
Citation: Olejarz-Maciej, A.;

Mogilski, S.; Karcz, T.; Werner, T.;
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Abstract: Pain is a very unpleasant experience that makes life extremely uncomfortable. The his-
tamine H4 receptor (H4R) is a promising target for the treatment of inflammatory and immune
diseases, as well as pain. H4R ligands have demonstrated analgesic effects in a variety of pain
models, including inflammatory pain. Continuing the search for active H4R ligands among the
alkyl derivatives of 1,3,5-triazine, we obtained 19 new compounds in two series: acyclic (I) and
aliphatic (II). In vitro pharmacological evaluation showed their variable affinity for H4R. The majority
of compounds showed a moderate affinity for this receptor (Ki > 100 nM), while all compounds
tested in ß-arrestin and cAMP assays showed antagonistic activity. The most promising, compound 6,
(4-(cyclopentylmethyl)-6-(4-methylpiperazin-1-yl)-1,3,5-triazin-2-amine; Ki = 63 nM) was selected for
further in vitro evaluation: blood-brain barrier permeability (PAMPA assay; Pe = 12.26 × 10−6 cm/s)
and toxicity tests (HepG2 and SH-5YSY cells; no toxicity up to 50 µM). Next, compound 6 tested
in vivo in a carrageenan-induced inflammatory pain model showed anti-inflammatory and analgesic
effects (strongest at 50 mg/kg i.p.). Furthermore, in a histamine- and chloroquine-induced pruritus
model, compound 6 at a dose of 25 mg/kg i.p. and 50 mg/kg i.p., respectively, reduced the number
of scratch bouts. Thus, compound 6 is a promising ligand for further studies.

Keywords: histamine H4 receptor; biased signalling; anti-inflammatory activity; analgesic activity;
antipruritic activity

1. Introduction

Histamine is an important biogenic amine and endogenous neurotransmitter that has
a number of important functions in the body, including the mediation of inflammatory and
allergic reactions, playing an important role in wakefulness or sleep, and involvement in
the sensation of pain [1,2]. In the CNS, histamine has antinociceptive activity while it has
nociceptive in the periphery [3]. Histamine acts through four histamine receptors (H1–H4)
that differ in their location, roles, and sensitivity to endogenous agonists [1,2]. Histamine
H4 receptor (H4R) is located mainly in cells and tissues related to inflammatory state, such
as eosinophils, mast cells, monocytes, lymphocytes, and macrophages [2,4].

H4R plays a significant role in the immune response that influences the inflamma-
tion process. Activation of H4R induces chemotaxis, not only of mast cells, eosinophils,
and dendritic cells [5,6], but also migration of regulatory T-cells [7] and microglia [8]. In
human mast cells, H4R activation induces the release of inflammatory mediators, such as
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Th2 cytokines (IL-4 IL-5 IL-13), pro-inflammatory cytokines (IL-6, IL-1beta), immunoregu-
latory cytokine IL-10 and chemokines (IL-8, MCP-1) [9]. In some experiments, microglial
H4R activation led to the production of pro-inflammatory mediators [10,11] but in other
experiments inhibited LPS-induced IL-1β production [8]. Furthermore, H4R induces the
secretion of IL-16 from CD4+ T cells [12] and increases the secretion of INF-γ and IL-4
from NK cells [13]. H4R expression was also found to change in the presence of immune
mediators [14,15].

The presence of H4Rs in the CNS has been controversial and discussed by the research
community in recent years [16–19]. Some reports indicate the presence of H4R on sensory
nerves in the dorsal root ganglia and in the spinal cord [20–22]. The location of H4R coin-
cides with the pathways of pain transmission (Figure 1) [23,24], supporting the modulatory
role of H4R in this process [25,26].
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Figure 1. Simplified scheme showing pain pathway. The ascending pathway (red) is physiologically
modulated by the descending inhibitory tracts (blue). Also represented are medications that can
modify the sensory input of each of the four processes (green) [23,24]. Proposed H4R presence
on neuronal cells in DRG, spinal cord [21,22] and in the brain [21,25] (pink) and non-neuron cells
involved in pain [26] (orange). Abbreviations: 5-HT, serotonin, DRG, dorsal root ganglion; NE,
norepinephrine; NMDA, N-methyl-d-aspartate receptor, NSAIDs, nonsteroidal anti-inflammatory
drugs; Parts of Figure were drawn in Inkscape 1.1 using images from Servier Medical Art, which is
licenced under a Creative Commons Attribution 3.0 Unported Licence (https://creativecommons.
org/licenses/by/3.0/ accessed on 18 January 2023).

According to current knowledge, H4R possibly influences the pain process in two
ways: reduces pain activity by neuronal H4R stimulation and promotes pain by pro-
inflammatory effects by peripheral H4R stimulation [22]. Both H4R agonists [22,27–29]
and antagonists [30–38] showed antinociceptive effects. H4R agonists induced analgesic
activity when administered intrathecally [28] or intracerebroventricularly [22] which was

https://creativecommons.org/licenses/by/3.0/
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performed to measure the effect that comes from the central, not peripheral, H4R. The
H4R antagonists showed antinociceptive activity in many models of pain, including acute,
chronic, inflammatory, neuropathic, postsurgical, and osteoarthritic pain [30–38]. The
structures of the most interesting H4R ligands with antinociceptive activity in vivo are
shown in Figure 2. For all presented antagonists, promising anti-inflammatory activity in
in vivo models of inflammatory diseases were also observed e.g., pruritus (INCB38579 [33]),
peritonitis model (JNJ7777120 [31], TR7 [34], A-987306 [37]]) or atopic dermatitis (e.g.,
adriforant Figure 2, [39]). Several of the most promising H4R ligands entered into clinical
trials, e.g., JNJ-39758979 (atopic dermatitis; trials terminated due to agranulocytosis [40],
toreforant (rheumatoid arthritis; trials terminated due to lack of efficacy [40], or adriforant
(atopic dermatitis; discontinued [39]).
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Figure 2. Structures of selected H4R ligands: agonists and antagonists with pharmacological activity
in vivo. Information from a [41], b [22], c [42], d [28], e [29], f [43], g [31], h [32], i [33], j [34], k [44],
l [35], m [36], n [45], o [39].

JNJ7777120 (Figure 2), the first potent and selective H4R ligand [43], is the standard ref-
erence for both in vitro and in vivo studies. Numerous preclinical tests confirmed the high
efficacy of this compound but also showed complicated pharmacological behaviour [40].
JNJ7777120 was reported as neutral antagonist and inverse antagonist in Gαi dependent
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signalling [46–48], while acting as a partial agonist in the β-arrestin pathway [46,48,49].
Furthermore, JNJ7777120 acted as an antagonist in in vivo studies and in primary cells [4].

H4R is G protein-coupled receptor (Gi/o) and upon stimulation activates a specific
G-protein-dependent pathway and/or independent (β-arrestin) elements of the signal
transduction cascade (Figure 3A) [50,51]. Ligands binding to this receptor may represent
balanced activity towards all pathways (Figure 3B) or show preference toward one of them
(Figure 3C) [52]. This unique behaviour is called functional selectivity or biased signalling.

Moreover, H4R signalling pathways depend on cell background. In recombinant
systems, H4R activation inhibits adenylyl cyclase activity, resulting in a decrease in intracel-
lular cAMP [53,54], while in some cell types (i.e., mouse mast cells), endogenous activation
of H4R led to Ca2+ mobilization, without influence on cAMP (in Gi protein-dependent
manner proved by pertussis toxin) [5]. Functional selectivity with one signalling branch is
proposed to be responsible for therapeutic effects, while the other signalling could cause
unwanted side effects [55]. Thus, from the point of view of drug screening, it is not suf-
ficient to rely only on one functional assay [49]. In our previous studies, TR7 (Figure 2)
was shown to be an H4R antagonist in the cAMP accumulation assay of cAMP [56] and the
Ca2+ efflux aequorin-based assay [57], while it showed agonist activity in the adhesion of
eosinophils to the endothelium assay [57].
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Figure 3. Schemes splintered of (A) signalling pathways after activation of H4R. Some second gauges
were omitted for the purpose of clarity of the scheme. The dotted arrows indicate that there are more
steps between the two levels that were skipped for the readability of the scheme. G-protein-dependent
signal from H4R involves Gi/0 protein. Activation of the H4R leads to inhibition of adenyl cyclase
(AC) and its signalling pathway through Gα protein, activation of PLCβ through Gβγ protein which
in turn leads to Ca2+ release and activation of ERK1/2 pathway [2,5,53,54,58] (B) bias signalling after
binding of balanced ligand (C) bias signalling after binding of unbalanced ligand—bias towards
Pathway I. Abbreviations: Gα, α subunit of G-protein; Gβγ, βγ subunit of G-protein; β-arr, β-arrestin;
AC, adenyl cyclase; PLC, phospholipase C; ERK, protein–serum/threonine kinases; cAMP, cyclic
adenosine monophosphate; Path—signalling pathway.

The search for new compounds with biological activity can be inspired by compounds
found in various types of extracts and natural products [59] or publications by other authors,
which are especially useful in the search for effective ways to fight cancer or infection
diseases, e.g., SARS-CoV2 [60]. Recently, we have published a series of compounds, alkyl
derivatives of amine-1,3,5-triazine, which showed promising H4R in vitro and in vivo
activity [61]. The most potent compound from those series, TR-AF-49 (Figure 4) was
chosen as a lead structure for further modifications and a new series of alkyl derivatives was
designed (Figure 4), synthesized, and pharmacologically evaluated in vitro for human H4R
(hH4R) affinities. Next, the complicated pharmacology of previously tested compounds
(i.e., TR7) and the fact that H4R may represent the features of functional selectivity [62]
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encouraged us to expand the scope of the investigation to more than one signal transduction
pathway (cAMP and ß-arrestin). Next, the most promising compound from the new
series was evaluated for toxicity (in HepG2 and SH-SY5Y cells) and artificial membrane
permeability (in PAMPA assay), and finally was tested in in vivo inflammatory pain models
and pruritus models.
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Figure 4. Design of novel histamine H4 receptor ligands.

2. Results and Discussion
2.1. Design of Compounds

Based on our previous research results [61], TR-AF-49 (Figure 4) with a good affinity
for hH4R (Ki = 160 nM), was chosen as the lead structure. This compound proved to
be an antagonist in functional tests (the cellular aequorin-based functional assay and
[35S]GTPγS binding assay) and showed promising analgesic activity in inflammatory
pain models (formalin test, carrageenan-induced inflammation). In the present work, we
designed modifications to this structure: by changing the length of the alkyl chain (mainly
elongation), introducing a double bond into the molecule and replacing the cyclohexane
ring with other cyclic rings (cyclopropane, cyclobutane or cyclopentane) (Figure 2).

2.2. Synthesis of Compounds

Compounds were synthesized as shown in Scheme 1. Commercially unavailable
esters (1a-1i, 1k-1l, 1n-1p, 1r, and 1t) were prepared from proper carboxylic acids to methyl
esters by refluxing in methanol in the presence of sulfuric acid as described previously [61].
Next, crude and commercially available (1j, 1m, 1q and 1s) esters were coupled with TR1
(4-methylpiperazin-1-yl biguanide dihydrochloride) in a freshly prepared sodium methox-
ide as described previously to give desired 1,3,5-triazines 2–21 [44]. For all compounds,
spectral analysis (1H NMR and 13C NMR) and mass spectrometry (LC/MS) confirmed
their structures.

