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Abstract: ReS2, as a new member of transition metal dichalcogenides (TMDCs), has emerged as
a promising substrate for semiconductor surface-enhanced Raman spectroscopy (SERS) due to its
unique optoelectronic properties. Nevertheless, the sensitivity of the ReS2 SERS substrate poses a
significant challenge to its widespread application in trace detection. In this work, we present a
reliable approach for constructing a novel ReS2/AuNPs SERS composite substrate, enabling ultrasen-
sitive detection of trace amounts of organic pesticides. We demonstrate that the porous structures
of ReS2 nanoflowers can effectively confine the growth of AuNPs. By precisely controlling the size
and distribution of AuNPs, numerous efficient and densely packed “hot spots” were created on
the surface of ReS2 nanoflowers. As a result of the synergistic enhancement of the chemical and
electromagnetic mechanisms, the ReS2/AuNPs SERS substrate demonstrates high sensitivity, good
reproducibility, and superior stability in detecting typical organic dyes such as rhodamine 6G and
crystalline violet. The ReS2/AuNPs SERS substrate shows an ultralow detection limit of 10−10 M and
a linear detection of organic pesticide molecules within 10−6–10−10 M, which is significantly lower
than the EU Environmental Protection Agency regulation standards. The strategy of constructing
ReS2/AuNPs composites would contribute to the development of highly sensitive and reliable SERS
sensing platforms for food safety monitoring.

Keywords: ReS2 nanoflowers; ReS2/AuNPs complexes; surface-enhanced Raman spectroscopy;
quantitative detection

1. Introduction

As an ultra-sensitive, non-damaging, and rapid vibrational spectroscopy technology,
surface-enhanced Raman spectroscopy (SERS) has a wide variety of applications in food
safety, environmental monitoring, and biomedicine [1–5]. Since the initial confirmation
by Fleischmann et al. in 1974 that pyridine molecules adsorb onto rough silver surfaces
under electrode action [6], SERS technology has undergone extensive research and can
now detect a wide range of small-molecule analytes [7–9], including proteins, nucleic acids,
antibiotics, pesticide residues, and organic pollutants. In comparison to detection methods
such as high-performance fluorescence analysis [10], gas chromatography-mass spectrom-
etry (GC-MS) [11], and liquid chromatography (HPLC) [12], SERS exhibits remarkable
advantages in terms of rapid and straightforward molecular-specific detection.

Generally, the Raman signal amplification of the target analyte depends on the material
properties of SERS substrates. For example, noble metal SERS substrates based on an
electromagnetic mechanism (EM) amplify the Raman signal via a unique localized surface
plasmon resonance (LSPR) [13,14]. Fu et al. utilized an ultrathin alumina membrane surface
patterning technique to fabricate arrays of Ag nanoparticles, achieving an EM-based SERS
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enhancement factor of up to 109 [15]. Alternately, semiconductor SERS substrates based
on a chemical mechanism (CM) amplify Raman signals through charge or energy transfer
between the substrate and target molecules [16–18]. Muehlethaler et al. demonstrated
that the monolayer MoS2 exhibits a SERS enhancement factor of 105 through the CM [19].
Therefore, the enhancement of LSPR is typically higher than that of charge transfer by
several orders of magnitude [20]; however, the disadvantages of easy agglomeration,
instability, and poor biocompatibility have seriously hampered the development of noble
metal colloidal SERS substrates.

