane derivatives as well as in their characterization with the
objective of finding their application in different fields.

Endo and co-workers, based on the similarities between the phenyl group and the
carborane cluster, pioneered the design of new drugs by substituting phenyl groups in com-
pounds with known biological activity with icosahedral carborane groups [48–53]. The con-
cept of 3D aromaticity has already been applied in boron cluster chemistry to relate the lim-
ited number of valence electrons in the clusters to their stability [54,55]. Recently [8–10], the
3D global aromaticity of the icosahedral boranes, carboranes, and cobaltabis(dicarbollides)
was related to the more familiar 2D aromaticity abiding by Hückel’s rule, indicating that
both were two sides of the same coin. Then, in 2014 [7], grounded on the relationship
between stability and aromaticity, new perspectives for applying icosahedral boron clusters
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as key components in the field of new biomaterials for healthcare were opened by Teixidor
and Viñas group. The highlight is the development of potentiometric sensors for the de-
tection of drugs [56–59], biosensors [60], and X-ray contrast agents for highly radiopaque
vertebroplasty cement [61], among others.

Special emphasis is given to fostering advances in the application of boron compounds
for the Boron Neutron Capture Therapy (BNCT) treatment of cancer due to the inherent
property of the boron element itself (with 20% of 10B). 10B has a large neutron capture
section opening up the application of icosahedral boron clusters to the treatment of cancer
by the BNCT reaction between a thermal neutron and 10B resulting in the generation of an
α particle and 7Li nucleus (Scheme 1). Additionally, the 3D aromatic icosahedral boron
clusters offer the possibility of holding twelve substituents covering the entire 3D space.
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The twelve vertices of the cluster can be functionalized, and these small molecules can
be converted into multifunctional scaffolds by themselves (Figure 3) [62–65] or bonded to
inhibitors of kinases receptor molecules (Figure 4) [66–69] or in anchoring onto structures
of nanocarriers (dendrimers [28,70], polymers [14], nanoparticles [36,71–75]) leading to
payloads with high boron density (Figure 3). The objective was to synthesize anionic and
water-soluble high-boron-containing molecules, which can incorporate in their scaffold
either inhibitors of enzymes receptor (Figure 4) [66–69] and/or metal cores (Figure 5) for
their use as multifunctional nanocarriers able to act as anticancer drugs by multi-therapy
treatment [73–77].
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Figure 4. (a) Schematic representation of the two components (inhibitors of kinases receptor + ico-
sahedral boron clusters) of the designed hybrid molecules with potential dual action. (b) The newly 
synthesized neutral and anionic boron clusters, which contain quinazoline molecules with potential 
dual action (chemotherapy + radiotherapy) result in significant clinical benefits [66–68]. The black, 

Figure 4. (a) Schematic representation of the two components (inhibitors of kinases receptor +
icosahedral boron clusters) of the designed hybrid molecules with potential dual action. (b) The
newly synthesized neutral and anionic boron clusters, which contain quinazoline molecules with
potential dual action (chemotherapy + radiotherapy) result in significant clinical benefits [66–68]. The
black, circles represents C atoms or Cc-H vertices, the pink circles represent B–H vertices and the
purple ones Boron atoms.
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treatment [71,74]. Both families offer the possibility of dual action (photothermaltherapy + BNCT or
hyperthermaltherapy + BNCT), which may result in significant clinical benefits [73].

4. Testing the Icosahedral Neutral Carboranes and Anionic Metallabis(Dicarbollides)
in BNCT Cancer Treatment
4.1. Boron Neutron Capture Therapy

Regarding carboranes for BNCT, the research has focused on the development of
new multifunctional hybrid (carboranyl + anilinoquinazolines) nanocarriers [66,67] and
carborane-magnetic nanoparticles [73]. These (bio)materials exhibit desirable in vitro
antitumor activities against preclinical rat glioblastoma F98, colorectal HT29, glioblastoma
A172 cancer cell lines, and human brain endothelial hCMEC/D3 cell line.