Scheme 1. Synthetic route for target compounds 2–20. Reagents and conditions (i) CH3OH, conc.
H2SO4, rt 24 h; (ii) freshly prepared CH3ONa, rt 2-3 h; TR1, rt, 24–48 h. For R See Tables 1 and 2.

Compound 13 was obtained from commercially available ethyl crotonate (Alfa Ae-
sar 1l). However, the product proved to be not as expected 4-(4-methylpiperazin-1-yl)-6-
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(prop-1-enyl)-1,3,5-triazin-2-amine but 4-(2-methoxypropyl)-6-(4-methylpiperazin-1-yl)-
1,3,5-triazin-2-amine (13) (Scheme 2). The reaction was repeated three times but the product
was the same every time. In these cases, α,β-unsaturated esters reacted via the Michael
addition reaction with sodium methoxide and produced β-methoxylated derivatives. Anal-
ysis of mass spectrometry confirmed the formation of this product with a parent ion
[M + H]+ = 267.23 with one greater than the theoretical mass of M = 266.35 (Scheme 2).
This molecular mass was 33 greater than the mass of the expected structure (Scheme 2).
Further, 1H NMR and COSY NMR spectrum for compound 13 (Supplementary Materials)
confirmed the formation of the predicted structure. A similar observation was made
by Kisanga et al. [63] who also obtained ethyl 3-methoxybutanoate, in methanol but in
the presence of the catalytic amount of the nonionic strong base proazaphosphatrane
(P(i-BuNCH2CH2)3N), which further underwent in that condition transesterification.

Table 1. Structures and in vitro activity of tested alicyclic derivatives.

No
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compounds achieved the high binding affinity of the lead structure TR-AF-49. In compar-

ison with our previous work [61] where an elongation of the chain from methyl to propyl 

resulted in an increase in hH4R affinity (Ki from 2664 nM to 185 nM), present results 

showed that the butyl chain is optimal as further increasing to the pentyl one caused a 

decrease in affinity. 

To sum up, the introduced modifications to the lead TR-AF-49 gave the very potent 

compound 6 (Ki = 63 nM). This compound showed higher affinity than thioperamide but 

worse than JNJ7777120 (Ki = 106 nM, and Ki = 32 nM, respectively [64]). 

  

hH4R a

Ki [nM]
[CI 95%] (n) b

or
(inh. at 1 µM) c

β-arrestin hH4R d

IC50 ± SEM [nM] e

(% of max. Antagonist
Activity

at 10 µM)

cAMP hH4R f

IC50 ± SEM [nM] e

(% of max. Antagonist
Activity

at 10 µM)
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affinity (10 vs. 15 vs. 16 or 19 vs. 20). In contrast, the presence of this bond in compounds 

with branching at the α- and ß-positions slightly increased receptor affinity (17 vs. 11 and 

18 vs. 12). Thus, the presence of the double bond was profitable for the branched deriva-

tives and unprofitable for straight-chain compounds. 

Table 1. Structures and in vitro activity of tested alicyclic derivatives. 

No 

hH4R a  

Ki [nM] 

[CI 95%] (n) b 

or  

(inh. at 1 μM) c 

β-arrestin hH4R d  

IC50 ± SEM [nM] e 

(% of max. Antagonist 

Activity  

at 10 μM) 

cAMP hH4R f  

IC50 ± SEM [nM] e 

(% of max. Antagonist 

Activity  

at 10 μM) 

2 574 [160;2058] (3) 287 ± 30 (96) 847 ± 53 (99) 

3 200 [156;257] (3) 100 ± 15 (87) 104 ± 17 (109) 

4 1237 [250;6115] (2) 68.8 ± 2 (95) 102 ± 2 (95) 

5 432 [128;1452] (3) 101 ± 10 (92) 219 ± 24 (98) 

6 63 [18;214] (3) 10 ± 1 (101) 10 ± 2 (100) 

7 96 [20;450] (3) 14 ± 1 (103) 33 ± 2 (104) 

TR-AF-49 

(Lead) 
160 g [66.6;385] (4) 68 ± 7 (99) 271 ± 11 (98) 

8 4700 h (1) 41 ± 6 (102) 743 ± 30 (98) 

9 (43%) (2) nt i nt i 

JNJ7777120 32 j 56 ± 8 (91) 49 ± 2 (96) 

Thioperamide 106 j 209 ± 40 (102) 453 ± 30 (111) 
a [3H]histamine displacement assay with membrane preparation of Sf9 cells expressing human his-

tamine H4 receptor, co-expressed with G protein Gαi2 and Gβ1γ2 subunits [44]; b Mean values within 

95% confidence intervals (CI), (n) number of performed experiments; c The per cent of inhibition at 

1 µM, mean values of two independent experiments; d LiveBLAzerTM cell-based assay, e mean 

values of 2–5 independent experiments in triplicates ± SEM; f cAMP accumulation assay by LANCE 

Ultra cAMP detection; g data from Łażewska et al. [61]; h data from Grosicki et al. [57]; i nt: not tested; 
j data from Schneider et al. [64].

The exchange of a carbon atom for an oxygen atom similar to the series described 

earlier [61] led to a significant decrease in affinity (12 vs. 13). In this group, none of the 

compounds achieved the high binding affinity of the lead structure TR-AF-49. In compar-

ison with our previous work [61] where an elongation of the chain from methyl to propyl 

resulted in an increase in hH4R affinity (Ki from 2664 nM to 185 nM), present results 

showed that the butyl chain is optimal as further increasing to the pentyl one caused a 

decrease in affinity. 

To sum up, the introduced modifications to the lead TR-AF-49 gave the very potent 

compound 6 (Ki = 63 nM). This compound showed higher affinity than thioperamide but 

worse than JNJ7777120 (Ki = 106 nM, and Ki = 32 nM, respectively [64]). 

574 [160;2058] (3) 287 ± 30 (96) 847 ± 53 (99)

3
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affinity (10 vs. 15 vs. 16 or 19 vs. 20). In contrast, the presence of this bond in compounds 

with branching at the α- and ß-positions slightly increased receptor affinity (17 vs. 11 and 

18 vs. 12). Thus, the presence of the double bond was profitable for the branched deriva-

tives and unprofitable for straight-chain compounds. 

Table 1. Structures and in vitro activity of tested alicyclic derivatives. 

No 

hH4R a  

Ki [nM] 

[CI 95%] (n) b 

or  

(inh. at 1 μM) c 

β-arrestin hH4R d  

IC50 ± SEM [nM] e 

(% of max. Antagonist 

Activity  

at 10 μM) 

cAMP hH4R f  

IC50 ± SEM [nM] e 

(% of max. Antagonist 

Activity  

at 10 μM) 

2 574 [160;2058] (3) 287 ± 30 (96) 847 ± 53 (99) 

3 200 [156;257] (3) 100 ± 15 (87) 104 ± 17 (109) 

4 1237 [250;6115] (2) 68.8 ± 2 (95) 102 ± 2 (95) 

5 432 [128;1452] (3) 101 ± 10 (92) 219 ± 24 (98) 

6 63 [18;214] (3) 10 ± 1 (101) 10 ± 2 (100) 

7 96 [20;450] (3) 14 ± 1 (103) 33 ± 2 (104) 

TR-AF-49 

(Lead) 
160 g [66.6;385] (4) 68 ± 7 (99) 271 ± 11 (98) 

8 4700 h (1) 41 ± 6 (102) 743 ± 30 (98) 

9 (43%) (2) nt i nt i 

JNJ7777120 32 j 56 ± 8 (91) 49 ± 2 (96) 

Thioperamide 106 j 209 ± 40 (102) 453 ± 30 (111) 
a [3H]histamine displacement assay with membrane preparation of Sf9 cells expressing human his-

tamine H4 receptor, co-expressed with G protein Gαi2 and Gβ1γ2 subunits [44]; b Mean values within 

95% confidence intervals (CI), (n) number of performed experiments; c The per cent of inhibition at 

1 µM, mean values of two independent experiments; d LiveBLAzerTM cell-based assay, e mean 

values of 2–5 independent experiments in triplicates ± SEM; f cAMP accumulation assay by LANCE 

Ultra cAMP detection; g data from Łażewska et al. [61]; h data from Grosicki et al. [57]; i nt: not tested; 
j data from Schneider et al. [64].

The exchange of a carbon atom for an oxygen atom similar to the series described 

earlier [61] led to a significant decrease in affinity (12 vs. 13). In this group, none of the 

compounds achieved the high binding affinity of the lead structure TR-AF-49. In compar-

ison with our previous work [61] where an elongation of the chain from methyl to propyl 

resulted in an increase in hH4R affinity (Ki from 2664 nM to 185 nM), present results 

showed that the butyl chain is optimal as further increasing to the pentyl one caused a 

decrease in affinity. 

To sum up, the introduced modifications to the lead TR-AF-49 gave the very potent 

compound 6 (Ki = 63 nM). This compound showed higher affinity than thioperamide but 

worse than JNJ7777120 (Ki = 106 nM, and Ki = 32 nM, respectively [64]). 

200 [156;257] (3) 100 ± 15 (87) 104 ± 17 (109)

4
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affinity (10 vs. 15 vs. 16 or 19 vs. 20). In contrast, the presence of this bond in compounds 

with branching at the α- and ß-positions slightly increased receptor affinity (17 vs. 11 and 

18 vs. 12). Thus, the presence of the double bond was profitable for the branched deriva-

tives and unprofitable for straight-chain compounds. 

Table 1. Structures and in vitro activity of tested alicyclic derivatives. 

No 

hH4R a  

Ki [nM] 

[CI 95%] (n) b 

or  

(inh. at 1 μM) c 

β-arrestin hH4R d  

IC50 ± SEM [nM] e 

(% of max. Antagonist 

Activity  

at 10 μM) 

cAMP hH4R f  

IC50 ± SEM [nM] e 

(% of max. Antagonist 

Activity  

at 10 μM) 

2 574 [160;2058] (3) 287 ± 30 (96) 847 ± 53 (99) 

3 200 [156;257] (3) 100 ± 15 (87) 104 ± 17 (109) 

4 1237 [250;6115] (2) 68.8 ± 2 (95) 102 ± 2 (95) 

5 432 [128;1452] (3) 101 ± 10 (92) 219 ± 24 (98) 

6 63 [18;214] (3) 10 ± 1 (101) 10 ± 2 (100) 

7 96 [20;450] (3) 14 ± 1 (103) 33 ± 2 (104) 

TR-AF-49 

(Lead) 
160 g [66.6;385] (4) 68 ± 7 (99) 271 ± 11 (98) 

8 4700 h (1) 41 ± 6 (102) 743 ± 30 (98) 

9 (43%) (2) nt i nt i 

JNJ7777120 32 j 56 ± 8 (91) 49 ± 2 (96) 

Thioperamide 106 j 209 ± 40 (102) 453 ± 30 (111) 
a [3H]histamine displacement assay with membrane preparation of Sf9 cells expressing human his-

tamine H4 receptor, co-expressed with G protein Gαi2 and Gβ1γ2 subunits [44]; b Mean values within 

95% confidence intervals (CI), (n) number of performed experiments; c The per cent of inhibition at 

1 µM, mean values of two independent experiments; d LiveBLAzerTM cell-based assay, e mean 

values of 2–5 independent experiments in triplicates ± SEM; f cAMP accumulation assay by LANCE 

Ultra cAMP detection; g data from Łażewska et al. [61]; h data from Grosicki et al. [57]; i nt: not tested; 
j data from Schneider et al. [64].