Recently, 2D semiconductor SERS substrates such as transition metal dichalcogenides
(TMDCs) have been extensively studied and developed [21–28]. Thanks to their large
surface area, tunable band gap, good biocompatibility, and easy preparation, TMDCs have
emerged as ideal SERS substrates for supporting CM. Lv et al. successfully synthesized the
monolayer NbS2 using the chemical vapor deposition method, demonstrating a superior
sensitivity for trace detection compared to graphene [29]. ReS2, the new member of the
TMDCs, possesses excellent properties that are different from the members of TMDCs
such as MoS2 owing to its unique 1T’ crystal structure [30,31]. More importantly, ReS2
nanosheets maintain direct bandgap semiconductor properties due to the electronic and vi-
brational decoupling, exhibiting an anisotropic SERS response, and thick-related SERS has
been reported in pioneering studies [32–34]. Miao et al. proved that the ReS2 nanosheets
SERS effect is derived from a charge transfer process between ReS2 and target molecules.
In addition, the SERS sensitivity of ReS2 nanosheets decreases with the increase in thick-
ness [32]. Lin et al. confirmed that the angle-dependent Raman enhancement of ReS2
with CuPc molecules arises from the anisotropic charge carrier mobility [33]. Meanwhile,
Wang et al. reported that the different substrates of ReS2 nanosheets can efficiently suppress
the fluorescent background of SERS and enable steady detection of the dye molecules at
10−7 M [35]. However, although the SERS substrates of ReS2 nanosheets exhibit higher
homogeneity, better chemical stability, and better biological properties, the Raman enhance-
ment is far less than that of noble metal nanostructures, thus limiting its trace detection
capability for target molecules, such as aromatic or toxic compounds.

The construction of novel hybrid or heterostructure SERS platforms combining EM
and CM has emerged as an ideal method to obtain higher Raman enhancement [36–40].
For example, Shao et al. fabricated the first ReS2 nanocavity-based SERS substrate on
gold-modified silicon pyramids by employing a thermal evaporation technique and a
hydrothermal method, which showed efficient and stable detection performance in the
low-concentration detection of real samples [41]. Furthermore, Liu et al. proved that the
3D nanoflowers structure has a bigger surface area and richer reactive edge sites compared
to the nanosheet structure of ReS2 [42], rendering it an excellent photocatalyst.

Inspired by the above study, a synergistic enhanced SERS substrate of ReS2/AuNPs
was developed, as shown in Figure 1. ReS2 nanoflowers are prepared by hydrothermal syn-
thesis and possess abundant multi-active sites, which exhibit powerful catalytic functions
and provide more adsorption sites for the target molecules. In addition, AuNPs can grow
uniformly on the surface of ReS2 nanoflowers without reducing agents and bind to them
through Au–S covalent bonds. The high sensitivity of SERS detection was achieved by
controlling the size and gap of the AuNPs and then determining the specific enhancement
mechanism of the SERS effect. The two representative organic dye molecules of crystalline
violet (CV) and rhodamine 6G (R6G) were selected for evaluation of the analytical ability
and SERS performance on the ReS2/AuNPs substrate, and applied to organic pesticide
detection. The results showed that the detection limits of the ReS2/AuNPs composites for
R6G, CV, and tetramethylthiuram disulfide (TTD) were as low as 10−10 M, with detection
deviations ranging from 14.7% to 15.3%. This demonstrates that the ReS2/AuNPs com-
plexes have excellent sensitivity, reproducibility, and stability, making it feasible for trace
determination of organic pollutants with high sensitivity and stability.
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Figure 1. Schematic of preparation and SERS detection of ReS2/AuNPs.

2. Results and Discussion
2.1. Preparation Process and Characterization Analysis of ReS2/AuNPs Complexes

Figure 2a shows the preparation process for the ReS2/AuNPs complexes. In order
to uniformly attach the appropriate amount of AuNPs to the ReS2 nanoflowers without
using a reducing agent, a large specific surface area and strongly catalytic properties of
ReS2 nanoflowers were prepared via a hydrothermal synthesis at a temperature of 180 ◦C
for 16 h. Then, under constant temperature at 80 ◦C, upon the addition of a certain concen-
tration of HAuCl4 solutions, the color of the mixed solution gradually changed from pale
yellow to deep purple (as illustrated in Figure 2d), indicating the successful reduction of
AuNPs and synthesis of the ReS2/AuNPs complexes. Figure 2b,c display the transmission
electron microscopy (TEM) images of the ReS2 nanoflowers and ReS2/AuNPs composites
at appropriate magnification voltages ranging from 40 to 120 kV. The results show that
the flower-like ReS2 has an average particle size of 49.5 nm, which uniformly adhered
in parallel without stacking and dispersed homogeneously, as shown in Figure S1. The
three-dimensional surface area of the ReS2 nanoflowers provides a number of adsorption
sites for AuNPs, resulting in the reduced AuNPs being grown uniformly on its surface
(shown in Figure 2c).