Importantly, thermal neutrons irradiation in BNCT for 15 min reduced by 2.5 the
number of cultured A172 glioblastoma cells after the treatment with carborane-magnetic
nanoparticles (Figure 6a) and the systemic administration of carborane-magnetic nanopar-
ticles in mice was well tolerated with no major signs of toxicity. The dual treatment by
combining tyrosine kinase inhibition and BNCT irradiation for minutes on HT-29 cells after
incubation with carboranyl + anilinoquinazoline hybrids provided better outcomes than
p-Boronophenylalanine (BPA) [68]. The attractive profile of developed hybrids makes them
interesting agents for combined therapy (Figure 6b).
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Figure 6. (a) CryoTEM image of glioblastoma A172 cancer cell after carborane-magnetic nanoparticles
uptake and proliferation curves of A172 cells re-plated one day after BNCT treatment. BNCT studies
were carried out by incubating A172 cells for 24 h with carborane-magnetic nanoparticles (20 µg/mL
boron). The amount of internalized boron measured by ICP-MS was 133 ± 25 µg/g, corresponding to
a 10B concentration of 26 ± 5 µg/g [73]. (b) Effect on HT-29-cell survival without or with hybrids or
BPA treatment post-neutron-irradiation (1 and 2 Gy). Compounds were studied at doses equivalent
to 10.0 ppm of 10B for 1 h of incubation. (*) p < 0.05; (**) p < 0.01. Reproduced from Ref. [61] with
permission from Wiley & Sons.
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4.2. Metallabis(Dicarbollides) Chemical and Physico-Chemical Properties and Cytotoxicity

Regarding the icosahedral metallacarboranes, the anionic metallabis(dicarbollides),
[3,3-M(1,2-C2B9H11)2]−, (abbreviated as [o-COSAN]− and [o-FESAN]− for M = Co, Fe,
respectively), which are inert to biochemical reactions, have attracted much attention in
biology [35]. The 3D aromatic Na[o-COSAN] forms hydrogen and dihydrogen bonds that
participate in its self-assembling, water solubility, and aggregates’ formation [76]. The
Na[o-COSAN] possesses the ability to readily cross cell membranes (Figure 7a) [77–79], is
not cytotoxic against mammalian cells (HEK 293, HeLa, THP-1, 3T3), D. discoideum amoeba
cells, and bacteria (E. coli and Klebsiella), but is cytostatic, and cells recover following its
removal [79]. Furthermore, our studies on glioma-initiating cells (GIC7 and PG88) also
supported Na[o-COSAN] cytostatic properties when cells were morphologically recovered
43 h after washing off the compound and increasing in the G2/M subpopulation. Addition-
ally, the study showed that mesenchymal PG88 cells that are more resistant than proneural
GIC7 cells to conventional radiotherapy have a lower EC50 Na[o-COSAN] and a higher
uptake of the compound compared to GIC7 cells, suggesting a new resource to fight against
resistant glioblastoma cells [80].
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4.3. Synchrotron-Based Fourier-Transform Infrared Micro-Spectroscopy (SR-FTIRM) Studies

Having performed experiments in a round-bottom flask on a chemical scale, which
showed that [o-COSAN]− and some of its halogenated derivatives interact with biomolecules
(amino acids [56,57], proteins [81,82], ds-DNA [60,83] (Figure 7b) and glucose [84]), we
wanted to go a step ahead by observing these interactions in vitro experiments by using
SR-FTIRM. The round-bottom flask changed to a cell, and the solutions to the cell’s physio-
logical components. The first chemical scale studies between [o-COSAN]− anions and the
biomolecules were done individually for each type, whereas the cell study incorporates
the effect of all biomolecules interacting simultaneously. This study meant a step ahead to
understand and detect that this anion modifies biomolecules (proteins, DNA, and lipids)
and concentrates in the cell nucleus after their cellular uptake [68]. The small Na[o-COSAN]
molecule, localized close to the cell’s nucleus, induces proteins’ conformational changes and
spectral changes of the DNA region (Figure 7b) in both GIC cell lines, similar to the changes
induced by other metal-based compounds like cisplatin that disrupt the double helix base
pairing, suggesting that Na[o-COSAN] is a promising agent for BNCT of glioblastoma.

Consequently, in vitro tests in U87 and T98G cells conclude that the amount of 10B
inside the cells is enough for BNCT irradiation. BNCT becomes more effective on T98G
after their incubation with Na[8,8′-I2-o-COSAN], whereas no apparent cell-killing effect
was observed for untreated cells.
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All this led to the following conclusions: These small molecules, particularly [8,8′-
I2-o-COSAN]−, are serious candidates for BNCT now that the facilities of accelerator-
based neutron sources are more accessible, providing an alternative treatment for resistant
glioblastoma (Figure 7c) [85].