The exchange of a carbon atom for an oxygen atom similar to the series described 

earlier [61] led to a significant decrease in affinity (12 vs. 13). In this group, none of the 

compounds achieved the high binding affinity of the lead structure TR-AF-49. In compar-

ison with our previous work [61] where an elongation of the chain from methyl to propyl 

resulted in an increase in hH4R affinity (Ki from 2664 nM to 185 nM), present results 

showed that the butyl chain is optimal as further increasing to the pentyl one caused a 

decrease in affinity. 

To sum up, the introduced modifications to the lead TR-AF-49 gave the very potent 

compound 6 (Ki = 63 nM). This compound showed higher affinity than thioperamide but 

worse than JNJ7777120 (Ki = 106 nM, and Ki = 32 nM, respectively [64]). 

1237 [250;6115] (2) 68.8 ± 2 (95) 102 ± 2 (95)
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affinity (10 vs. 15 vs. 16 or 19 vs. 20). In contrast, the presence of this bond in compounds 

with branching at the α- and ß-positions slightly increased receptor affinity (17 vs. 11 and 

18 vs. 12). Thus, the presence of the double bond was profitable for the branched deriva-

tives and unprofitable for straight-chain compounds. 

Table 1. Structures and in vitro activity of tested alicyclic derivatives. 

No 

hH4R a  

Ki [nM] 

[CI 95%] (n) b 

or  

(inh. at 1 μM) c 

β-arrestin hH4R d  

IC50 ± SEM [nM] e 

(% of max. Antagonist 

Activity  

at 10 μM) 

cAMP hH4R f  

IC50 ± SEM [nM] e 

(% of max. Antagonist 

Activity  

at 10 μM) 

2 574 [160;2058] (3) 287 ± 30 (96) 847 ± 53 (99) 

3 200 [156;257] (3) 100 ± 15 (87) 104 ± 17 (109) 

4 1237 [250;6115] (2) 68.8 ± 2 (95) 102 ± 2 (95) 

5 432 [128;1452] (3) 101 ± 10 (92) 219 ± 24 (98) 

6 63 [18;214] (3) 10 ± 1 (101) 10 ± 2 (100) 

7 96 [20;450] (3) 14 ± 1 (103) 33 ± 2 (104) 

TR-AF-49 

(Lead) 
160 g [66.6;385] (4) 68 ± 7 (99) 271 ± 11 (98) 

8 4700 h (1) 41 ± 6 (102) 743 ± 30 (98) 

9 (43%) (2) nt i nt i 

JNJ7777120 32 j 56 ± 8 (91) 49 ± 2 (96) 

Thioperamide 106 j 209 ± 40 (102) 453 ± 30 (111) 
a [3H]histamine displacement assay with membrane preparation of Sf9 cells expressing human his-

tamine H4 receptor, co-expressed with G protein Gαi2 and Gβ1γ2 subunits [44]; b Mean values within 

95% confidence intervals (CI), (n) number of performed experiments; c The per cent of inhibition at 

1 µM, mean values of two independent experiments; d LiveBLAzerTM cell-based assay, e mean 

values of 2–5 independent experiments in triplicates ± SEM; f cAMP accumulation assay by LANCE 

Ultra cAMP detection; g data from Łażewska et al. [61]; h data from Grosicki et al. [57]; i nt: not tested; 
j data from Schneider et al. [64].

The exchange of a carbon atom for an oxygen atom similar to the series described 

earlier [61] led to a significant decrease in affinity (12 vs. 13). In this group, none of the 

compounds achieved the high binding affinity of the lead structure TR-AF-49. In compar-

ison with our previous work [61] where an elongation of the chain from methyl to propyl 

resulted in an increase in hH4R affinity (Ki from 2664 nM to 185 nM), present results 

showed that the butyl chain is optimal as further increasing to the pentyl one caused a 

decrease in affinity. 

To sum up, the introduced modifications to the lead TR-AF-49 gave the very potent 

compound 6 (Ki = 63 nM). This compound showed higher affinity than thioperamide but 

worse than JNJ7777120 (Ki = 106 nM, and Ki = 32 nM, respectively [64]). 

432 [128;1452] (3) 101 ± 10 (92) 219 ± 24 (98)
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affinity (10 vs. 15 vs. 16 or 19 vs. 20). In contrast, the presence of this bond in compounds 

with branching at the α- and ß-positions slightly increased receptor affinity (17 vs. 11 and 

18 vs. 12). Thus, the presence of the double bond was profitable for the branched deriva-

tives and unprofitable for straight-chain compounds. 

Table 1. Structures and in vitro activity of tested alicyclic derivatives. 

No 

hH4R a  

Ki [nM] 

[CI 95%] (n) b 

or  

(inh. at 1 μM) c 

β-arrestin hH4R d  

IC50 ± SEM [nM] e 

(% of max. Antagonist 

Activity  

at 10 μM) 

cAMP hH4R f  

IC50 ± SEM [nM] e 

(% of max. Antagonist 

Activity  

at 10 μM) 

2 574 [160;2058] (3) 287 ± 30 (96) 847 ± 53 (99) 

3 200 [156;257] (3) 100 ± 15 (87) 104 ± 17 (109) 

4 1237 [250;6115] (2) 68.8 ± 2 (95) 102 ± 2 (95) 

5 432 [128;1452] (3) 101 ± 10 (92) 219 ± 24 (98) 

6 63 [18;214] (3) 10 ± 1 (101) 10 ± 2 (100) 

7 96 [20;450] (3) 14 ± 1 (103) 33 ± 2 (104) 

TR-AF-49 

(Lead) 
160 g [66.6;385] (4) 68 ± 7 (99) 271 ± 11 (98) 

8 4700 h (1) 41 ± 6 (102) 743 ± 30 (98) 

9 (43%) (2) nt i nt i 

JNJ7777120 32 j 56 ± 8 (91) 49 ± 2 (96) 

Thioperamide 106 j 209 ± 40 (102) 453 ± 30 (111) 
a [3H]histamine displacement assay with membrane preparation of Sf9 cells expressing human his-

tamine H4 receptor, co-expressed with G protein Gαi2 and Gβ1γ2 subunits [44]; b Mean values within 

95% confidence intervals (CI), (n) number of performed experiments; c The per cent of inhibition at 

1 µM, mean values of two independent experiments; d LiveBLAzerTM cell-based assay, e mean 

values of 2–5 independent experiments in triplicates ± SEM; f cAMP accumulation assay by LANCE 

Ultra cAMP detection; g data from Łażewska et al. [61]; h data from Grosicki et al. [57]; i nt: not tested; 
j data from Schneider et al. [64].

The exchange of a carbon atom for an oxygen atom similar to the series described 

earlier [61] led to a significant decrease in affinity (12 vs. 13). In this group, none of the 

compounds achieved the high binding affinity of the lead structure TR-AF-49. In compar-

ison with our previous work [61] where an elongation of the chain from methyl to propyl 

resulted in an increase in hH4R affinity (Ki from 2664 nM to 185 nM), present results 

showed that the butyl chain is optimal as further increasing to the pentyl one caused a 

decrease in affinity. 

To sum up, the introduced modifications to the lead TR-AF-49 gave the very potent 

compound 6 (Ki = 63 nM). This compound showed higher affinity than thioperamide but 

worse than JNJ7777120 (Ki = 106 nM, and Ki = 32 nM, respectively [64]). 

63 [18;214] (3) 10 ± 1 (101) 10 ± 2 (100)
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affinity (10 vs. 15 vs. 16 or 19 vs. 20). In contrast, the presence of this bond in compounds 

with branching at the α- and ß-positions slightly increased receptor affinity (17 vs. 11 and 

18 vs. 12). Thus, the presence of the double bond was profitable for the branched deriva-

tives and unprofitable for straight-chain compounds. 

Table 1. Structures and in vitro activity of tested alicyclic derivatives. 

No 

hH4R a  

Ki [nM] 

[CI 95%] (n) b 

or  

(inh. at 1 μM) c 

β-arrestin hH4R d  

IC50 ± SEM [nM] e 

(% of max. Antagonist 

Activity  

at 10 μM) 

cAMP hH4R f  

IC50 ± SEM [nM] e 

(% of max. Antagonist 

Activity  

at 10 μM) 

2 574 [160;2058] (3) 287 ± 30 (96) 847 ± 53 (99) 

3 200 [156;257] (3) 100 ± 15 (87) 104 ± 17 (109) 

4 1237 [250;6115] (2) 68.8 ± 2 (95) 102 ± 2 (95) 

5 432 [128;1452] (3) 101 ± 10 (92) 219 ± 24 (98) 

6 63 [18;214] (3) 10 ± 1 (101) 10 ± 2 (100) 

7 96 [20;450] (3) 14 ± 1 (103) 33 ± 2 (104) 

TR-AF-49 

(Lead) 
160 g [66.6;385] (4) 68 ± 7 (99) 271 ± 11 (98) 

8 4700 h (1) 41 ± 6 (102) 743 ± 30 (98) 

9 (43%) (2) nt i nt i 

JNJ7777120 32 j 56 ± 8 (91) 49 ± 2 (96) 

Thioperamide 106 j 209 ± 40 (102) 453 ± 30 (111) 
a [3H]histamine displacement assay with membrane preparation of Sf9 cells expressing human his-

tamine H4 receptor, co-expressed with G protein Gαi2 and Gβ1γ2 subunits [44]; b Mean values within 

95% confidence intervals (CI), (n) number of performed experiments; c The per cent of inhibition at 

1 µM, mean values of two independent experiments; d LiveBLAzerTM cell-based assay, e mean 

values of 2–5 independent experiments in triplicates ± SEM; f cAMP accumulation assay by LANCE 

Ultra cAMP detection; g data from Łażewska et al. [61]; h data from Grosicki et al. [57]; i nt: not tested; 
j data from Schneider et al. [64].

The exchange of a carbon atom for an oxygen atom similar to the series described 

earlier [61] led to a significant decrease in affinity (12 vs. 13). In this group, none of the 

compounds achieved the high binding affinity of the lead structure TR-AF-49. In compar-

ison with our previous work [61] where an elongation of the chain from methyl to propyl 

resulted in an increase in hH4R affinity (Ki from 2664 nM to 185 nM), present results 

showed that the butyl chain is optimal as further increasing to the pentyl one caused a 

decrease in affinity. 

To sum up, the introduced modifications to the lead TR-AF-49 gave the very potent 

compound 6 (Ki = 63 nM). This compound showed higher affinity than thioperamide but 

worse than JNJ7777120 (Ki = 106 nM, and Ki = 32 nM, respectively [64]). 

96 [20;450] (3) 14 ± 1 (103) 33 ± 2 (104)

TR-AF-49
(Lead)
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affinity (10 vs. 15 vs. 16 or 19 vs. 20). In contrast, the presence of this bond in compounds 

with branching at the α- and ß-positions slightly increased receptor affinity (17 vs. 11 and 

18 vs. 12). Thus, the presence of the double bond was profitable for the branched deriva-

tives and unprofitable for straight-chain compounds. 

