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Abstract: The circadian clock regulates daily changes in behavioral, endocrine, and metabolic activ-
ities in mammals. Circadian rhythms in cellular physiology are significantly affected by aging. In
particular, we previously found that aging has a profound impact on daily rhythms in mitochondrial
functions in mouse liver, leading to increased oxidative stress. This is not due to molecular clock
malfunctions in peripheral tissues in old mice, however, as robust clock oscillations are observed
therein. Nonetheless, aging induces changes in gene expression levels and rhythms in peripheral
and probably central tissues. In this article, we review recent findings on the roles of the circadian
clock and the aging process in regulating mitochondrial rhythms and redox homeostasis. Chronic
sterile inflammation is implicated in mitochondrial dysfunction and increased oxidative stress during
aging. In particular, upregulation of the NADase CD38 by inflammation during aging contributes to
mitochondrial dysregulation.
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1. Introduction

Intrinsic circadian oscillations are present in certain nuclei of the central nervous
system (e.g., the suprachiasmatic nucleus (SCN)) and most peripheral tissues in mam-
mals [1]. At the molecular level, circadian oscillations are driven by core clock proteins that
serve as transcription factors (TFs). In particular, the clock proteins CLOCK and BMAL1
dimerize to transcriptionally activate other core clock genes, such as Per1/2 and Cry1/2,
whose protein products antagonize the actions of CLOCK/BMAL1, forming a negative
feedback loop [1]. CLOCK/BMAL1 also activates the transcription of clock genes Nr1d1/2,
whose protein products inhibit Bmal1 transcription, forming another feedback loop [1]. In
addition to regulating their own transcription to sustain circadian oscillation, clock proteins
also exert broad control over other genes. As a result, about 10% of genes expressed in
peripheral tissues are rhythmic, and the rhythmic genes are involved in nearly all aspects
of cellular functions (e.g., metabolism, immune defense, and cell cycle regulation) [2,3].
Clock functions are tissue-specific, and gene expression rhythms vary greatly across tissues.
Indeed, the genomic binding of clock proteins is tissue-specific [4,5]. Those sites are found
within open chromatin regions established by tissue-specific TFs (e.g., pioneer TFs) and
some ubiquitously expressed TFs [6].

Core clock genes typically harbor multiple cis-elements for clock proteins themselves,
a strong control thought to ensure robust and resilient clock oscillation across various cell
types [6]. However, circadian rhythms are not regulated by the intrinsic tissue clock alone.
Extrinsic cues, including those derived from the SCN (neural, humoral, and behavioral cues
such as body temperature) and communicating signals from other tissues, also regulate
gene expression rhythms [7]. Previous studies emphasize the influence of extrinsic cues
on intrinsic clocks per se. Indeed, extrinsic cues can engage TFs (e.g., CREB and SRF)
that regulate the transcription of the clock genes [1]. Given that TFs typically have many
genomic binding sites, they could also influence other genes besides clock genes. Indeed,
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in the absence of rhythmic cues from the SCN and other tissues, the intrinsic clock can
only sustain the rhythms of a limited set of genes (e.g., core clock genes and some clock-
controlled genes). Those results indicate that clock proteins often collaborate with other
TFs in rhythm regulation [6]. The collaboration can occur within the same enhancer co-
bound by clock proteins and other TFs; it can also be achieved through the looping of
distinct enhancers bound by clock proteins and other TFs, respectively, to promoters of their
common target genes. Such combinatorial control permits plasticity in circadian rhythm
regulation by allowing TFs other than clock proteins to control rhythms [6]. For example, a
high-fat diet reprograms liver gene expression via PPARγ and SREBP but leaves the liver
clock intact [8,9]. Lung adenocarcinoma in young mice releases cytokines to reprogram
liver gene expression without disturbing the liver clock [10]. Interestingly, aging also leads
to extensive reprogramming of daily gene expression in peripheral tissues of mice and man,
while clock oscillations remain normal therein [11–14].