Then, in vivo experiments with Na[o-COSAN] and Na[8,8′-I2-o-COSAN] were per-
formed on Caenorhabditis elegans (C. elegans) at the L4-stage and their embryos. LD50
values for both cobaltabis(dicarbollides) in L4 C. elegans were found to be close to the IC50
determined for T98G in vitro after 72 h (Figure 8) [86].
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Figure 8. Optical microscopy images of C. elegans. (Top): The embryos and, (bottom): At the L4-stage
before (control) and after incubation with Na[8,8′-I2-o-COSAN] 200 µM [86].

Finally, in vivo evaluation in mammalian mice models were run trying to understand
the ability of [o-COSAN]− to target the tumor cells, as well as to cross the blood–brain bar-
rier. After intravenous administration, biodistribution studies of Na[o-COSAN] in BALB/c
CrSlc mice (female, 5 weeks old) were run. Anionic [o-COSAN]− was distributed into
many organs but mainly accumulated in the reticuloendothelial system (RES), including
liver and spleen (Figure 9) [83].
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4.4. Contrast Agents

Furthermore, Na[8-I-o-COSAN] can be labeled with contrast agents, such as 124I
and 125I, for in vivo markers by positron emission tomography (PET) and single photon
emission computed tomography (SPECT) nuclear imaging techniques making these clusters
very good scaffolds as theranostic agents (Figure 10) [87].
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Figure 10. Imaging experiments by in vivo PET-CT and SPECT-CT with Na[8-I-o-COSAN] after
nuclear interchange of I natural by 124I and 125I, respectively. Reproduced from Ref. [85]. with
permission from the Royal Society of Chemistry.

The synthesis of these unprecedented radiolabeling Na[8-I-o-COSAN] anionic deriva-
tives with either 125I (gamma emitter) or 124I (positron emitter) was achieved via palladium-
catalyzed isotopic exchange reaction (Scheme 2a) following our previously reported syn-
thesis of 125I carborane derivatives (2-I-p-, 3-I-o-, 9-I-o-, 9-I-m-carborane, 1-phenyl-3-I-o-
carborane, and 1,2-diphenyl-3-I-o-carborane) with some modifications (Scheme 2b) [87].
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Recently, the sodium salt of the anionic [o-FESAN]− isotopically 100% 57Fe was syn-
thesized with the objective of treating glioblastoma cancer with Na[3,3′-57Fe(1,2-C2B9H11)2]
because the compound offers the possibility of dual-action (radiation + drug combinations)
to improve clinical benefits and reduce healthy tissues toxicity. After [o-57FESAN]− up-
take by U87 glioblastoma cells, [o-57FESAN]− was found to be within the cells with 29%
of its uptake in the nuclear fraction, which is a particularly desirable target because the
nucleus is the cell control center in which DNA and transcription machinery reside. The
multi-therapies activity through irradiation with potential for glioblastoma treatment by
the Mossbauer effect of [3,3′-57Fe(1,2-C2B9H11)2]− was demonstrated (Figure 11) [88].
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4.5. Proton Therapy Based on Boron

Proton therapy is an effective radiation treatment technique used in medicine, which
consists of irradiating diseased tissue, most often to treat cancer, with a beam of
protons [89,90]. Scheme 3 represents the Proton Boron Fusion Reaction (PBFR) between an
energetic proton and 11B resulting in the generation of three α particles. The viability of
applying the proton boron fusion (PBF) reaction to the proton therapy to improve its effec-
tiveness has been studied by using the Monte Carlo method [91–93] and experimentally
using mercaptoundecahydro-closo-dodecaborate (abbreviated as BSH, which chemical for-
mula is [SH-1-closo-B12H11]−) [94]. Recently [95], taking advantage of the high 11B isotope
content in metallabis(dicarbollides), we tested, for the first time, metallacarboranes for the
PBFR as a way to improve proton therapy with the [o-FESAN]− in the U87 glioblastoma
cells. A simple calculation indicates that the use of PBFR would require 1/12 of isotopically
natural molecules with respect to BNCT. Furthermore, in an ideal situation, BNCT can be
used synchronously on the existing 10B and Mössbauer on 57Fe, resulting in multi therapies
with only one compound. Results from the cellular damage response obtained suggest that
PBFR radiation therapy, when applied to boron-rich compounds, is a promising modality
to fight against resistant tumors.
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4.6. Antimicrobial Activity