In addition, Figure 2d shows the UV–Vis absorption images of the ReS2 nanoflowers,
AuNPs, and ReS2/AuNPs complexes at 400–900 nm. The results indicate that no distinctive
characteristic peaks were found in the absorption spectra of ReS2 nanoflowers; however,
a weak small shoulder peak appeared at 738 nm (Figure 2d). Compared to the ReS2
nanoflowers and AuNPs, the overall absorption intensity of the ReS2/AuNPs increased
with a red-shift of the longitudinal LSPR peak to 545 nm with lateral broadening, indicating
that the AuNPs of ReS2/AuNPs clustered on the surface of ReS2 nanoflowers. The small
shoulder peak at 738 nm disappeared, indicating the successful complexation of the ReS2
nanoflowers with AuNPs. Figure 2e presents the X-ray diffraction (XRD) spectra of the
ReS2 nanoflowers and the ReS2/AuNPs powder. Four diffraction peaks at 2θ = 13.9◦, 34.9◦,
44.5◦, and 57.5◦ correspond to the (100), (002), (300), and (−122) crystallographic planes of
ReS2, respectively, indicating the successful synthesis of ReS2 nanoflowers [43]. Following
the involvement of AuNPs, four peaks were observed at 38◦, 44.2◦, 64.4◦, and 77.6◦, which
are located in the (111), (200), (220), and (311) crystal planes of planar cubic Au [44].

Moreover, XPS spectra showed typical Re 4f, Au 4f, and S 2p characteristic diffraction
peaks derived from the ReS2/AuNPs, as shown in Figure 2f,i. In contrast to the S 2p of ReS2
nanoflowers (Figure S2), the S 2p3/2 and S 2p1/2 peaks of ReS2/AuNPs were blue-shifted
to 161 and 162.3 eV, respectively, which indicates the important synergistic role of the ReS2
nanoflowers in Au reduction. Furthermore, Figure 2i shows the bond energy peaks of
Au 4f located at 83.7 and 87.4 eV with a binding energy difference of 3.7 eV, suggesting
the successful Au reduction, whereas the symmetric peaks at 84.4 and 87.8 eV indicate
the AuNPs adsorption with the ReS2 nanoflowers via Au–S bonds. As the most direct
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evidence, EDS images of Re, S, and Au elements confirm the formation of the ReS2/AuNPs
complexes (Figure S1), and the elemental ratio values for Re, S, and Au were 1.5, 2.5, and
96%, respectively.
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nanoflowers, and (c) ReS2/AuNPs reduced at 0.08 mM HAuCl4. (d) Absorption spectra of ReS2

nanoflowers, AuNPs, and ReS2/AuNPs, reduced at 0.28 mM HAuCl4. (e) XRD spectra of ReS2

nanoflowers and ReS2/AuNPs. (f) XPS survey spectra for ReS2 nanoflowers and ReS2/AuNPs,
(g) Re 4f, (h) S 2p, and (i) Au 4f in ReS2/AuNPs.
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2.2. The Controlled Growth of AuNPs Assisted by ReS2 Nanoflowers

Figures 3b and S3 display the TEM images of ReS2/AuNPs with different sizes
of AuNPs. Under continuous stirring at a constant temperature of 80 ◦C, controlled
ReS2/AuNPs composites with average sizes of 6.4 nm, 12.2 nm, and 22 nm were obtained
by adding HAuCl4 solutions with concentrations of 0.08 mM, 0.28 mM, and 0.52 mM,
respectively, to a 5 mL ReS2 nanoflowers solutions. In addition, the UV–Vis absorption
spectra of ReS2/AuNPs with different sizes of AuNPs indicated that as the AuNPs’ size
enlarges, the LSPR peak is red-shifted from 524 nm to 563 nm. In addition, various par-
ticle sizes of AuNPs show the different particle gaps on the surface of ReS2 nanoflowers,
which is essential for the generation of “hot spots” with different intensities. Typically,
the higher the concentration of HAuCl4, the larger the size of AuNPs aggregated on ReS2
nanoflowers. However, with the increasing HAuCl4 concentrations, the limited surface
area of the ReS2 nanoflowers was unable to adsorb numerous large-sized AuNPs, resulting
in the aggregation and overlapping of AuNPs, which may cause the intensity of the “hot
spot” to decrease.
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Subsequently, the plasma oscillation process of the 514 nm laser excitation was simulated
using finite elements to analyze the electromagnetic field intensity (E) distribution for different
AuNPs sizes and gaps. The simulation conditions were as follows: three-dimensional frequency-
domain modeling was utilized with the incident light vertically propagating along the Z-axis,
initially polarized along the X-axis, and the light intensity set to 1 V/m. The solution domain
was a cube with dimensions of 800 nm× 800 nm× 800 nm. Perfectly conducting bound-
aries were employed to eliminate scattering waves in all boundary directions. Figure 3c
shows that, when the AuNP’s particle gap was larger than 5.2 nm, the E value was lower
than 5.8 V/m, which is possibly related to weak LSPR. Moreover, the highest E value
was 12.6 V/m, with gaps close to zero, which is attributed to the strong Au–S bonding
interactions that formed tight and high-efficient “hot spots” for the 12.2 nm AuNPs on the
surface of the ReS2 nanoflowers. Following the overlap of AuNPs, the E value gradually
decreased and did not enhance the E value further, presumably owing to the dipole oscilla-
tions preventing the formation of a highly effective “hot spot” between the two contacting
AuNPs [45].