Mitochondria are the hub of metabolism and a significant source of reactive oxygen
species (ROS). Their dysfunction is a hallmark of aging [15]. Previously, we found robust
daily rhythms of mitochondrial functions in the livers of young mice, which are regulated
by the clock [16]. Moreover, we found that mitochondrial rhythms are disrupted in the
livers of old mice while normal clock oscillation persists [16]. Those results indicate that
mitochondrial functions are regulated not only by the clock but also by age-related mecha-
nisms. In particular, aging disrupts mitochondrial redox homeostasis and elevates oxidative
stress. In this article, we first provided an overview of ROS production and antioxidant
defense. We then focused on clock roles in regulating mitochondrial functions, including
redox homeostasis. Finally, we discussed mechanisms that dysregulate mitochondrial
functions during aging and the consequences of age-related increases in oxidative stress to
circadian timing functions.

2. ROS and Oxidative Stress

ROS is an umbrella term for free radicals (species with at least one free electron, e.g.,
the superoxide anion O2

•−) and non-radical species derived from oxygen (e.g., H2O2) [17].
Electron leakage from protein redox centers can produce O2

•− [18]. Mitochondrial dehy-
drogenases and respiratory complexes of the electron transport chain (ETC) are all O2

•−

production sites [19]. O2
•− can also be directly produced by enzymes such as NADPH

oxidases (NOXs), cytochrome P450 enzymes (CYPs), and xanthine oxidases [18]. O2
•−

can react with nitric oxide (NO) to form peroxynitrite (ONOO−), and oxidants derived
from nitric oxide are called reactive nitrogen species (RNS). O2

•− can be dismutated to
H2O2 spontaneously or by superoxide dismutase (SOD) enzymes. H2O2 is also enzymat-
ically produced by oxidases. H2O2 can oxidize the sulfhydryl (–SH) group of cysteine
in proteins into sulfenic acid (–SOH). The cysteine –SH group can also be converted into
–SNO (S-nitrosylation) by NO. Both –SOH and –SNO can react with glutathione, either
spontaneously or by enzymatic actions (S-glutathionylation); deglutathionylation is carried
out by specialized enzymes [20]. S-nitrosylation and S-glutathionylation are thought to pro-
tect proteins from further oxidative and/or nitrosative modification. Indeed, the sulfenic
acid group can be further oxidized by H2O2 into sulfinic acid (–SO2H) and sulfonic acid
(–SO3H). While the former can be reversed by sulfiredoxin (SRX) [21], the latter form is
not reversible. Importantly, H2O2 leads to the production of the hydroxyl radical –OH,
a powerful oxidant that damages proteins, lipids, DNAs, and sugars. –OH can directly
oxidize various protein residues. –OH and free radicals derived from fatty acids damage
lipids through lipid peroxidation reactions [22], which can lead to ferroptosis [23]. The
lipid peroxidation products (e.g., 4-HNE) are also highly reactive toward proteins and other
biomolecules. Oxidization of proteins by –OH and lipid peroxidation products leads to
protein carbonylations that are not readily reversed and can disturb cell functions.

ROS and RNS, as well as some forms of molecular damage caused by them, can
play signaling roles (see below). However, excessive ROS/NOS and molecular damages
can disturb redox signaling and control, resulting in oxidative stress [24]. Dysfunctional
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biomolecules need to be eliminated, a task carried out by the proteasome and via autophagy.
Hyperoxidized, S-glutathionylated, and carbonylated proteins can be degraded by the 20S
proteasome in an ATP- and ubiquitin-independent manner [25]. Some damaged proteins
and organelles (e.g., mitochondria) are degraded through autophagy [25]. RNS plays
complex roles in mitophagy [26]. We focus below on the biology of ROS.