In 2013, we started studying the physical–chemical properties and biological eval-
uation of the sodium salt of the small inorganic metallabis(dicarbollide) molecules ([o-
COSAN]− and [o-FESAN]−) and their derivatives [8-R(CH2CH2O)2-o-COSAN)]−

(R = -OOCCH3; -OCH3; -OCH2CH3) against pure cultures of 16 pathogenic bacterial
strains (isolated from animals and humans as well as control strains) and 3 strains of
Candida spp. as promising antimicrobial agents to tackle bacterial infections [96]. It is
important to emphasize that the methicillin-resistant strain of Staphylococcus aureus (MRSA),
the polyresistant strains of Pseudomonas aeruginosa, as well as of Candida spp., are sensitive
to the compounds Na[8-CH3(CH2CH2O)2-o-COSAN)] and Na[8-CH3CH2(CH2CH2O)2-
o-COSAN)]. Recently, a review of the increasing evidence that boron cluster compounds
are promising antimicrobial (antibacterial and antifungal) agents appeared [97]. Lately,
with the objective to establish a structure–activity relationship, which clearly supports the
antimicrobial activity of the pristine metallabis(dicarbollide) complexes, we tested the small
molecules Na[o-COSAN], Na[o-FESAN], Na[m-COSAN)], Na[m-FESAN)], the di-iodinated
derivatives Na[8,8′-I2-o-COSAN], Na[8,8′-I2-o-FESAN] and polyanionic species incorpo-
rating one or two cobaltabis(dicarbollide) anions with activity against four Gram-positive
bacteria (two Enterococcus faecalis strains and two of Staphylococcus aureus including Multi-
Resistant Staphylococcus Aureus (MRSA) strains), five Gram-negative bacteria (three strains
of Escherichia coli and two of Pseudomonas aeruginosa), and three Candida albicans strains that
have been responsible for human infections [98,99]. We demonstrated an antimicrobial
effect against Candida species (Minimum Inhibitory Concentration (MIC) of 2 and 3 nM
for Na[8,8′-I2-o-COSAN] and Na[m-COSAN], respectively), and against Gram-positive and
Gram-negative bacteria, including multi-resistant MRSA strains (MIC of 6 nM for Na[8,8′-I2-
o-COSAN]). The selectivity index (abbreviated as SI and, calculated as the ratio IC50/MIC)
for antimicrobial activity of Na[o-COSAN] and Na[8,8′-I2-o-COSAN] compounds is very
high (165 and 1180, respectively), which reveals that these small anionic metallacarborane
molecules may be useful to tackle antibiotic-resistant bacteria because it is considered that
an SI ≥ 10 is acceptable for a selective bioactive sample.

Furthermore, we demonstrated that the outer membrane of Gram-negative bacteria es-
tablishes an impermeable barrier for some of these metallabis(dicarbollide) small molecules
(Scheme 4). Nonetheless, the addition of two iodine groups in the structure of the par-
ent Na[o-COSAN] had an improved effect (3–7 times) against Gram-negative bacteria. It
is important to emphasize that the most active metallabis(dicarbollides) (meta-isomers
Na[m-COSAN)], Na[m-FESAN)] and the di-iodinated derivatives Na[8,8′-I2-o-COSAN],
Na[8,8′-I2-o-FESAN]) are both transoid conformers in opposite to the Na[o-COSAN] that
is cisoid conformer (see Figure 1), which represent structures with particular physical–
chemical properties that make these small molecules more permeable to this barrier.
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The fact that these small molecules cross the mammalian membrane and have antimi-
crobial properties but low toxicity for mammalian cells (high selectivity index SI) represents
a promising tool to treat infectious intracellular bacteria as there is an urgent need for new
antibiotics discovery and development. This achievement represents a relevant advance in
the field.