Table 1. Structures and in vitro activity of tested alicyclic derivatives. 

No 

hH4R a  

Ki [nM] 

[CI 95%] (n) b 

or  

(inh. at 1 μM) c 

β-arrestin hH4R d  

IC50 ± SEM [nM] e 

(% of max. Antagonist 

Activity  

at 10 μM) 

cAMP hH4R f  

IC50 ± SEM [nM] e 

(% of max. Antagonist 

Activity  

at 10 μM) 

2 574 [160;2058] (3) 287 ± 30 (96) 847 ± 53 (99) 

3 200 [156;257] (3) 100 ± 15 (87) 104 ± 17 (109) 

4 1237 [250;6115] (2) 68.8 ± 2 (95) 102 ± 2 (95) 

5 432 [128;1452] (3) 101 ± 10 (92) 219 ± 24 (98) 

6 63 [18;214] (3) 10 ± 1 (101) 10 ± 2 (100) 

7 96 [20;450] (3) 14 ± 1 (103) 33 ± 2 (104) 

TR-AF-49 

(Lead) 
160 g [66.6;385] (4) 68 ± 7 (99) 271 ± 11 (98) 

8 4700 h (1) 41 ± 6 (102) 743 ± 30 (98) 

9 (43%) (2) nt i nt i 

JNJ7777120 32 j 56 ± 8 (91) 49 ± 2 (96) 

Thioperamide 106 j 209 ± 40 (102) 453 ± 30 (111) 
a [3H]histamine displacement assay with membrane preparation of Sf9 cells expressing human his-

tamine H4 receptor, co-expressed with G protein Gαi2 and Gβ1γ2 subunits [44]; b Mean values within 

95% confidence intervals (CI), (n) number of performed experiments; c The per cent of inhibition at 

1 µM, mean values of two independent experiments; d LiveBLAzerTM cell-based assay, e mean 

values of 2–5 independent experiments in triplicates ± SEM; f cAMP accumulation assay by LANCE 

Ultra cAMP detection; g data from Łażewska et al. [61]; h data from Grosicki et al. [57]; i nt: not tested; 
j data from Schneider et al. [64].

The exchange of a carbon atom for an oxygen atom similar to the series described 

earlier [61] led to a significant decrease in affinity (12 vs. 13). In this group, none of the 

compounds achieved the high binding affinity of the lead structure TR-AF-49. In compar-

ison with our previous work [61] where an elongation of the chain from methyl to propyl 

resulted in an increase in hH4R affinity (Ki from 2664 nM to 185 nM), present results 

showed that the butyl chain is optimal as further increasing to the pentyl one caused a 

decrease in affinity. 

To sum up, the introduced modifications to the lead TR-AF-49 gave the very potent 

compound 6 (Ki = 63 nM). This compound showed higher affinity than thioperamide but 

worse than JNJ7777120 (Ki = 106 nM, and Ki = 32 nM, respectively [64]). 

160 g [66.6;385] (4) 68 ± 7 (99) 271 ± 11 (98)
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affinity (10 vs. 15 vs. 16 or 19 vs. 20). In contrast, the presence of this bond in compounds 

with branching at the α- and ß-positions slightly increased receptor affinity (17 vs. 11 and 

18 vs. 12). Thus, the presence of the double bond was profitable for the branched deriva-

tives and unprofitable for straight-chain compounds. 

Table 1. Structures and in vitro activity of tested alicyclic derivatives. 

No 

hH4R a  

Ki [nM] 

[CI 95%] (n) b 

or  

(inh. at 1 μM) c 

β-arrestin hH4R d  

IC50 ± SEM [nM] e 

(% of max. Antagonist 

Activity  

at 10 μM) 

cAMP hH4R f  

IC50 ± SEM [nM] e 

(% of max. Antagonist 

Activity  

at 10 μM) 

2 574 [160;2058] (3) 287 ± 30 (96) 847 ± 53 (99) 

3 200 [156;257] (3) 100 ± 15 (87) 104 ± 17 (109) 

4 1237 [250;6115] (2) 68.8 ± 2 (95) 102 ± 2 (95) 

5 432 [128;1452] (3) 101 ± 10 (92) 219 ± 24 (98) 

6 63 [18;214] (3) 10 ± 1 (101) 10 ± 2 (100) 

7 96 [20;450] (3) 14 ± 1 (103) 33 ± 2 (104) 

TR-AF-49 

(Lead) 
160 g [66.6;385] (4) 68 ± 7 (99) 271 ± 11 (98) 

8 4700 h (1) 41 ± 6 (102) 743 ± 30 (98) 

9 (43%) (2) nt i nt i 

JNJ7777120 32 j 56 ± 8 (91) 49 ± 2 (96) 

Thioperamide 106 j 209 ± 40 (102) 453 ± 30 (111) 
a [3H]histamine displacement assay with membrane preparation of Sf9 cells expressing human his-

tamine H4 receptor, co-expressed with G protein Gαi2 and Gβ1γ2 subunits [44]; b Mean values within 

95% confidence intervals (CI), (n) number of performed experiments; c The per cent of inhibition at 

1 µM, mean values of two independent experiments; d LiveBLAzerTM cell-based assay, e mean 

values of 2–5 independent experiments in triplicates ± SEM; f cAMP accumulation assay by LANCE 

Ultra cAMP detection; g data from Łażewska et al. [61]; h data from Grosicki et al. [57]; i nt: not tested; 
j data from Schneider et al. [64].

The exchange of a carbon atom for an oxygen atom similar to the series described 

earlier [61] led to a significant decrease in affinity (12 vs. 13). In this group, none of the 

compounds achieved the high binding affinity of the lead structure TR-AF-49. In compar-

ison with our previous work [61] where an elongation of the chain from methyl to propyl 

resulted in an increase in hH4R affinity (Ki from 2664 nM to 185 nM), present results 

showed that the butyl chain is optimal as further increasing to the pentyl one caused a 

decrease in affinity. 

To sum up, the introduced modifications to the lead TR-AF-49 gave the very potent 

compound 6 (Ki = 63 nM). This compound showed higher affinity than thioperamide but 

worse than JNJ7777120 (Ki = 106 nM, and Ki = 32 nM, respectively [64]). 

4700 h (1) 41 ± 6 (102) 743 ± 30 (98)
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affinity (10 vs. 15 vs. 16 or 19 vs. 20). In contrast, the presence of this bond in compounds 

with branching at the α- and ß-positions slightly increased receptor affinity (17 vs. 11 and 

18 vs. 12). Thus, the presence of the double bond was profitable for the branched deriva-

tives and unprofitable for straight-chain compounds. 

Table 1. Structures and in vitro activity of tested alicyclic derivatives. 

No 

 

hH4R a  

Ki [nM] 

[CI 95%] (n) b 

or  

(inh. at 1 μM) c 

β-arrestin hH4R d  

IC50 ± SEM [nM] e 

(% of max. Antagonist 

Activity  

at 10 μM) 

cAMP hH4R f  

IC50 ± SEM [nM] e 

(% of max. Antagonist 

Activity  

at 10 μM) 

2 
 

574 [160;2058] (3) 287 ± 30 (96) 847 ± 53 (99) 

3 
 

200 [156;257] (3) 100 ± 15 (87) 104 ± 17 (109) 

4 
 

1237 [250;6115] (2) 68.8 ± 2 (95) 102 ± 2 (95) 

5 
 

432 [128;1452] (3) 101 ± 10 (92) 219 ± 24 (98) 

6 
 

63 [18;214] (3) 10 ± 1 (101) 10 ± 2 (100)  

7 
 

96 [20;450] (3) 14 ± 1 (103) 33 ± 2 (104) 

TR-AF-49  

(Lead)  
160 g [66.6;385] (4) 68 ± 7 (99) 271 ± 11 (98) 

8 
 

4700 h (1) 41 ± 6 (102) 743 ± 30 (98) 

9 
 

(43%) (2) nt i nt i 

JNJ7777120 32 j 56 ± 8 (91) 49 ± 2 (96) 

Thioperamide 106 j 209 ± 40 (102) 453 ± 30 (111) 
a [3H]histamine displacement assay with membrane preparation of Sf9 cells expressing human his-

tamine H4 receptor, co-expressed with G protein Gαi2 and Gβ1γ2 subunits [44]; b Mean values within 

95% confidence intervals (CI), (n) number of performed experiments; c The per cent of inhibition at 

1 µM, mean values of two independent experiments; d LiveBLAzerTM cell-based assay, e mean 

values of 2–5 independent experiments in triplicates ± SEM; f cAMP accumulation assay by LANCE 

Ultra cAMP detection; g data from Łażewska et al. [61]; h data from Grosicki et al. [57]; i nt: not tested; 
j data from Schneider et al. [64]. 

The exchange of a carbon atom for an oxygen atom similar to the series described 

earlier [61] led to a significant decrease in affinity (12 vs. 13). In this group, none of the 

compounds achieved the high binding affinity of the lead structure TR-AF-49. In compar-

ison with our previous work [61] where an elongation of the chain from methyl to propyl 

resulted in an increase in hH4R affinity (Ki from 2664 nM to 185 nM), present results 

showed that the butyl chain is optimal as further increasing to the pentyl one caused a 

decrease in affinity. 

To sum up, the introduced modifications to the lead TR-AF-49 gave the very potent 

compound 6 (Ki = 63 nM). This compound showed higher affinity than thioperamide but 

worse than JNJ7777120 (Ki = 106 nM, and Ki = 32 nM, respectively [64]). 

  

(43%) (2) nt i nt i

JNJ7777120 32 j 56 ± 8 (91) 49 ± 2 (96)
Thioperamide 106 j 209 ± 40 (102) 453 ± 30 (111)

a [3H]histamine displacement assay with membrane preparation of Sf 9 cells expressing human histamine H4
receptor, co-expressed with G protein Gαi2 and Gβ1γ2 subunits [44]; b Mean values within 95% confidence
intervals (CI), (n) number of performed experiments; c The per cent of inhibition at 1 µM, mean values of two
independent experiments; d LiveBLAzerTM cell-based assay, e mean values of 2–5 independent experiments in
triplicates ± SEM; f cAMP accumulation assay by LANCE Ultra cAMP detection; g data from Łażewska et al. [61];
h data from Grosicki et al. [57]; i nt: not tested; j data from Schneider et al. [64].
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Table 2. Structures and in vitro activity of tested aliphatic derivatives.

No
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Table 2. Structures and in vitro activity of tested aliphatic derivatives. 