3. Redox Homeostasis: Maintaining the Balance between ROS Production and
Antioxidant Defense

In addition to eliminating oxidative damage via proteasome and autophagy, cells are
endowed with antioxidant defense systems to reduce ROS production and oxidative stress.
They include the glutathione (GSH), glutaredoxin (GRX), and thioredoxin (TRX) systems.
While all systems use NADPH as the ultimate reducing power, each can have specialized
functions [24]. For example, peroxinredoxin 6 (PRDX6), glutathione S-transferases (GSTs),
and glutathione peroxidase 4 (GPX4) can restrain damages by lipid peroxidation. GSTs and
GRXs are mainly responsible for protein S-glutathionylation and its reversal, respectively.
GPXs and PRDXs mitigate oxidative stress by catalyzing H2O2 removal. In particular,
PRDX3 plays a prominent role in eliminating H2O2 in mitochondria. A cysteine residue
is found at the catalytic center of PRDXs, and its sulfhydryl group is oxidized by H2O2
to sulfenic acid. Upon oxidization of typical 2-Cys PRDXs (PRDX1-4), intermolecular
disulfide bonds are formed, which are resolved by TRX [27,28]. The dimer/monomer ratio
of PRDX can be used as an indicator of oxidative stress. Sulfenic acid at PRDX active site
can be further oxidized by H2O2 into sulfinic acid (antagonized by SRX) and even sulfonic
acid. However, under physiological conditions, hyperoxidized PRDXs are typically of low
abundance in cells and tissues, and they can be degraded by the 20S proteasome [29,30].

4. ROS and Oxidative Stress Play Signaling Roles

ROS play signaling roles in physiology [17,31]. For example, O2
•− can release Fe2+

from Fe-S (iron-sulfur) clusters in proteins to affect metabolism [31]. ROS can also acti-
vate uncoupling proteins (UCPs) in the mitochondrial inner membrane to dissipate the
H+ electrochemical gradient for heat production instead of ATP synthesis [32,33]. ROS
production by the ETC is associated with mitochondrial energetics and varies by ATP
supply and demand [34,35]. A high electrochemical potential of H+ (the protonmotive
force, pmf) promotes ROS production by the ETC [35]. The buildup of pmf is favored under
nutrient-rich conditions (e.g., using glucose or pyruvate as substrate) due to abundant
NADH and FADH2 supply to the ETC. Increased ROS, in synergy with other factors such as
mitochondrial [Ca2+] elevation, can trigger the transient opening of the mitochondrial per-
meability transition pore (mPTP) [36] to decrease pmf and halt ATP production [34]. Thus,
ROS plays a signaling role in maintaining ATP homeostasis [34]. The molecular identity of
mPTP and regulation of its opening by ROS, Ca2+, and H+ has been elucidated [34,37–39].
Interestingly, transient mPTP opening triggers a burst of O2

•− production, known as “ROS-
induced ROS release” [40] or “mitoflash” [41]. Mitoflash frequency signals basal ROS and
oxidative stress levels.

In addition to its role in metabolism, ROS also regulates signal transduction. This
role is carried out mainly by H2O2, which can oxidize redox-sensitive cysteines in target
proteins. For example, AMPK, the metabolic regulator activated by glucose shortage and
low energy charge [42], is subject to redox-based regulation. H2O2 can oxidize cysteines in
AMPKα to hinder its activation by upstream kinases [43]. PTEN, which dephosphorylates
phosphatidylinositol 3,4,5-triphosphate (PIP3) to inhibit PI3K signaling, is also subject to
redox-based regulation. Like AMPK, PTEN activity is inhibited when H2O2 oxidizes its
active site cysteine, turning the sulfhydryl group (–SH) into sulfenic acid (–SOH). The –SOH
group reacts with the –SH group of another cysteine in PTEN to form an intramolecular
disulfide bond, thus inactivating PTEN [44]. Protein tyrosine kinases (PTKs) are activated
by cytokines, growth factors (e.g., insulin), and T- and B-cell receptor stimulation; pro-
tein tyrosine phosphatases (PTPs) negatively regulate PTK signaling [45]. During PTK
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activation, O2
•− is produced by NOXs and converted to H2O2; PTKs phosphorylate and

inactivate PRDXs to allow localized H2O2 accumulation [46,47]. H2O2 oxidizes the active
site cysteine to inactivate PTP, thus prolonging PTK signaling. PTP oxidization leads to the
intramolecular formation of a disulfide (e.g., SHP2) or a sulfenyl–amide bond (e.g., PTP1B).
Oxidation and inactivation of AMPK, PTEN, and PTPs by H2O2 are transient, and they can
be reversed by reducing agents such as TRX and GSH [48].