5. Boron Clusters-Based Dyes as Theranostic Agents for Diagnosis and Therapy

Today, one of the most important tools in predicting disease is diagnosis. Molecular
imaging is a remarkable diagnostic tool in vitro and in vivo that could provide crucial
biological information regarding a targeted disease and can thus help to establish a par-
ticular treatment or therapy [100,101]. Moreover, the development of theranostic systems
to integrate imaging and therapy is an efficient strategy for real-time tracking of the phar-
macokinetics and biodistribution of a drug. Current imaging modalities include optics
(e.g., fluorescence, Raman, photoacoustics), X-ray, magnetic resonance, radionuclides, and
mass spectrometry [102]. Among them, Fluorescence Bioimaging is a common modality for
cell and tissue visualization, being of special interest in preclinical research on theranostic
agents. In this context, each fluorophore has its benefits and drawbacks, which requires the
continued search for new fluorescent probes to meet stringent necessities for applications
in terms of sensitive and selective use for bioimaging applications.

Moreover, imaging-guided BNCT is a challenge as it allows us to know the accurate
position of the boron-containing compound in the body as well as the accumulation in
the tumor. Therefore, it is an important issue to label the boron-containing compound
with a fluorescence tracer in order to have relevant information for both diagnosis and
therapy [103–107]. In particular, the near-infrared (NIR) boron carriers are of great interest
due to their deeper penetration into the living body and their ability to avoid interference
from body tissues [108,109].

Dr. Núñez has been a staff member of the LMI group since 2001. Over this time, she
has developed synthetic strategies for the functionalization of a great variety of scaffolds,
i.e., star-shape molecules and dendrimers [28,110], octasilsesquioxanes [111–114], carbon-
based materials [115,116], among others [117], with icosahedral boron clusters and studied
their properties. In 2007, Dr. Núñez reported a set of blue emissive Fréchet-type aryl
ether core molecules peripherally functionalized with closo-carborane and nido-carborane
clusters [118,119]. It was then demonstrated that the maximum wavelength and emission
intensity depend on the Ccluster substituent (Me or Ph), the solvent polarity, and the nature
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of the cluster (closo or nido). This work was the beginning of her immersion in the field of
luminescence. Since then, her main interest has been the development of photolumines-
cent boron cluster-based organic π-conjugated dyes [120–128], revealing that incorpora-
tion of neutral and anionic boron clusters into the structure of well-known fluorophores
is an attractive chemical strategy to modulate and improve their photoluminescence
properties [15,120–128]. Her current research interest is more focused on new boron-
based molecules and materials as theranostic agents for diagnosis (bioimaging) and boron
carriers for BNCT.