2.3. Feasibility and Sensitivity Analysis of the ReS2/AuNPs SERS Substrate

Under optimized conditions, the enhanced sensing performance of ReS2/AuNPs as
a SERS substrate was verified by detecting R6G and CV dye molecules. First, 10−5, 10−6,
and 10−6 M concentrations of R6G solutions were soaked with ReS2 nanoflowers, AuNPs,
and ReS2/AuNPs, respectively, for 1 h. After natural drying, SERS measurements were
performed under the 514 nm excitation light. Figure 4a shows that the R6G Raman charac-
teristic peaks at 611, 773, 1360, 1510, and 1645 cm−1 were detected for the ReS2 nanoflowers,
AuNPs, and ReS2/AuNPs SERS substrates [46]. Notably, the ReS2 nanoflowers as a semi-
conductor SERS substrate could detect capable 10−5 M R6G, which is attributed to the CM
of the ReS2 nanoflowers and the abundance of active sites. According to a previous study,
the conduction band minimum (CBM) and valence band maximum (VBM) of the bilayer
ReS2 were −4.46 and −5.86 eV, respectively [47]. The highest occupied molecular orbital
(HOMO) energy levels and the lowest unoccupied molecular orbital (LUMO) energy levels
of R6G were −5.7 and −3.4 eV, respectively [48]. When the excitation light irradiated the
ReS2 nanoflowers surface, the electrons of VBM jumped to the CBM [49] and were rapidly
transferred to the LUMO of the R6G dye molecules (Figure 4b), which makes the R6G dye
molecules obtain a CM order-of-magnitude SERS enhancement.

When the EM of AuNPs participated, the ReS2/AuNPs substrate formed an effective
“hot spot,” which enhanced the Raman signal by two times compared to that of AuNPs
(Figure S4). In addition, the Raman signal of 10−10 M R6G was detected by ReS2/AuNPs
(Figure 4c) with the synergistic interaction of the local EM field generated by AuNPs
and rapid charge transfer of ReS2/AuNPs complexes. Figure 4c,e show the variation in
the SERS sensing ability of ReS2/AuNPs substrate with different R6G and CV concentra-
tions (10−6–10−10 M). The SERS intensities of R6G and CV were reduced with reducing
concentration, and the SERS signals from the strongest characteristic peaks of R6G and
CV could still be measured at concentrations lower than 10−10 M. In addition, the Ra-
man characteristic peaks of R6G at 1645 cm−1 and CV at 1617 cm−1 were selected for
fitting the Lorentz function to investigate the dependence between SERS intensity and
concentration. Figure 4d,f show that the SERS intensity obeyed a power law relation-
ship with fitted correlation coefficient (R2) values greater than 0.9; the fitting formulas
were IR6G = 1299800 × C0.37349, ICV = 819808.4 × C0.33282. These results indicate that the
ReS2/AuNPs substrate has ultrahigh detection sensitivity for target molecules in the
10−6–10−10 M range.
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2.4. Stability Analysis of the ReS2/AuNPs SERS Substrate