5. ROS and Oxidative Stress Regulate Gene Transcription

In addition to modulating signal transduction, ROS and oxidative stress also regulate
transcription. A well-known example is their activation of the KEAP1-NRF2 system for
the antioxidant defense to maintain redox homeostasis. From a mechanistic point of
view, antioxidant defense is related to xenobiotic detoxification, which consists of three
phases [49]. Phase I enzymes (e.g., CYPs) can activate xenobiotics, and some products that
are electrophilic are conjugated with reducing agents by phase II enzymes (e.g., GSTs);
conjugation products are excreted through transporters encoded by phase III genes. Some
phase I (e.g., ALDH2) and II (e.g., GST) enzymes can detoxify lipid peroxidation products.
NRF2 is a TF that can upregulate phase II genes. Normally, KEAP1 complexes with NRF2
at a 2:1 ratio and promotes NRF2 ubiquitination and degradation by the proteasome.
During xenobiotic detoxification, electrophilic products from phase I reactions can oxidize
cysteine residues in KEAP1, leading to the formation of disulfide bonds between KEAP1
dimers [50]. The conformational changes in KEAP1 liberate NRF2. Evading degradation,
NRF2 accumulates and moves into the nucleus to upregulate phase II genes [50]; NRF2
also regulates iron homeostasis to control ferroptosis [51]. CYPs are also ROS sources.
Similar to electrophiles, H2O2 oxidizes cysteine residues in KEAP1 to enable NRF2 for
transcription regulation [52]. Thus, the KEAP1-NRF2 system is employed as a negative
feedback mechanism to defend against both electrophiles and ROS oxidants. NRF2 can also
be activated when p62/SQSTM1 sequestrates KEAP1 for selective autophagy [53]. ROS
and oxidative stress also regulate other TFs, such as HIF-1α, for adaptions to hypoxia [54].
ROS also facilitates inflammatory responses and NF-kB activation [17]. As discussed
later, inflammatory TFs, including NF-kB, are most probably involved in age-related
reprogramming of daily gene expression.

6. Reciprocal Regulation between the Circadian Clock and Redox Homeostasis

Given the broad control over cellular functions by the circadian clock, it is not a
surprise that daily changes in redox regulation are observed in various tissues [55]. The
liver plays an essential role in metabolism and is an important model of peripheral clocks.
Microarray studies revealed that some rhythmic genes in mouse liver are involved in
xenobiotic detoxification [56,57]. Those include phase I (e.g., CYPs), II (e.g., GST), and III
(e.g., ABC transporters) genes. In addition, xenobiotic receptors (e.g., Car) and Alas1 (for
the biosynthesis of heme, the prosthetic group of CYPs) are also rhythmically expressed.
The circadian clock also regulates antioxidant defense genes Aldh2 and Nqo1 [58]. The
pentose phosphate pathway (PPP) is the major cellular source of NADPH. The circadian
clock indirectly regulates PPP genes and NADPH production via PPARδ [59,60]. The clock
also regulates NRF2 to control GSH-mediated antioxidant defense [61,62]. Finally, the
clock regulates autophagy [63,64], which is known to reduce oxidative stress. The ULK1/2
kinases not only promote autophagy (peaking during late daytime in the mouse liver) but
also promote NADPH production by the PPP [65]. Those results highlight the critical roles
of the circadian clock in coordinating redox regulation across the day.

In a reciprocal manner, redox states also affect the clock. For example, the redox states
of NAD(H) and NADP(H) influence clock proteins’ DNA binding [66], and perturbing the
PPP can alter clock dynamics [67]. NRF2 can regulate clock genes Cry2 and Nr1d1 [67,68].
Another link between redox states and the circadian clock is the redox regulation of ion
channel functions in the SCN to influence its neural output [69].
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Reciprocal regulation between the clock and redox states most probably has adaptive
values. For most animals, a feeding/fasting cycle co-varies with their sleep/wake cycle
across the day. Many liver functions (e.g., bile production) are related to feeding and exhibit
robust daily changes. Clock-controlled induction of xenobiotic detoxification genes in
anticipation of feeding could be beneficial for organismal health [57]. During the glucose-
rich feeding phase, increased ROS production may facilitate insulin signaling to regulate
liver metabolism. On the other hand, during the fasting phase, glucose shortage can
activate AMPK to promote autophagy and fatty acid oxidation (FAO) as an alternative
energy source, a metabolic adaptation that favors oxidative stress reduction (see next
section). Thus, circadian redox homeostasis is manifested as a daily rhythm of redox
states, which is an integral part of daily changes in metabolism and physiology. Clock
gene mutations significantly disturb redox homeostasis. In particular, deficiencies within
the positive limb of the clock (i.e., Clock, Bmal1, and Npas2) decrease the expression of
antioxidant defense genes and increase oxidative stress in young mice [16,58,61,70]. A
premature aging phenotype is observed in Bmal1 knockout mice [71,72].