No 

 

hH4R Ki [nM] a 

x̅ [CI 95%] (n) b 

or  

(inh. at 1 μM) c 

hH4R β-arrestin d 

IC50 ± SEM [nM] e 

(% of max. Antagonist Activ-

ity  

at 10 μM) 

hH4R cAMP f 

IC50 ± SEM [nM] e 

(% of max. Antagonist Ac-

tivity  

at 10 μM) 

10  192 [42;874] (4) 82 ± 5 (96) 445 ± 10 (105) 

11 
 

353 [275;454] (3) 97 ± 16 (97) 640 ± 49 (100) 

12 
 

321 [127;814] (3) 38 ± 7 (100) 132 ± 9 (111) 

13 
 

4264 [2074;8767] (2) nt g nt g 

14 
 

203 [69;601] (3) 24 ± 3 (101) 43 ± 17 (107) 

15  1490 [489;4538] (3) nt g nt g 

16  319 [223;458] (3) 146 ± 38 (94) 635 ± 123 (104) 

17 
 

263 [112;617] (3) 744 ± 139 (92) 721 ± 70 (94) 

18 
 

262 [91;756] (3) 66.6 ± 3 (101) 188 ± 45 (104) 

19  393 [224;688] (3) 34.9 ± 7 (99) 419 ± 77 (97) 

20  (6%) (3) 376 ± 9 (101) nt g 
a [3H]histamine displacement assay with membrane preparation of Sf9 cells expressing human his-

tamine H4 receptor, co-expressed with G protein Gαi2 and Gβ1γ2 subunits [44]; b mean values within 

95% confidence intervals (CI), (n) number of performed experiments; c the percent of inhibition at 1 

µM, mean values of at least two independent experiments; d LiveBLAzerTM cell-based assay; e mean 

values of 2–5 independent experiments in triplicates ± SEM; f cAMP accumulation assay by LANCE 

Ultra cAMP detection; g nt—not tested. 

2.3.2. Functional Characterization in β-Arrestin Recruitment Assay 

β-Arrestin recruitment assay was performed only for the ligands that had Ki < 1 µM 

in the binding assay (except compound 3: Ki = 1247 nM) (Tables 1 and 2). Compounds 

were tested using LiveBLAzerTM assay and Tango-H4-bla U2OS cells, allowing the estima-

tion of the percentage of β-arrestin recruitment in response to tested treatments. 

Compounds were tested in agonist and antagonist mode of the assay and all showed 

antagonistic properties. 

For alicyclic derivatives (Table 1) we observed a similar structure–activity relation-

ship as in the case of hH4R binding affinity evaluation: 4-, 5- and 6-membered alicyclic 

moieties showed better activity in the β-arrestin recruitment assay than 3-membered (3–5 

vs. 2) compound. The presence of a methylene linker between the alicyclic ring and the 

triazine scaffold improved the activity (6 vs. 4 and TR-AF-49 vs. 5). Addition of a double 

bond slightly improved activity only in the cyclohexylene derivative (compare TR-AF-49 

vs. 8). 

The 5-membered ring compounds, 6 and 7, (without or with the double bond) most 

potently blocked the histamine-induced β-arrestin recruitment. In that particular assay 

conditions, these compounds performed better (IC50 < 15 nM) than JNJ7777120 (IC50 = 56 

nM). 

For aliphatic derivatives (Table 2) addition of the methyl group in the β- or γ-position, 

or elongation of the carbon chain (from butyl to pentyl) resulted in more active antagonists 

(12, 14, 19 vs. 10). Presence of the unsaturated bond at the chain diminished the activity 

(10 vs. 16, 12 vs. 18, 19 vs. 20). The most active compound 14 with an IC50 of 24 nM also 

showed better activity than JNJ7777120 (IC50 = 56 nM). 

  

hH4R Ki [nM] a

−
x [CI 95%] (n) b

or
(inh. at 1 µM) c

hH4R β-arrestin d

IC50 ± SEM [nM] e

(% of max. Antagonist Activity
at 10 µM)

hH4R cAMP f

IC50 ± SEM [nM] e

(% of max. Antagonist Activity
at 10 µM)

10
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Table 2. Structures and in vitro activity of tested aliphatic derivatives. 

No 

hH4R Ki [nM] a 

x̅ [CI 95%] (n) b 

or  

(inh. at 1 μM) c 

hH4R β-arrestin d 

IC50 ± SEM [nM] e 

(% of max. Antagonist Activ-

ity  

at 10 μM) 

hH4R cAMP f 

IC50 ± SEM [nM] e 

(% of max. Antagonist Ac-

tivity  

at 10 μM) 

10 192 [42;874] (4) 82 ± 5 (96) 445 ± 10 (105) 

11 353 [275;454] (3) 97 ± 16 (97) 640 ± 49 (100) 

12 321 [127;814] (3) 38 ± 7 (100) 132 ± 9 (111) 

13 4264 [2074;8767] (2) nt g nt g 

14 203 [69;601] (3) 24 ± 3 (101) 43 ± 17 (107) 

15 1490 [489;4538] (3) nt g nt g 

16 319 [223;458] (3) 146 ± 38 (94) 635 ± 123 (104) 

17 263 [112;617] (3) 744 ± 139 (92) 721 ± 70 (94) 

18 262 [91;756] (3) 66.6 ± 3 (101) 188 ± 45 (104) 

19 393 [224;688] (3) 34.9 ± 7 (99) 419 ± 77 (97) 

20 (6%) (3) 376 ± 9 (101) nt g 
a [3H]histamine displacement assay with membrane preparation of Sf9 cells expressing human his-

tamine H4 receptor, co-expressed with G protein Gαi2 and Gβ1γ2 subunits [44]; b mean values within 

95% confidence intervals (CI), (n) number of performed experiments; c the percent of inhibition at 1 

µM, mean values of at least two independent experiments; d LiveBLAzerTM cell-based assay; e mean 

values of 2–5 independent experiments in triplicates ± SEM; f cAMP accumulation assay by LANCE 

Ultra cAMP detection; g nt—not tested. 

2.3.2. Functional Characterization in β-Arrestin Recruitment Assay 

β-Arrestin recruitment assay was performed only for the ligands that had Ki < 1 µM 

in the binding assay (except compound 3: Ki = 1247 nM) (Tables 1 and 2). Compounds 

were tested using LiveBLAzerTM assay and Tango-H4-bla U2OS cells, allowing the estima-

tion of the percentage of β-arrestin recruitment in response to tested treatments. 

Compounds were tested in agonist and antagonist mode of the assay and all showed 

antagonistic properties. 

For alicyclic derivatives (Table 1) we observed a similar structure–activity relation-

ship as in the case of hH4R binding affinity evaluation: 4-, 5- and 6-membered alicyclic 

moieties showed better activity in the β-arrestin recruitment assay than 3-membered (3–5 

vs. 2) compound. The presence of a methylene linker between the alicyclic ring and the 

triazine scaffold improved the activity (6 vs. 4 and TR-AF-49 vs. 5). Addition of a double 

bond slightly improved activity only in the cyclohexylene derivative (compare TR-AF-49 

vs. 8). 

The 5-membered ring compounds, 6 and 7, (without or with the double bond) most 

potently blocked the histamine-induced β-arrestin recruitment. In that particular assay 

conditions, these compounds performed better (IC50 < 15 nM) than JNJ7777120 (IC50 = 56 

nM). 

For aliphatic derivatives (Table 2) addition of the methyl group in the β- or γ-position, 

or elongation of the carbon chain (from butyl to pentyl) resulted in more active antagonists 

(12, 14, 19 vs. 10). Presence of the unsaturated bond at the chain diminished the activity 

(10 vs. 16, 12 vs. 18, 19 vs. 20). The most active compound 14 with an IC50 of 24 nM also 

showed better activity than JNJ7777120 (IC50 = 56 nM). 

192 [42;874] (4) 82 ± 5 (96) 445 ± 10 (105)
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Table 2. Structures and in vitro activity of tested aliphatic derivatives. 

No 

hH4R Ki [nM] a 

x̅ [CI 95%] (n) b 

or  

(inh. at 1 μM) c 

hH4R β-arrestin d 

IC50 ± SEM [nM] e 

(% of max. Antagonist Activ-

ity  

at 10 μM) 

hH4R cAMP f 

IC50 ± SEM [nM] e 

(% of max. Antagonist Ac-

tivity  

at 10 μM) 

10 192 [42;874] (4) 82 ± 5 (96) 445 ± 10 (105) 

11 353 [275;454] (3) 97 ± 16 (97) 640 ± 49 (100) 

12 321 [127;814] (3) 38 ± 7 (100) 132 ± 9 (111) 

13 4264 [2074;8767] (2) nt g nt g 

14 203 [69;601] (3) 24 ± 3 (101) 43 ± 17 (107) 

15 1490 [489;4538] (3) nt g nt g 

16 319 [223;458] (3) 146 ± 38 (94) 635 ± 123 (104) 

17 263 [112;617] (3) 744 ± 139 (92) 721 ± 70 (94) 

18 262 [91;756] (3) 66.6 ± 3 (101) 188 ± 45 (104) 

19 393 [224;688] (3) 34.9 ± 7 (99) 419 ± 77 (97) 

20 (6%) (3) 376 ± 9 (101) nt g 
a [3H]histamine displacement assay with membrane preparation of Sf9 cells expressing human his-

tamine H4 receptor, co-expressed with G protein Gαi2 and Gβ1γ2 subunits [44]; b mean values within 

95% confidence intervals (CI), (n) number of performed experiments; c the percent of inhibition at 1 

µM, mean values of at least two independent experiments; d LiveBLAzerTM cell-based assay; e mean 

values of 2–5 independent experiments in triplicates ± SEM; f cAMP accumulation assay by LANCE 

Ultra cAMP detection; g nt—not tested. 

2.3.2. Functional Characterization in β-Arrestin Recruitment Assay 

β-Arrestin recruitment assay was performed only for the ligands that had Ki < 1 µM 

in the binding assay (except compound 3: Ki = 1247 nM) (Tables 1 and 2). Compounds 

were tested using LiveBLAzerTM assay and Tango-H4-bla U2OS cells, allowing the estima-

tion of the percentage of β-arrestin recruitment in response to tested treatments. 

Compounds were tested in agonist and antagonist mode of the assay and all showed 

antagonistic properties. 

For alicyclic derivatives (Table 1) we observed a similar structure–activity relation-

ship as in the case of hH4R binding affinity evaluation: 4-, 5- and 6-membered alicyclic 

moieties showed better activity in the β-arrestin recruitment assay than 3-membered (3–5 

vs. 2) compound. The presence of a methylene linker between the alicyclic ring and the 

triazine scaffold improved the activity (6 vs. 4 and TR-AF-49 vs. 5). Addition of a double 

bond slightly improved activity only in the cyclohexylene derivative (compare TR-AF-49 

vs. 8). 

The 5-membered ring compounds, 6 and 7, (without or with the double bond) most 

potently blocked the histamine-induced β-arrestin recruitment. In that particular assay 

conditions, these compounds performed better (IC50 < 15 nM) than JNJ7777120 (IC50 = 56 

nM). 

For aliphatic derivatives (Table 2) addition of the methyl group in the β- or γ-position, 

or elongation of the carbon chain (from butyl to pentyl) resulted in more active antagonists 

(12, 14, 19 vs. 10). Presence of the unsaturated bond at the chain diminished the activity 

(10 vs. 16, 12 vs. 18, 19 vs. 20). The most active compound 14 with an IC50 of 24 nM also 

showed better activity than JNJ7777120 (IC50 = 56 nM). 

353 [275;454] (3) 97 ± 16 (97) 640 ± 49 (100)
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Table 2. Structures and in vitro activity of tested aliphatic derivatives. 