An ideal SERS sensor requires high sensitivity, as well as great repeatability and
stability of the substrate. Therefore, to evaluate the repeatability of ReS2/AuNPs complexes,
14 detection sites were randomly selected from the substrate with adsorbed 10−6 M R6G
and CV, as shown in Figure 5a,c. The results show that the SERS spectra of both R6G
and CV exhibit consistent Raman characteristic peaks similar to those shown in Figure 4.
In addition, the Raman signal intensities were relatively consistent. Figure 5b,d present
the relative standard deviation (RSD) of the Raman peaks at 1360 cm−1 and 1617 cm−1

for R6G and CV in Figure 5a,c, respectively. The results demonstrated that the RSD of
R6G and CV was 14.7% and 15.3%, respectively, suggesting great repeatability on the
ReS2/AuNPs substrate. In addition, Figure 5e displays the SERS spectra obtained by
testing the ReS2/AuNPs substrate adsorbed with R6G dye molecules, which was stored
in the dark at room temperature, with measurements taken at seven-day intervals. The
results show that the Raman signal intensity of RG6 did not significantly change even after
the substrate was stored for more than a month, and the position of the peaks is not shifted
in any way. Figure 5f demonstrates that the peak intensities of 6RG at 611 cm−1, 1360 cm−1,
and 1645 cm−1 did not show any significant decrease after 14 days. Even after 42 days,
only a minimal decline was observed. This indicates the high stability of the ReS2/AuNPs
SERS substrate.
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2.5. The Detector Range and Practical Applications of ReS2/AuNPs SERS Substrate

First, anions and cationic dyes were utilized to study and analyze the suitability of the
ReS2/AuNPs substrate for different kinds of surface charge target molecules. Figure 6a
shows the SERS spectra of the ReS2/AuNPs solution immersed in a mixture of 10−6 M R6G,
CV, ponceau S (PS), and trypan blue (TB) dye molecules after one hour. Figure 6b represents
the SERS intensities of TB, PS, CV, and R6G at characteristic peaks located at 1460 cm−1,
1565 cm−1, 1617 cm−1, and 1360 cm−1, respectively. The results indicate that, although
the ReS2/AuNPs SERS sensor was reduced in sensitivity to anions (PS, TB) compared to
cationic dyes (R6G, CV), very complete SERS spectra of anionic dyes were still detected. In
addition, the well-known Raman characteristic peaks of PS and TB appear at 1565 cm−1

and 1460 cm−1, respectively. This result indicates that the ReS2/AuNPs complexes are
suitable for SERS detection of analytes with different surface charges, without the assistance
of ligands.

The feasibility of the ReS2/AuNPs SERS sensor for food safety applications was further
investigated using TTD, a common organic pesticide. TTD is frequently used as a protective
agent against normal crop growth; however, excessive residues in crops cause neurological
damage in humans. The TTD molecules were immersed within the ReS2/AuNPs substrate
for 1 h, dried naturally, and subjected to SERS detection. Figure 6c shows the SERS spectra
of various concentrations of TTD (10−6–10−10 M), which exhibited two distinctive Raman
characteristic peaks. The peak located at 1367 cm–1 is associated with C–N stretching
and CH3 symmetric deformation vibration modes [50]. The intensity of the SERS signal
decreased with decreasing concentrations of TTD, and the characteristic Raman peak at
1367 cm−1 was still observed at 10−10 M. For further quantitative analysis, Figure 6d shows
the dependence of the SERS intensity at 1367 cm−1 on the TTD concentrations. The SERS
intensity is linearly related to the negative logarithm of concentration with R2 of 0.97,
and the fitted equation is I = 2081.86 + 197.45 Log C. The detection limit of 10−10 M is
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significantly lower than the residue limit of 3 ppm for fruits and vegetables set by the EU
Environmental Protection Agency [51].

Molecules 2023, 28, x FOR PEER REVIEW 9 of 13 
 

 

Figure 6d shows the dependence of the SERS intensity at 1367 cm−1 on the TTD concentra-
tions. The SERS intensity is linearly related to the negative logarithm of concentration with 
R2 of 0.97, and the fitted equation is I = 2081.86 + 197.45 Log C. The detection limit of 10−10 

M is significantly lower than the residue limit of 3 ppm for fruits and vegetables set by the 
EU Environmental Protection Agency [51]. 