Intriguingly, metabolic and redox oscillations are found in red blood cells devoid of
nuclear transcription and cells lacking functional molecular clocks [29,73]. Nonetheless, an
intact clock sustains more robust and widespread circadian oscillations at molecular and
cellular levels [74].

7. Mitochondrial Functions Are Rhythmic and Regulated by the Circadian Clock in
Young Mice

Except for the 13 OXPHOS subunits encoded in mtDNA, all other mitochondrial
proteins, including those involved in mtDNA replication, transcription, and mitochondrial
protein translation, are encoded by the nuclear genome [75]. Some of those genes appear
under clock control [76,77]. We and others found daily changes in the expression of
OXPHOS genes encoded not only by the nuclear genome but also by mtDNA in the livers
of young mice [16,78]. The daily changes in OXPHOS protein composition and other
mitochondrial rhythms (see below) are probably optimized for daily changes in nutrient
supply and energy demand associated with the feeding-fasting cycle. Depending on
the feeding state, mitochondria switch fuel choice between pyruvate and fatty acid [79].
That mitochondrial energetics and fuel usage vary over the day is clearly evidenced by
daily changes in oxygen consumption rate and the respiratory exchange ratio in mice and
men [78,80,81]. Mitochondrial respiratory activities in vitro also change across the day, but
the peak phases differ by substrates, consistent with daily changes in fuel usage [78,82].
Some mechanisms of mitochondrial fuel selection are known. For example, reversible
phosphorylation of pyruvate dehydrogenase (PDH) controls mitochondrial pyruvate use.
PDH is inactivated upon phosphorylation by PDH kinases and re-activated by a Ca2+-
activated phosphatase [83]. Ca2+ influx promotes pyruvate oxidation [83] and is limited by
MICU1 (regulating Ca2+ influx via MCU) and OPA1 present at the cristae junction [84]. We
found that phosphorylation of PDH-E1α in the livers of young mice is increased during
daytime, indicating that mitochondrial pyruvate oxidation is reduced during fasting [16].
Mitochondria undergo structural changes in response to nutrient availability [85]. Under
nutrient-poor situations, OPA1 promotes the fusion of the mitochondrial inner membrane
and intracristal assembly of OXPHOS complexes and supercomplexes to facilitate ATP
production [86,87]. We found daily changes in mitochondrial OPA1 abundance in mouse
liver, with higher levels at daytime [16], consistent with the role of OPA1 in promoting
FAO [88].

OPA1 not only promotes FAO but also curtails oxidative stress [89]. ROS production
rate by mitochondria in vitro is low during FAO [90]. We found that mitochondrial ox-
idative stress in vivo, judged by the degree of PRDX3 dimerization in young mouse liver,
is decreased during daytime, with a nadir at ZT10 [16]. From a metabolic point of view,
mitochondrial dehydrogenases and respiratory complexes are differentially employed
when different respiratory substrates are used, so the ROS production rate would vary
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by substrate, as indeed observed in vitro [90]. Low ROS production rate during FAO
could be accounted for by several mechanisms. First of all, FAO produces NADH and
FADH2 at an equal molar ratio. Compared to NADH, FADH2 derived from FAO donates
its electrons (via ETF) to the ETC downstream of ROS production sites in complex I, thus
favoring less ROS production [91]. Other mechanisms exist to restrain oxidative stress
during FAO. For example, during FAO in the liver, TCA cycle metabolites are depleted by
gluconeogenesis, and acetyl-CoAs from FAO are diverted to ketogenesis. As a result, less
FADH2, NADH, and ROS are made by the TCA cycle in the liver during FAO. Moreover, a
limited NADH supply to the ETC during FAO would raise the NAD+/NADH ratio, thus
activating sirtuins [92]. Notably, the mitochondrial sirtuin SIRT3 plays a role in reducing
oxidative stress. SIRT3 deacetylates various proteins [91], such as ETC proteins, FAO, and
antioxidant defense enzymes (e.g., IDH2 and SOD2). SIRT3 increases the efficiency of ETC
electron transfer to reduce ROS production and also promotes antioxidant defense [91].
We found that acetylation levels of SIRT3 targets change over the day, reaching the lowest
levels near ZT10, concurrent with the nadir of mitochondrial oxidative stress in the livers
of young mice [16]. Overall, the daily rhythm in mitochondrial redox states is closely
integrated with daily metabolic changes in mouse liver, such that low oxidative stress level
is associated with FAO during fasting.