No 

hH4R Ki [nM] a 

x̅ [CI 95%] (n) b 

or  

(inh. at 1 μM) c 

hH4R β-arrestin d 

IC50 ± SEM [nM] e 

(% of max. Antagonist Activ-

ity  

at 10 μM) 

hH4R cAMP f 

IC50 ± SEM [nM] e 

(% of max. Antagonist Ac-

tivity  

at 10 μM) 

10 192 [42;874] (4) 82 ± 5 (96) 445 ± 10 (105) 

11 353 [275;454] (3) 97 ± 16 (97) 640 ± 49 (100) 

12 321 [127;814] (3) 38 ± 7 (100) 132 ± 9 (111) 

13 4264 [2074;8767] (2) nt g nt g 

14 203 [69;601] (3) 24 ± 3 (101) 43 ± 17 (107) 

15 1490 [489;4538] (3) nt g nt g 

16 319 [223;458] (3) 146 ± 38 (94) 635 ± 123 (104) 

17 263 [112;617] (3) 744 ± 139 (92) 721 ± 70 (94) 

18 262 [91;756] (3) 66.6 ± 3 (101) 188 ± 45 (104) 

19 393 [224;688] (3) 34.9 ± 7 (99) 419 ± 77 (97) 

20 (6%) (3) 376 ± 9 (101) nt g 
a [3H]histamine displacement assay with membrane preparation of Sf9 cells expressing human his-

tamine H4 receptor, co-expressed with G protein Gαi2 and Gβ1γ2 subunits [44]; b mean values within 

95% confidence intervals (CI), (n) number of performed experiments; c the percent of inhibition at 1 

µM, mean values of at least two independent experiments; d LiveBLAzerTM cell-based assay; e mean 

values of 2–5 independent experiments in triplicates ± SEM; f cAMP accumulation assay by LANCE 

Ultra cAMP detection; g nt—not tested. 

2.3.2. Functional Characterization in β-Arrestin Recruitment Assay 

β-Arrestin recruitment assay was performed only for the ligands that had Ki < 1 µM 

in the binding assay (except compound 3: Ki = 1247 nM) (Tables 1 and 2). Compounds 

were tested using LiveBLAzerTM assay and Tango-H4-bla U2OS cells, allowing the estima-

tion of the percentage of β-arrestin recruitment in response to tested treatments. 

Compounds were tested in agonist and antagonist mode of the assay and all showed 

antagonistic properties. 

For alicyclic derivatives (Table 1) we observed a similar structure–activity relation-

ship as in the case of hH4R binding affinity evaluation: 4-, 5- and 6-membered alicyclic 

moieties showed better activity in the β-arrestin recruitment assay than 3-membered (3–5 

vs. 2) compound. The presence of a methylene linker between the alicyclic ring and the 

triazine scaffold improved the activity (6 vs. 4 and TR-AF-49 vs. 5). Addition of a double 

bond slightly improved activity only in the cyclohexylene derivative (compare TR-AF-49 

vs. 8). 

The 5-membered ring compounds, 6 and 7, (without or with the double bond) most 

potently blocked the histamine-induced β-arrestin recruitment. In that particular assay 

conditions, these compounds performed better (IC50 < 15 nM) than JNJ7777120 (IC50 = 56 

nM). 

For aliphatic derivatives (Table 2) addition of the methyl group in the β- or γ-position, 

or elongation of the carbon chain (from butyl to pentyl) resulted in more active antagonists 

(12, 14, 19 vs. 10). Presence of the unsaturated bond at the chain diminished the activity 

(10 vs. 16, 12 vs. 18, 19 vs. 20). The most active compound 14 with an IC50 of 24 nM also 

showed better activity than JNJ7777120 (IC50 = 56 nM). 

321 [127;814] (3) 38 ± 7 (100) 132 ± 9 (111)
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Table 2. Structures and in vitro activity of tested aliphatic derivatives. 

No 

hH4R Ki [nM] a 

x̅ [CI 95%] (n) b 

or  

(inh. at 1 μM) c 

hH4R β-arrestin d 

IC50 ± SEM [nM] e 

(% of max. Antagonist Activ-

ity  

at 10 μM) 

hH4R cAMP f 

IC50 ± SEM [nM] e 

(% of max. Antagonist Ac-

tivity  

at 10 μM) 

10 192 [42;874] (4) 82 ± 5 (96) 445 ± 10 (105) 

11 353 [275;454] (3) 97 ± 16 (97) 640 ± 49 (100) 

12 321 [127;814] (3) 38 ± 7 (100) 132 ± 9 (111) 

13 4264 [2074;8767] (2) nt g nt g 

14 203 [69;601] (3) 24 ± 3 (101) 43 ± 17 (107) 

15 1490 [489;4538] (3) nt g nt g 

16 319 [223;458] (3) 146 ± 38 (94) 635 ± 123 (104) 

17 263 [112;617] (3) 744 ± 139 (92) 721 ± 70 (94) 

18 262 [91;756] (3) 66.6 ± 3 (101) 188 ± 45 (104) 

19 393 [224;688] (3) 34.9 ± 7 (99) 419 ± 77 (97) 

20 (6%) (3) 376 ± 9 (101) nt g 
a [3H]histamine displacement assay with membrane preparation of Sf9 cells expressing human his-

tamine H4 receptor, co-expressed with G protein Gαi2 and Gβ1γ2 subunits [44]; b mean values within 

95% confidence intervals (CI), (n) number of performed experiments; c the percent of inhibition at 1 

µM, mean values of at least two independent experiments; d LiveBLAzerTM cell-based assay; e mean 

values of 2–5 independent experiments in triplicates ± SEM; f cAMP accumulation assay by LANCE 

Ultra cAMP detection; g nt—not tested. 

2.3.2. Functional Characterization in β-Arrestin Recruitment Assay 

β-Arrestin recruitment assay was performed only for the ligands that had Ki < 1 µM 

in the binding assay (except compound 3: Ki = 1247 nM) (Tables 1 and 2). Compounds 

were tested using LiveBLAzerTM assay and Tango-H4-bla U2OS cells, allowing the estima-

tion of the percentage of β-arrestin recruitment in response to tested treatments. 

Compounds were tested in agonist and antagonist mode of the assay and all showed 

antagonistic properties. 

For alicyclic derivatives (Table 1) we observed a similar structure–activity relation-

ship as in the case of hH4R binding affinity evaluation: 4-, 5- and 6-membered alicyclic 

moieties showed better activity in the β-arrestin recruitment assay than 3-membered (3–5 

vs. 2) compound. The presence of a methylene linker between the alicyclic ring and the 

triazine scaffold improved the activity (6 vs. 4 and TR-AF-49 vs. 5). Addition of a double 

bond slightly improved activity only in the cyclohexylene derivative (compare TR-AF-49 

vs. 8). 

The 5-membered ring compounds, 6 and 7, (without or with the double bond) most 

potently blocked the histamine-induced β-arrestin recruitment. In that particular assay 

conditions, these compounds performed better (IC50 < 15 nM) than JNJ7777120 (IC50 = 56 

nM). 

For aliphatic derivatives (Table 2) addition of the methyl group in the β- or γ-position, 

or elongation of the carbon chain (from butyl to pentyl) resulted in more active antagonists 

(12, 14, 19 vs. 10). Presence of the unsaturated bond at the chain diminished the activity 

(10 vs. 16, 12 vs. 18, 19 vs. 20). The most active compound 14 with an IC50 of 24 nM also 

showed better activity than JNJ7777120 (IC50 = 56 nM). 

4264 [2074;8767] (2) nt g nt g
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Table 2. Structures and in vitro activity of tested aliphatic derivatives. 

No 

hH4R Ki [nM] a 

x̅ [CI 95%] (n) b 

or  

(inh. at 1 μM) c 

hH4R β-arrestin d 

IC50 ± SEM [nM] e 

(% of max. Antagonist Activ-

ity  

at 10 μM) 

hH4R cAMP f 

IC50 ± SEM [nM] e 

(% of max. Antagonist Ac-

tivity  

at 10 μM) 

10 192 [42;874] (4) 82 ± 5 (96) 445 ± 10 (105) 

11 353 [275;454] (3) 97 ± 16 (97) 640 ± 49 (100) 

12 321 [127;814] (3) 38 ± 7 (100) 132 ± 9 (111) 

13 4264 [2074;8767] (2) nt g nt g 

14 203 [69;601] (3) 24 ± 3 (101) 43 ± 17 (107) 

15 1490 [489;4538] (3) nt g nt g 

16 319 [223;458] (3) 146 ± 38 (94) 635 ± 123 (104) 

17 263 [112;617] (3) 744 ± 139 (92) 721 ± 70 (94) 

18 262 [91;756] (3) 66.6 ± 3 (101) 188 ± 45 (104) 

19 393 [224;688] (3) 34.9 ± 7 (99) 419 ± 77 (97) 

20 (6%) (3) 376 ± 9 (101) nt g 
a [3H]histamine displacement assay with membrane preparation of Sf9 cells expressing human his-

tamine H4 receptor, co-expressed with G protein Gαi2 and Gβ1γ2 subunits [44]; b mean values within 

95% confidence intervals (CI), (n) number of performed experiments; c the percent of inhibition at 1 

µM, mean values of at least two independent experiments; d LiveBLAzerTM cell-based assay; e mean 

values of 2–5 independent experiments in triplicates ± SEM; f cAMP accumulation assay by LANCE 

Ultra cAMP detection; g nt—not tested. 

2.3.2. Functional Characterization in β-Arrestin Recruitment Assay 

β-Arrestin recruitment assay was performed only for the ligands that had Ki < 1 µM 

in the binding assay (except compound 3: Ki = 1247 nM) (Tables 1 and 2). Compounds 

were tested using LiveBLAzerTM assay and Tango-H4-bla U2OS cells, allowing the estima-

tion of the percentage of β-arrestin recruitment in response to tested treatments. 

Compounds were tested in agonist and antagonist mode of the assay and all showed 

antagonistic properties. 

For alicyclic derivatives (Table 1) we observed a similar structure–activity relation-

ship as in the case of hH4R binding affinity evaluation: 4-, 5- and 6-membered alicyclic 

moieties showed better activity in the β-arrestin recruitment assay than 3-membered (3–5 

vs. 2) compound. The presence of a methylene linker between the alicyclic ring and the 

triazine scaffold improved the activity (6 vs. 4 and TR-AF-49 vs. 5). Addition of a double 

bond slightly improved activity only in the cyclohexylene derivative (compare TR-AF-49 

vs. 8). 

The 5-membered ring compounds, 6 and 7, (without or with the double bond) most 

potently blocked the histamine-induced β-arrestin recruitment. In that particular assay 

conditions, these compounds performed better (IC50 < 15 nM) than JNJ7777120 (IC50 = 56 

nM). 

For aliphatic derivatives (Table 2) addition of the methyl group in the β- or γ-position, 

or elongation of the carbon chain (from butyl to pentyl) resulted in more active antagonists 

(12, 14, 19 vs. 10). Presence of the unsaturated bond at the chain diminished the activity 

(10 vs. 16, 12 vs. 18, 19 vs. 20). The most active compound 14 with an IC50 of 24 nM also 

showed better activity than JNJ7777120 (IC50 = 56 nM). 

203 [69;601] (3) 24 ± 3 (101) 43 ± 17 (107)
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Table 2. Structures and in vitro activity of tested aliphatic derivatives. 