A set of BODIPY-anionic boron cluster conjugates bearing dianionic [B12H12]2− and
monoanionic, [o-COSAN]− and [o-FESAN]− clusters were designed and synthesized to be
used as fluorescent cell probes and BNCT anticancer agents (1–5 in Figure 12a) [129]. These
conjugates were readily synthesized from the meso-(4-hydroxyphenyl)-4,4-difluoro-4-bora-
3a,4a-diaza-s-indacene (BODIPY) by ring-opening reaction of the corresponding boron
clusters derivatives. The luminescent properties of the BODIPY were not significantly
altered by the linking of the anionic boron clusters, showing emission fluorescent quantum
yields (ΦF) in the range of 3–6%. Moreover, the cytotoxicity and cellular uptake of these
compounds were analyzed in vitro at different concentrations of B (5, 50, and 100 µg B/mL)
using HeLa cells. None of the compounds showed cytotoxicity at the lowest concentration
(5 µg B/mL). Compound bearing [B12H12]2− and Na+ as cation were non cytotoxic at any
concentration, while the other compounds showed toxicity at the highest concentrations
after 24h. Remarkably, all the compounds were successfully internalized by HeLa cells,
exhibiting a strong cytoplasmic stain (Figure 12b). The internalization efficiency for all the
compounds was assessed at the lowest concentration (5 µg B/mL), in which they are not
cytotoxic. The exceptional cellular uptake and intracellular boron release, together with
their fluorescent and biocompatibility properties, highlight the suitability of these boron
cluster-containing dyes, especially [o-COSAN]− derivative, as potential candidates for cell
labeling agents towards medical diagnosis in clinical biopsies. Moreover, the excellent
cellular uptake, along with the boron-rich content of our conjugates, make them good
candidates as boron carriers for BNCT.
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tached to the organotin complexes. Compound 8 bearing the [o-COSAN]− anion and two 
phenyl rings coordinated to the Sn showed an important fluorescence in the cytoplasm, 
whereas that bearing [B12H12]2− (6) produced extraordinary nucleoli and cytoplasmic stain-
ing (Figure 13b). The remarkable fluorescence staining properties of these organotin com-
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Figure 12. (a) Molecular structures of boron cluster-BODIPY conjugates 1–5 (pink circles in the
cluster are B or B-H and black circles in the cluster are C-H. (b) Intracellular localization of BODIPY
dyads 1 and 3 in HeLa cells obtained by confocal laser scanning microscopy (left). Cellular uptake
comparison between BODIPY dye and BODIPY-boron clusters at 100 µg/mL of B for each compound
(CLSM) (left). Mean values and SD from three independent experiments. a.u.: arbitrary units
(right). Reprinted (adapted) with permission from Ref. [129] Bioconjugate Chem. 2018, 29, 1763–1773.
Copyright 2018, American Chemical Society.
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Our interest in the development of new boron delivery systems to be used for biological
applications led us to prepare a family of fluorescent organotin compounds that have shown
excellent properties as nucleoli and cytoplasmic markers in vitro [130]. These organotin
compounds are based on 4-hydroxy-N′-((2-hydroxynaphthalen-1-yl)methylene)benzohydra
zidato that was derivatized to contain two different boron clusters, [B12H12]2− and [o-
COSAN]− following the oxonium ring opening reaction (6–9 in Figure 13a). These com-
pounds showed photoluminescence properties in solution with ΦF values in the range from
24% to 49%. Remarkably, linking these anionic boron clusters to tin complexes improved
their solubility in cell media, which resulted in better cell internalization and higher cellular
uptake, as they do not aggregate either on the cell surface or in the extracellular media.
Mouse melanoma B16F10 cells were incubated with 10 µg/mL of the different compounds
for 2 h and then analyzed by confocal laser microscopy. Noticeably different staining effect
was observed depending on the type of boron cluster attached to the organotin complexes.
Compound 8 bearing the [o-COSAN]− anion and two phenyl rings coordinated to the Sn
showed an important fluorescence in the cytoplasm, whereas that bearing [B12H12]2− (6)
produced extraordinary nucleoli and cytoplasmic staining (Figure 13b). The remarkable
fluorescence staining properties of these organotin compounds in B16F10 cells make them
excellent candidates for in vitro fluorescent bioimaging.
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Figure 13. (a) Molecular structures of Tin complexes containing anionic boron clusters 6-9 (pink
circles in the cluster are B or B-H, black circles in the cluster are C-H). (b) Cellular uptake of organotin
compounds 6 and 8 bearing anionic [B12H12]2− (left) and [o-COSAN]− (right) by confocal laser
scanning microscopy (CLSM). The yellow and red arrows show the internalization of our compounds
in the cytoplasm and nucleoli [130]. Reprinted/adapted with permission from Ref. [130] Copyright
2018, Wiley.
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Apart from previous BODIPY derivatives bearing anionic boron clusters, our group
has also developed a family of neutral BODIPY-carboranyl conjugates which have been
synthesized following Sonogashira or Heck cross-coupling reactions in which properly
functionalized ortho- and meta-carborane clusters have been linked to light-emitting BOD-
IPY or aza-BODIPY cores [131–133]. Figure 14 illustrates three different BODIPY-carboranyl
systems with Ph-ortho-carborane (10–11) and Ph-meta-carborane (12), as examples. Due to
their fluorescence properties, these fluorophores were studied in vitro as fluorescent probes.
HeLa cells were incubated for 30 min with this set of BODIPYs, which presented very
different behavior regarding cellular uptake and subcellular distribution (Figure 14) [132].
The differences seem to originate from their diverse static dipole moments and partition
coefficients, which depend on the type of cluster isomer (o- or m-) linked to the BODIPY
and that modulates the ability of these molecules to interact with the lipophilic microen-
vironments in cells. It can be highlighted that the m-carborane derivative with higher
lipophilicity was much better internalized by cells than their ortho analogs. Confocal im-
ages of HeLa cells incubated with 12 (Figure 14) clearly indicate that 12 is accumulated in
the cytoplasm of the cell. This evidence provides a molecular design strategy for improving
the prospective applications of BODIPY-carboranyl dyads as potential fluorescence in vitro
bioimaging agents and boron carriers for BNCT, suggesting that m-isomers are potentially
better theranostic agents than o-isomers.
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cence emission intensity, the one with two iodo atoms is the one with a higher cellular 
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respectively. Scale bars represent 10 and 15 µm. (b) z-stack visualization [132]. Reprinted/adapted
with permission from Ref. [132] Copyright 2020, Wiley.