Consistent with clock control of mitochondrial functions [93], most mitochondrial
rhythms we found in the livers of young mice, including the redox rhythm, are disrupted
by the Clock419 mutation [16]. The circadian clock also controls a redox rhythm at the
whole cell level [94].

8. Mitochondrial Rhythms in Mouse Liver Are Disrupted by Aging despite Normal
Circadian Clock Oscillation

Intriguingly, we found that the mitochondrial rhythms evident in young mice are
disrupted by aging, due mainly to rhythm damping by age-related changes during the
daytime, especially at ZT10 [16]. For example, mtDNA transcripts in the livers of old mice are
much less abundant at ZT10, the peak time in young mice. Age-related decrease in mtDNA
transcripts is also seen in mouse muscle, where nuclear-encoded OXPHOS transcripts are
less affected by aging [95]. Changes in OXPHOS subunit composition probably lead to
inefficient electron transfer and energy production and increased ROS production in various
mouse tissues. Meanwhile, we found that SIRT3 target acetylation in the livers of old mice is
increased at ZT10, the nadir of corresponding rhythms in young mice. Aging abolishes the
mitochondrial redox rhythm, owing to a prominent increase of oxidative stress in the livers of
old mice at ZT10, the nadir of PRDX3 dimerization in young mice. The age-related disruption
of mitochondrial rhythms, however, is not associated with overt clock defects. We found
that clock gene rhythms remain normal with age in mouse liver [16], consistent with other
studies on mouse peripheral tissues [11–13] and the SCN [96–98]. Those results indicate
that aging disrupts mitochondrial rhythms through molecular mechanism(s) downstream
of the circadian clock. Indeed, deep sequencing studies revealed that, while robust clock
oscillations are preserved in peripheral tissues, aging induces extensive changes in gene
levels and rhythms therein [11–13]. Age-related global changes in SCN gene expression
await future studies. Some genes related to mitochondrial functions in various tissues,
including the few we identified in mouse liver [16], are expected to be affected by aging.
Such genes remain to be fully characterized.

Maintaining proper circadian rhythms at the organismal and cellular levels is beneficial
to health. For example, time-restricted feeding (tRF) enables robust daily rhythms to prevent
metabolic diseases in young mice and men [99]. Age-related changes in gene expression
clearly disturb metabolic processes, as evidenced by decreased rhythm amplitudes of many
metabolic genes in the livers of old mice [13]. Such changes can be ameliorated by caloric
restriction (CR), and the tRF factor contributes to the lifespan-extending effect of CR in
mice [13]. The extent to which mitochondrial rhythms are affected by CR during aging
remains to be determined.
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9. Mechanism(s) for Age-Related Dysregulation of Mitochondrial Rhythms

The mechanisms for age-related reprogramming of daily gene expression are under
current investigation (Figure 1). Gene expression is known to be controlled by both the
circadian clock and other TFs, either independently or in combination [6]. Conceivably,
some TFs whose activities are altered by aging take part in reprogramming daily gene
expression. Plausible candidates are TFs (e.g., NF-kB, IRFs, and STATs) activated by chronic
inflammation, a hallmark of aging [15]. Indeed, inflammatory response genes are enriched
in the tissues of old mice [11,13]. Unlike the strong immune response that disrupts the
molecular clock after an LPS challenge [100], age-related sterile inflammation is of low
grade and thus may not significantly disturb the molecular clock [101], at least at the early
stage of aging examined [11–13,16].
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Figure 1. Mitochondrial functions are regulated by the circadian clock and other TFs in young animals.
Such combinatorial regulation coordinates robust daily changes in mitochondrial protein composition,
structural dynamics, energetics, and metabolism. There is a clear mitochondrial redox rhythm that is
integrated with daily rhythms in metabolism. During aging, age-related activation of certain TFs,
such as inflammatory TFs, leads to the reprogramming of daily gene expression that has profound
effects on mitochondrial physiology, leading to the disruption of most mitochondrial rhythms that
are evident in young animals. Such dysregulation of mitochondrial functions is associated with
metabolic changes and disturbed redox homeostasis.