No 

hH4R Ki [nM] a 

x̅ [CI 95%] (n) b 

or  

(inh. at 1 μM) c 

hH4R β-arrestin d 

IC50 ± SEM [nM] e 

(% of max. Antagonist Activ-

ity  

at 10 μM) 

hH4R cAMP f 

IC50 ± SEM [nM] e 

(% of max. Antagonist Ac-

tivity  

at 10 μM) 

10 192 [42;874] (4) 82 ± 5 (96) 445 ± 10 (105) 

11 353 [275;454] (3) 97 ± 16 (97) 640 ± 49 (100) 

12 321 [127;814] (3) 38 ± 7 (100) 132 ± 9 (111) 

13 4264 [2074;8767] (2) nt g nt g 

14 203 [69;601] (3) 24 ± 3 (101) 43 ± 17 (107) 

15 1490 [489;4538] (3) nt g nt g 

16 319 [223;458] (3) 146 ± 38 (94) 635 ± 123 (104) 

17 263 [112;617] (3) 744 ± 139 (92) 721 ± 70 (94) 

18 262 [91;756] (3) 66.6 ± 3 (101) 188 ± 45 (104) 

19 393 [224;688] (3) 34.9 ± 7 (99) 419 ± 77 (97) 

20 (6%) (3) 376 ± 9 (101) nt g 
a [3H]histamine displacement assay with membrane preparation of Sf9 cells expressing human his-

tamine H4 receptor, co-expressed with G protein Gαi2 and Gβ1γ2 subunits [44]; b mean values within 

95% confidence intervals (CI), (n) number of performed experiments; c the percent of inhibition at 1 

µM, mean values of at least two independent experiments; d LiveBLAzerTM cell-based assay; e mean 

values of 2–5 independent experiments in triplicates ± SEM; f cAMP accumulation assay by LANCE 

Ultra cAMP detection; g nt—not tested. 

2.3.2. Functional Characterization in β-Arrestin Recruitment Assay 

β-Arrestin recruitment assay was performed only for the ligands that had Ki < 1 µM 

in the binding assay (except compound 3: Ki = 1247 nM) (Tables 1 and 2). Compounds 

were tested using LiveBLAzerTM assay and Tango-H4-bla U2OS cells, allowing the estima-

tion of the percentage of β-arrestin recruitment in response to tested treatments. 

Compounds were tested in agonist and antagonist mode of the assay and all showed 

antagonistic properties. 

For alicyclic derivatives (Table 1) we observed a similar structure–activity relation-

ship as in the case of hH4R binding affinity evaluation: 4-, 5- and 6-membered alicyclic 

moieties showed better activity in the β-arrestin recruitment assay than 3-membered (3–5 

vs. 2) compound. The presence of a methylene linker between the alicyclic ring and the 

triazine scaffold improved the activity (6 vs. 4 and TR-AF-49 vs. 5). Addition of a double 

bond slightly improved activity only in the cyclohexylene derivative (compare TR-AF-49 

vs. 8). 

The 5-membered ring compounds, 6 and 7, (without or with the double bond) most 

potently blocked the histamine-induced β-arrestin recruitment. In that particular assay 

conditions, these compounds performed better (IC50 < 15 nM) than JNJ7777120 (IC50 = 56 

nM). 

For aliphatic derivatives (Table 2) addition of the methyl group in the β- or γ-position, 

or elongation of the carbon chain (from butyl to pentyl) resulted in more active antagonists 

(12, 14, 19 vs. 10). Presence of the unsaturated bond at the chain diminished the activity 

(10 vs. 16, 12 vs. 18, 19 vs. 20). The most active compound 14 with an IC50 of 24 nM also 

showed better activity than JNJ7777120 (IC50 = 56 nM). 

1490 [489;4538] (3) nt g nt g
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20 (6%) (3) 376 ± 9 (101) nt g 
a [3H]histamine displacement assay with membrane preparation of Sf9 cells expressing human his-

tamine H4 receptor, co-expressed with G protein Gαi2 and Gβ1γ2 subunits [44]; b mean values within 

95% confidence intervals (CI), (n) number of performed experiments; c the percent of inhibition at 1 

µM, mean values of at least two independent experiments; d LiveBLAzerTM cell-based assay; e mean 

values of 2–5 independent experiments in triplicates ± SEM; f cAMP accumulation assay by LANCE 

Ultra cAMP detection; g nt—not tested. 

2.3.2. Functional Characterization in β-Arrestin Recruitment Assay 

β-Arrestin recruitment assay was performed only for the ligands that had Ki < 1 µM 

in the binding assay (except compound 3: Ki = 1247 nM) (Tables 1 and 2). Compounds 

were tested using LiveBLAzerTM assay and Tango-H4-bla U2OS cells, allowing the estima-

tion of the percentage of β-arrestin recruitment in response to tested treatments. 

Compounds were tested in agonist and antagonist mode of the assay and all showed 

antagonistic properties. 

For alicyclic derivatives (Table 1) we observed a similar structure–activity relation-

ship as in the case of hH4R binding affinity evaluation: 4-, 5- and 6-membered alicyclic 

moieties showed better activity in the β-arrestin recruitment assay than 3-membered (3–5 

vs. 2) compound. The presence of a methylene linker between the alicyclic ring and the 

triazine scaffold improved the activity (6 vs. 4 and TR-AF-49 vs. 5). Addition of a double 

bond slightly improved activity only in the cyclohexylene derivative (compare TR-AF-49 

vs. 8). 

The 5-membered ring compounds, 6 and 7, (without or with the double bond) most 

potently blocked the histamine-induced β-arrestin recruitment. In that particular assay 

conditions, these compounds performed better (IC50 < 15 nM) than JNJ7777120 (IC50 = 56 

nM). 

For aliphatic derivatives (Table 2) addition of the methyl group in the β- or γ-position, 

or elongation of the carbon chain (from butyl to pentyl) resulted in more active antagonists 

(12, 14, 19 vs. 10). Presence of the unsaturated bond at the chain diminished the activity 

(10 vs. 16, 12 vs. 18, 19 vs. 20). The most active compound 14 with an IC50 of 24 nM also 

showed better activity than JNJ7777120 (IC50 = 56 nM). 

319 [223;458] (3) 146 ± 38 (94) 635 ± 123 (104)
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10 192 [42;874] (4) 82 ± 5 (96) 445 ± 10 (105) 

11 353 [275;454] (3) 97 ± 16 (97) 640 ± 49 (100) 

12 321 [127;814] (3) 38 ± 7 (100) 132 ± 9 (111) 

13 4264 [2074;8767] (2) nt g nt g 

14 203 [69;601] (3) 24 ± 3 (101) 43 ± 17 (107) 
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16 319 [223;458] (3) 146 ± 38 (94) 635 ± 123 (104) 
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19 393 [224;688] (3) 34.9 ± 7 (99) 419 ± 77 (97) 

20 (6%) (3) 376 ± 9 (101) nt g 
a [3H]histamine displacement assay with membrane preparation of Sf9 cells expressing human his-

tamine H4 receptor, co-expressed with G protein Gαi2 and Gβ1γ2 subunits [44]; b mean values within 

95% confidence intervals (CI), (n) number of performed experiments; c the percent of inhibition at 1 

µM, mean values of at least two independent experiments; d LiveBLAzerTM cell-based assay; e mean 

values of 2–5 independent experiments in triplicates ± SEM; f cAMP accumulation assay by LANCE 
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2.3.2. Functional Characterization in β-Arrestin Recruitment Assay 

β-Arrestin recruitment assay was performed only for the ligands that had Ki < 1 µM 

in the binding assay (except compound 3: Ki = 1247 nM) (Tables 1 and 2). Compounds 

were tested using LiveBLAzerTM assay and Tango-H4-bla U2OS cells, allowing the estima-

tion of the percentage of β-arrestin recruitment in response to tested treatments. 

Compounds were tested in agonist and antagonist mode of the assay and all showed 

antagonistic properties. 

For alicyclic derivatives (Table 1) we observed a similar structure–activity relation-

ship as in the case of hH4R binding affinity evaluation: 4-, 5- and 6-membered alicyclic 

moieties showed better activity in the β-arrestin recruitment assay than 3-membered (3–5 

vs. 2) compound. The presence of a methylene linker between the alicyclic ring and the 

triazine scaffold improved the activity (6 vs. 4 and TR-AF-49 vs. 5). Addition of a double 

bond slightly improved activity only in the cyclohexylene derivative (compare TR-AF-49 

vs. 8). 

The 5-membered ring compounds, 6 and 7, (without or with the double bond) most 

potently blocked the histamine-induced β-arrestin recruitment. In that particular assay 

conditions, these compounds performed better (IC50 < 15 nM) than JNJ7777120 (IC50 = 56 

nM). 

For aliphatic derivatives (Table 2) addition of the methyl group in the β- or γ-position, 

or elongation of the carbon chain (from butyl to pentyl) resulted in more active antagonists 

(12, 14, 19 vs. 10). Presence of the unsaturated bond at the chain diminished the activity 

(10 vs. 16, 12 vs. 18, 19 vs. 20). The most active compound 14 with an IC50 of 24 nM also 

showed better activity than JNJ7777120 (IC50 = 56 nM). 

263 [112;617] (3) 744 ± 139 (92) 721 ± 70 (94)

18

Molecules 2023, 28, x FOR PEER REVIEW 8 of 27 
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tamine H4 receptor, co-expressed with G protein Gαi2 and Gβ1γ2 subunits [44]; b mean values within 

95% confidence intervals (CI), (n) number of performed experiments; c the percent of inhibition at 1 

µM, mean values of at least two independent experiments; d LiveBLAzerTM cell-based assay; e mean 

values of 2–5 independent experiments in triplicates ± SEM; f cAMP accumulation assay by LANCE 

Ultra cAMP detection; g nt—not tested. 

2.3.2. Functional Characterization in β-Arrestin Recruitment Assay 

β-Arrestin recruitment assay was performed only for the ligands that had Ki < 1 µM 

in the binding assay (except compound 3: Ki = 1247 nM) (Tables 1 and 2). Compounds 

were tested using LiveBLAzerTM assay and Tango-H4-bla U2OS cells, allowing the estima-

tion of the percentage of β-arrestin recruitment in response to tested treatments. 

Compounds were tested in agonist and antagonist mode of the assay and all showed 

antagonistic properties. 

For alicyclic derivatives (Table 1) we observed a similar structure–activity relation-

ship as in the case of hH4R binding affinity evaluation: 4-, 5- and 6-membered alicyclic 

moieties showed better activity in the β-arrestin recruitment assay than 3-membered (3–5 

vs. 2) compound. The presence of a methylene linker between the alicyclic ring and the 

triazine scaffold improved the activity (6 vs. 4 and TR-AF-49 vs. 5). Addition of a double 

bond slightly improved activity only in the cyclohexylene derivative (compare TR-AF-49 

vs. 8). 

The 5-membered ring compounds, 6 and 7, (without or with the double bond) most 

potently blocked the histamine-induced β-arrestin recruitment. In that particular assay 

conditions, these compounds performed better (IC50 < 15 nM) than JNJ7777120 (IC50 = 56 

nM). 

For aliphatic derivatives (Table 2) addition of the methyl group in the β- or γ-position, 

or elongation of the carbon chain (from butyl to pentyl) resulted in more active antagonists 

(12, 14, 19 vs. 10). Presence of the unsaturated bond at the chain diminished the activity 

(10 vs. 16, 12 vs. 18, 19 vs. 20). The most active compound 14 with an IC50 of 24 nM also 

showed better activity than JNJ7777120 (IC50 = 56 nM). 