 
Figure 6. (a) SERS spectra of ReS2/AuNPs substrate detecting 10−6 M cationic dyes (R6G, CV) and 
anionic dyes (PS, TB). (b) The intensity histograms of the Raman characteristic peaks for cations and 
anions. (c) SERS spectra of different concentrations of TTD solutions from the ReS2/AuNPs substrate 
detection. (d) Relationship between concentrations of TTD solutions and SERS signal intensity. 

3. Materials and Methods 
3.1. Materials 

Thioacetamide (CH3CSNH2, 99.09%), CV, and R6G were bought from Aladdin Bio-
Chem Technology Co., Ltd. (Shanghai, China). Ammonium perrhenate (NH4ReO4, 
99.99%) was obtained from Weng Jiang Reagent Company (Shaoguan, China). 
HAuCl4·3H2O and TTD (97.5%) were purchased from Macklin (Shanghai, China). The car-
boxymethylcellulose sodium (CMC-Na, 99.5%), PS, and trypan blue TB were obtained 
from Dow Corporation (Midland, MI, USA), Shanghai Yuanye Bio-Technology Co., Ltd. 
(Shanghai, China), and Beyotime Biotechnology (Shanghai, China), respectively. Aqueous 
solutions of 15 nm gold nanoparticles were purchased from Hangzhou Xinqiao Biotech-
nology Co., Ltd. (Hangzhou, China). 

3.2. Synthesis of Three-Dimensional ReS2 Nanoflowers 
ReS2 nanoflowers were prepared using a hydrothermal synthesis method [43]. 

Briefly, 134.12 mg of NH4ReO4 powder was mixed with 35 mL of deionized water (18.2 
MΩ) and stirred continuously at room temperature. For 10 min, 150.26 mg of CH3CSNH2 
was added to the above solution. After continuous stirring for 15 min, the mixed solution 
was poured into a polytetrafluoroethylene liner contained in a stainless steel autoclave 
and the reaction was continued for 16 h at 180 °C. With the temperature of the reaction 
chamber dropped to 25 °C, the reactants were washed by centrifugation with anhydrous 

Figure 6. (a) SERS spectra of ReS2/AuNPs substrate detecting 10−6 M cationic dyes (R6G, CV) and
anionic dyes (PS, TB). (b) The intensity histograms of the Raman characteristic peaks for cations and
anions. (c) SERS spectra of different concentrations of TTD solutions from the ReS2/AuNPs substrate
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3. Materials and Methods
3.1. Materials

Thioacetamide (CH3CSNH2, 99.09%), CV, and R6G were bought from Aladdin Bio-
Chem Technology Co., Ltd. (Shanghai, China). Ammonium perrhenate (NH4ReO4, 99.99%)
was obtained from Weng Jiang Reagent Company (Shaoguan, China). HAuCl4·3H2O and
TTD (97.5%) were purchased from Macklin (Shanghai, China). The carboxymethylcellulose
sodium (CMC-Na, 99.5%), PS, and trypan blue TB were obtained from Dow Corporation
(Midland, MI, USA), Shanghai Yuanye Bio-Technology Co., Ltd. (Shanghai, China), and
Beyotime Biotechnology (Shanghai, China), respectively. Aqueous solutions of 15 nm gold
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nanoparticles were purchased from Hangzhou Xinqiao Biotechnology Co., Ltd. (Hangzhou,
China).

3.2. Synthesis of Three-Dimensional ReS2 Nanoflowers

ReS2 nanoflowers were prepared using a hydrothermal synthesis method [43]. Briefly,
134.12 mg of NH4ReO4 powder was mixed with 35 mL of deionized water (18.2 MΩ) and
stirred continuously at room temperature. For 10 min, 150.26 mg of CH3CSNH2 was added
to the above solution. After continuous stirring for 15 min, the mixed solution was poured
into a polytetrafluoroethylene liner contained in a stainless steel autoclave and the reaction
was continued for 16 h at 180 ◦C. With the temperature of the reaction chamber dropped to
25 ◦C, the reactants were washed by centrifugation with anhydrous ethanol and deionized
water at 11,000 rpm 4 times. The collected sediment was dried in a thermostatic drying
oven at 60 ◦C for 24 h to obtain ReS2 nanoflowers in powder form. Subsequently, 2.5 mg of
the ReS2 nanoflowers powder was dispersed in 100 mL of deionized water, resulting in a
ReS2 nanoflowers solution with a concentration of 0.025 mg/mL.