Another type of well-known fluorophores are anthracene derivatives that exhibit
excellent luminescence properties that make them perfect scaffolds for optical applications.
Our group has developed efficient blue light-emitting materials by combining the properties
of anthracene and m-carborane [134]. Three different m-carborane-anthracene dyads, in
which the carborane is non-iodinated, mono-iodinated, or di-iodinated at B atoms, and the
anthracene fragment is linked to one Ccluster atom through a CH2 spacer, were prepared. All
of them exhibited exceptional fluorescence properties with high quantum yields (ΦF ~ 100%)
in solution with maximum emission of around 415 nm, confirming that simply linking
the m-carborane fragment to one fluorophore produces a significant enhancement of the
fluorescence emission in the target compound. Notably, the three conjugates exhibited good
fluorescence efficiencies in aggregate state with ΦF in the range 19–23%, indicating that our
dyads are extremely good emitters in solution, while maintaining the emission properties
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in the aggregate state. Moreover, their cytotoxicity and cellular uptake in HeLa cells were
evaluated. None of the compounds showed cytotoxicity at different concentrations for
HeLa cells. Confocal microscopy studies confirmed that, although all compounds were
internalized by cells via endocytosis, exhibiting high fluorescence emission intensity, the
one with two iodo atoms is the one with a higher cellular uptake. This suggested that the
presence of iodo units leads to a more efficient transport across the plasma membrane and
a better internalization of the compounds. Figure 15 shows the autofluorescence of HeLa
cells and fluorescence emitted by Hela cells incubated with the diiodinated antracece-m-
carborane. We then conclude that the di-iodinated compound is an excellent candidate as a
fluorescent dye for bioimaging studies in fixed cells, and due to the high boron content and
exceptional cellular uptake, it could be used as a potential anticancer agent for BNCT.
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Figure 15. Fluorescence intensity emitted by HeLa cells incubated 4 h with 10 µM of diiodinated
antracene-m-carborane. Image obtained with the confocal laser scanning microscope [134] (pink circles
in the cluster are B-H, black circles in the cluster are C or C-H and blue circles in the cluster are B).