One notable gene target of inflammatory signaling is CD38, a NADase whose up-
regulation contributes to the age-related decline in NAD+ levels in mouse tissues [102].
Low NAD+ levels lead to insufficient sirtuin activation that has pleotropic effects [103].
For example, SIRT6 restrains NF-kB signaling, and its deficiency leads to premature aging.
SIRT1 deficiency promotes P53 activation and cellular senescence. SIRT1 also deacetylates
PGC1α to activate the transcription of genes involved in mitochondrial functions [104].
Insufficient SIRT1 activation during aging may disturb mitochondrial rhythms. Decreased
SIRT3 activation may be particularly relevant to the disruption of mitochondrial redox
rhythms during aging, as evidenced by the increase in both SIRT3 target acetylation
and mitochondrial oxidative stress in the livers of old mice [16]. SIRT3 also promotes
mitobiogenesis via deacetylating TFAM, a protein essential for mtDNA maintenance and
transcription [105]. Decreased SIRT3 activation probably contributes to the reduction of
mtDNA transcripts during aging [16].

Increased oxidative stress is implicated in age-related dysregulation of SCN neural
activity, which impairs circadian timing functions at the system level [106,107]. Age-related
disturbance of redox homeostasis could also impact signaling pathways in various tissues.
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For example, AMPK and mTOR are alternatively activated across the day in young mice,
in part due to the influence of the redox rhythm. Dysregulation of AMPK and mTOR
during aging could induce changes in metabolism and gene expression [108]. Finally,
ROS causes damage to DNA, which activates ATM to regulate the DNA damage response
(DDR) of DNA repair, cell cycle arrest and/or apoptosis [109]. ATM is also activated by
ROS and promotes NADPH production and autophagy to lower oxidative stress [109].
ATM activation in young animals is expected to be rhythmic across the day to maintain
genome integrity. mtDNA is thought to be particularly vulnerable to damage due to its
proximity to mitochondrial ROS. However, antioxidant defense, mitochondrial DNA repair,
mitochondrial dynamics (fusion and fission), and mitophagy appear sufficient to maintain
the integrity of mtDNA at least to the early stage of aging [95,110,111]. Nonetheless,
during aging, loss of redox homeostasis and chronic increase in oxidative stress could
favor persistent ATM activation, a condition under which ATM and other DDR proteins
promote SASP (senescence-associated secretory phenotype) in cells to exacerbate systemic
inflammation [112]. Such a vicious cycle may eventually lead to the accumulation of
DNA damage and loss of proteostasis in various tissues, which can aggravate cellular
dysfunctions and age-related diseases.

10. Future Perspectives

From the perspective of circadian rhythms, mitochondrial functions are regulated by
both the clock and age-related mechanisms. In young animals, mitochondrial functions
and redox states are rhythmic and integrated with daily changes in metabolic activities.
Mitochondrial rhythms are disrupted during aging, when redox homeostasis is disturbed
due to unbalanced ROS production and antioxidant defense, resulting in a net increase
in oxidative stress. Age-related disruption of mitochondrial rhythms is associated with
global changes in gene expression levels and rhythms in spite of intact tissue clocks.
Such reprogramming of daily gene expression is a manifestation of plasticity in circadian
rhythm control, and it involves TFs activated during aging (e.g., inflammatory TFs). How
inflammatory TFs participate in reprogramming mitochondrial rhythms during aging
should be characterized in detail in future studies. It is also of interest to examine the effect
of CR on mitochondrial rhythms during aging. Finally, the phases of mitochondrial rhythms
should be taken into account when administering daily pharmaceutical interventions aimed
at healthy aging [108].
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