3.3. Synthesis of the ReS2/AuNPs Complexes

First, 500 µL of 50 mM CMC-Na was added into 5 mL of 0.025 mg/mL ReS2 nanoflow-
ers solution and continuously stirred at room temperature for 5 min. Subsequently, 40, 140,
and 260 µL (0.08, 0.28, 0.52 mM) of HAuCl4 were placed into the solution and continuously
stirred for 10 min at 80 ◦C. When the solution undergoes a color change (light red, deep
purple, or dark blue), it indicates the successful reduction of AuNPs. Then, the excess
CMC-Na was removed by centrifugal washing with deionized water at 13,000 rpm three
times. Finally, the ReS2/AuNPs complexes were dried at 60 ◦C for 12 h.

3.4. Materials Characterization

The scanning electron microscope (SEM), energy spectrum (EDS), and TEM images of
ReS2/AuNPs were examined using scanning electron microscopy (SEM, Supra 55 Sapphire,
Oberkochen, Germany) operated at 15 kV, and transmission electron microscopy (TEM,
HITECH HT7700, Tokyo, Japan) operated at 40 kV. The elemental composition and crystal
phase of ReS2/AuNPs were obtained from X-ray photoelectron spectroscopy (XPS, Thermo
Scientific NEXSA, Waltham, MA, USA) and high-resolution X-ray diffractometer (XRD,
X′pertpro, Amsterdam, The Netherlands). The absorption spectra of ReS2/AuNPs were
measured with a UV-1780 spectrometer.

3.5. SERS Experiments

First, 100 µL of solutions with different concentrations of R6G, CV, TB, and PS
were mixed with 0.25 mg of ReS2/AuNPs powder. After sufficient adsorption for 1 h,
ReS2/AuNPs powder was cleaned twice with deionized water for the removal of unab-
sorbed dye molecules. Subsequently, the solutions were placed on a slide and allowed
to dry. A Renishaw inVia confocal Raman spectrometer was employed for SERS detec-
tion. Finally, the conditions for Raman testing were as follows: operating wavelength
514 nm; laser power 10%; 50× objective lens; integration time 20 s; an acquisition range of
500–2000 cm−1. Furthermore, taking TTD as an example, the practical application perfor-
mance of ReS2/AuNPs in SERS was evaluated. The ReS2/AuNPs substrate was immersed
in TTD solutions with varying concentrations for one hour at room temperature, followed
by cleaning and air drying before testing. The electric field distribution of ReS2/AuNPs
was simulated by the finite-element method.

4. Conclusions

In conclusion, a three-dimensional flower-like ReS2 nanostructure with an abundance
of active sites was successfully synthesized on a large scale using a hydrothermal method.
Assisted and controlled by the ReS2 nanoflowers, AuNPs were uniformly, densely, and
zero-spaced anchored on the surface of the ReS2 nanoflowers; therefore, a ReS2/AuNPs
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SERS platform with a considerable number of “hot spots” was formed. The results show
that the SERS enhancement of the ReS2/AuNPs substrate originated from the synergistic
enhancement of EM and CM, which indicated excellent sensitivity, good reproducibility,
and excellent storage stability for the representative organic dyes R6G and CV. In practical
applications, the ReS2/AuNPs substrate can linearly detect organic pesticide molecules,
(such as TTD) at concentrations as low as 10−10 M, exhibiting promising applications in
food safety and environmental detection.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/molecules28114288/s1, Figure S1: (a–b) TEM and (c) SEM images
of ReS2 nanoflowers. (d) SEM images and (e–f) EDS images of ReS2/AuNPs complexes; Figure S2:
XPS spectra for ReS2 nanoflowers—(a) Re 4f, (b) S 2p; Figure S3: TEM images, average particle
size, and absorption spectra of ReS2/AuNPs complexes with different concentrations of HAuCl4;
Figure S4: (a–b) Histogram of the intensity of the R6G characteristic peak corresponding to Figure 4a.
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