Besides previous luminescent materials, our group has also prepared carbon-based
nanomaterials, which consist of graphene oxide (GO) functionalized on the surface by
monoiodinated cobaltabis(dicarbollide) (GO-I-COSAN) for in vivo bioimaging. This GO-I-
COSAN has been synthesized using the cobaltabis(dicarbollide) containing a B-I group and
an amino group (I-COSAN) that is subsequently labeled with radioactive 124I (Scheme 5)
for its use in positron emission tomography (PET) [135]. After incubation of HeLa cells with
different concentrations of GO-I-COSAN for 48 h, the results indicated that the nanomaterial
was not cytotoxic, with cell mortality lower than 10%. Remarkably, internalization of
the nanomaterial by cells was clearly confirmed by transmission electron microscopy
(TEM), which showed that the GO-I-COSAN was accumulated in the cytoplasm without
causing changes in either the size or morphology of the cells. Further in vivo studies
using C. elegans indicated that GO-I-COSAN was ingested by the worms, showing no
significant damage and very low toxicity, which supports the results observed in vitro.
Radioisotopic labeling of I-COSAN using a palladium-catalyzed isotopic exchange reaction
with Na[124I]I and its subsequent functionalization onto GO was performed successfully,
leading to the formation of the radioactive nanocomposite GO-[124I]I-COSAN (Scheme 5).
The radiolabeled nanomaterial was injected into the mice, and PET images at different
times were taken (Figure 16), which revealed no activity in the thyroid and stomach even
at long times, indicating that iodide did not detach from the material. GO-[124I]I-COSAN
presented a favorable biodistribution profile, with long residence time on blood, mainly
accumulated in the liver and slightly in the lung, and progressive elimination via the
gastrointestinal tract. It is noteworthy that the high boron content of this material paves
the way toward theranostics because it benefits traceable boron delivery for BNCT.
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Our group, in collaboration with S. Draper’s group in Dublin, has also reported the
preparation of transition metal-carborane photosensitizers by Sonogashira cross-coupling
of (4-ethynylbenzyl)methyl-o-carborane with halogenated Ru(II)- or Ir(III)-phenanthroline
complexes [136]. The resulting carboranyl-containing complexes (RuCB, IrCB, RuCB2, and
IrCB2 in Figure 17) exhibited phosphorescence emission with maxima between 630 and
665 nm and lifetimes of 2.53, 0.38, 1.83, and 0.19 µs, respectively. All of them produce singlet
oxygen with quantum yields (Φ∆) of 52%, 25%, 20%, and 10%, respectively, which suggests
their use as triplet photosensitizers for photodynamic therapy (PDT). The subcellular
uptake of all complexes was explored in SKBR-3 cells. Their localization and intensities
were different depending on the number of carborane moieties and the nature of the
transition metal centers. Complex IrCB was the best internalized with a clear accumulation
in the cytoplasm. On the other hand, RuCB was hard to observe in the confocal microscopy
images, but further microscopy experiments performed at a higher laser power showed
that, in fact, RuCB was internalized. RuCB2 formed aggregates mainly located at the
plasma membrane, whereas IrCB2 was poorly detected inside the cell (Figure 18). All of
them showed the absence of dark toxicity under photodynamic therapy (PDT) conditions.
Despite significant differences in the photophysical activities and cellular internalization of
RuCB and IrCB, irradiation (λex 405 nm; 3 min; mean intensity 55 µW) of both killed ∼50%
of SKBR-3 cells at 10 µM.
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Figure 18. Orthogonal projection of z-stacks of live SKBR-3 cells incubated with 10 µM RuCB, IrCB,
RuCB2, or IrCB2 for 4 h and observed under CLSM. (Top row): To analyze the localization of the
compounds, fluorescence mode was used. Compound luminescence emission was detected in the
range of 614–760 nm (red) by exciting the cells using the λex 405 nm laser. Wheat Germ Agglutinin
(WGA) fluorescence emission (membrane) was detected in the range of 496–579 nm (green) by
exciting the cells using the λex 488 nm laser. (Bottom row): Magnification of the selected areas (square
boxes). Scale bar, 5 µm [136].

6. Conclusions

The progress in the synthesis of icosahedral boron clusters and their derivatives, the
improvements in particles technology, the advances in medical imaging and computing,
and the fact that new irradiation facilities are becoming available at hospitals makes
radiotherapies such as BNCT and PBFR viable choices for new cancer medical therapies
especially indicated for tumors resistant to chemotherapy and conventional radiotherapy.
All this evidence promises to make BNCT and PBFR cutting-edge technology readily more
accessible in the near future.

The fact that the icosahedral metallabis(dicarbollide) clusters reported in this review
cross the mammalian membrane and have antimicrobial properties but low toxicity for
mammalian cells (high selectivity index, SI) represents a promising tool to treat infectious
intracellular bacteria. As there is an urgent need for antibiotic discovery and development,
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these small anionic molecules represent relevant and promising antimicrobial agents to
tackle bacterial infections.

This review also gathers several families of boron clusters-based fluorophores with
luminescent properties as potential theranostic agents for bioimaging and BNCT. Among
them are a series of BODIPYs functionalized with either neutral or anionic boron clusters, a
set of anthracene-m-carborane dyads, and a family of tin complexes linked to anionic boron
clusters. All of them showed excellent fluorescence emission and high cellular uptake. The
preparation and study of GO functionalized with radiolabeled cobaltabis(dicarbollide) for
PET are described. To end, a set of Ru(II) and Ir(III)-phenanthroline photosensitizers bearing
one or two Me-o-carborane cages, as well as the in vitro studies for PDT are reported.
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and R.N. assembled the article and gave it in its final form. All authors have read and agreed to the
published version of the manuscript.
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