262 [91;756] (3) 66.6 ± 3 (101) 188 ± 45 (104)
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20 (6%) (3) 376 ± 9 (101) nt g 
a [3H]histamine displacement assay with membrane preparation of Sf9 cells expressing human his-

tamine H4 receptor, co-expressed with G protein Gαi2 and Gβ1γ2 subunits [44]; b mean values within 

95% confidence intervals (CI), (n) number of performed experiments; c the percent of inhibition at 1 

µM, mean values of at least two independent experiments; d LiveBLAzerTM cell-based assay; e mean 

values of 2–5 independent experiments in triplicates ± SEM; f cAMP accumulation assay by LANCE 

Ultra cAMP detection; g nt—not tested. 

2.3.2. Functional Characterization in β-Arrestin Recruitment Assay 

β-Arrestin recruitment assay was performed only for the ligands that had Ki < 1 µM 

in the binding assay (except compound 3: Ki = 1247 nM) (Tables 1 and 2). Compounds 

were tested using LiveBLAzerTM assay and Tango-H4-bla U2OS cells, allowing the estima-

tion of the percentage of β-arrestin recruitment in response to tested treatments. 

Compounds were tested in agonist and antagonist mode of the assay and all showed 

antagonistic properties. 

For alicyclic derivatives (Table 1) we observed a similar structure–activity relation-

ship as in the case of hH4R binding affinity evaluation: 4-, 5- and 6-membered alicyclic 

moieties showed better activity in the β-arrestin recruitment assay than 3-membered (3–5 

vs. 2) compound. The presence of a methylene linker between the alicyclic ring and the 

triazine scaffold improved the activity (6 vs. 4 and TR-AF-49 vs. 5). Addition of a double 

bond slightly improved activity only in the cyclohexylene derivative (compare TR-AF-49 

vs. 8). 

The 5-membered ring compounds, 6 and 7, (without or with the double bond) most 

potently blocked the histamine-induced β-arrestin recruitment. In that particular assay 

conditions, these compounds performed better (IC50 < 15 nM) than JNJ7777120 (IC50 = 56 

nM). 

For aliphatic derivatives (Table 2) addition of the methyl group in the β- or γ-position, 

or elongation of the carbon chain (from butyl to pentyl) resulted in more active antagonists 

(12, 14, 19 vs. 10). Presence of the unsaturated bond at the chain diminished the activity 

(10 vs. 16, 12 vs. 18, 19 vs. 20). The most active compound 14 with an IC50 of 24 nM also 

showed better activity than JNJ7777120 (IC50 = 56 nM). 

393 [224;688] (3) 34.9 ± 7 (99) 419 ± 77 (97)
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95% confidence intervals (CI), (n) number of performed experiments; c the percent of inhibition at 1 

µM, mean values of at least two independent experiments; d LiveBLAzerTM cell-based assay; e mean 

values of 2–5 independent experiments in triplicates ± SEM; f cAMP accumulation assay by LANCE 

Ultra cAMP detection; g nt—not tested. 

2.3.2. Functional Characterization in β-Arrestin Recruitment Assay 

β-Arrestin recruitment assay was performed only for the ligands that had Ki < 1 µM 

in the binding assay (except compound 3: Ki = 1247 nM) (Tables 1 and 2). Compounds 

were tested using LiveBLAzerTM assay and Tango-H4-bla U2OS cells, allowing the estima-

tion of the percentage of β-arrestin recruitment in response to tested treatments. 

Compounds were tested in agonist and antagonist mode of the assay and all showed 

antagonistic properties. 

For alicyclic derivatives (Table 1) we observed a similar structure–activity relation-

ship as in the case of hH4R binding affinity evaluation: 4-, 5- and 6-membered alicyclic 

moieties showed better activity in the β-arrestin recruitment assay than 3-membered (3–5 

vs. 2) compound. The presence of a methylene linker between the alicyclic ring and the 

triazine scaffold improved the activity (6 vs. 4 and TR-AF-49 vs. 5). Addition of a double 

bond slightly improved activity only in the cyclohexylene derivative (compare TR-AF-49 

vs. 8). 

The 5-membered ring compounds, 6 and 7, (without or with the double bond) most 

potently blocked the histamine-induced β-arrestin recruitment. In that particular assay 

conditions, these compounds performed better (IC50 < 15 nM) than JNJ7777120 (IC50 = 56 

nM). 

For aliphatic derivatives (Table 2) addition of the methyl group in the β- or γ-position, 

or elongation of the carbon chain (from butyl to pentyl) resulted in more active antagonists 

(12, 14, 19 vs. 10). Presence of the unsaturated bond at the chain diminished the activity 

(10 vs. 16, 12 vs. 18, 19 vs. 20). The most active compound 14 with an IC50 of 24 nM also 

showed better activity than JNJ7777120 (IC50 = 56 nM). 

(6%) (3) 376 ± 9 (101) nt g

a [3H]histamine displacement assay with membrane preparation of Sf 9 cells expressing human histamine H4
receptor, co-expressed with G protein Gαi2 and Gβ1γ2 subunits [44]; b mean values within 95% confidence
intervals (CI), (n) number of performed experiments; c the percent of inhibition at 1 µM, mean values of at least
two independent experiments; d LiveBLAzerTM cell-based assay; e mean values of 2–5 independent experiments
in triplicates ± SEM; f cAMP accumulation assay by LANCE Ultra cAMP detection; g nt—not tested.

Scheme 2. Synthesis of compound 13. Reagents and condition: (i) freshly prepared CH3ONa, rt
2–3 h; TR1, rt, 48 h.

2.3. In Vitro Pharmacological Studies
2.3.1. Histamine H4 Receptor Affinity

The affinity of compounds 2–20 for hH4R was evaluated in a binding assay as previ-
ously described [44]. [3H]Histamine was used as a radioligand and hH4R was expressed
in Sf 9 cells with G protein Gαi2 and Gβ1γ2 subunits. The pharmacological results repre-
sented as Ki values are listed in Table 1 (for alicyclic derivatives) and Table 2 (for aliphatic
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derivatives). The compounds showed variable affinities for hH4R, ranging from good (Ki
< 100 nM) to very weak (Ki > 4000 nM). Results depended on the substituent in the four
positions of a triazine (a main structure).

In the group of alicyclic derivatives (2–9; Table 1), the affinity was related to the type of
ring and its distance from the main structure. Compounds with 4- and 6-membered alicyclic
moiety (3, 5) had better affinity than 3-membered (2) opposite to the 5-membered (4), which
showed a much weaker affinity. The introduction of a methylene linker between the
alicyclic ring (5- and 6-membered) and the triazine scaffold increased the affinity for hH4R
(6 vs. 4 and TR-AF-49 vs. 5). The use of a larger adamantane ring resulted in a significant
decrease in affinity (9 vs. TR-AF-49). Additionally, the presence of an unsaturated bond
in the rings (7, 8) led to a lower affinity for these ligands. Among this group of alicyclic
derivatives (2–9), two compounds (6 and 7) achieved higher binding affinity than the lead
structure TR-AF-49.

In the group of aliphatic derivatives (10–20; Table 2), the affinity was influenced by
the presence of a methyl branch and/or a double bond in the main chain. Unbranched
saturated aliphatic derivatives (10, 19) showed better affinity than branched compounds
(11–14). An introduction of the methyl substituent into the butyl chain in the α- or ß-
positions to the triazine ring resulted in a decrease in affinity (10 vs. 11 vs. 12). On
the contrary, the presence of this substituent in the γ-position had little effect on affinity
(14 vs. 10). The introduction of a double bond regardless of the position caused a decrease
in affinity (10 vs. 15 vs. 16 or 19 vs. 20). In contrast, the presence of this bond in compounds
with branching at the α- and ß-positions slightly increased receptor affinity (17 vs. 11
and 18 vs. 12). Thus, the presence of the double bond was profitable for the branched
derivatives and unprofitable for straight-chain compounds.

The exchange of a carbon atom for an oxygen atom similar to the series described
earlier [61] led to a significant decrease in affinity (12 vs. 13). In this group, none of
the compounds achieved the high binding affinity of the lead structure TR-AF-49. In
comparison with our previous work [61] where an elongation of the chain from methyl to
propyl resulted in an increase in hH4R affinity (Ki from 2664 nM to 185 nM), present results
showed that the butyl chain is optimal as further increasing to the pentyl one caused a
decrease in affinity.

To sum up, the introduced modifications to the lead TR-AF-49 gave the very potent
compound 6 (Ki = 63 nM). This compound showed higher affinity than thioperamide but
worse than JNJ7777120 (Ki = 106 nM, and Ki = 32 nM, respectively [64]).

2.3.2. Functional Characterization in β-Arrestin Recruitment Assay

β-Arrestin recruitment assay was performed only for the ligands that had Ki < 1 µM in
the binding assay (except compound 3: Ki = 1247 nM) (Tables 1 and 2). Compounds were
tested using LiveBLAzerTM assay and Tango-H4-bla U2OS cells, allowing the estimation of
the percentage of β-arrestin recruitment in response to tested treatments.

Compounds were tested in agonist and antagonist mode of the assay and all showed
antagonistic properties.

For alicyclic derivatives (Table 1) we observed a similar structure–activity relationship
as in the case of hH4R binding affinity evaluation: 4-, 5- and 6-membered alicyclic moieties
showed better activity in the β-arrestin recruitment assay than 3-membered (3–5 vs. 2)
compound. The presence of a methylene linker between the alicyclic ring and the triazine
scaffold improved the activity (6 vs. 4 and TR-AF-49 vs. 5). Addition of a double bond
slightly improved activity only in the cyclohexylene derivative (compare TR-AF-49 vs. 8).

The 5-membered ring compounds, 6 and 7, (without or with the double bond) most
potently blocked the histamine-induced β-arrestin recruitment. In that particular assay con-
ditions, these compounds performed better (IC50 < 15 nM) than JNJ7777120 (IC50 = 56 nM).

For aliphatic derivatives (Table 2) addition of the methyl group in the β- or γ-position,
or elongation of the carbon chain (from butyl to pentyl) resulted in more active antagonists
(12, 14, 19 vs. 10). Presence of the unsaturated bond at the chain diminished the activity
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(10 vs. 16, 12 vs. 18, 19 vs. 20). The most active compound 14 with an IC50 of 24 nM also
showed better activity than JNJ7777120 (IC50 = 56 nM).

2.3.3. Functional Characterization in cAMP Accumulation Assay

Intrinsic activity via the Gα subunit was measured using a LANCE Ultra cAMP
detection kit and CHO-K1 cells stably expressing hH4R. Adenyl cyclase was stimulated by
forskolin (10 µM). Histamine (140 nM) was used with the tested ligands in the antagonist
mode of the assay. Only compounds with binding Ki values < 1 µM (except compound 3:
Ki = 1247 nM) were tested in this assay.

Among the alicyclic derivatives (2–9; Table 1) SAR of cAMP accumulation directly
reflected the binding affinity (see Section 2.3.1).

Aliphatic derivatives (10–20; Table 2) showed a similar SAR pattern as compounds
in the β-arrestin recruitment assay (see Section 2.3.2). The addition of methyl group in
β- and γ-positions of the main chain increased activity, while the introduction of methyl
substituent in α-position decreased antagonist activity (12, 14 and 11 vs. 10). Elongation
of the aliphatic chain had no influence on antagonist activity towards cAMP pathway
(10 vs. 20).

The most active antagonist in both series, compound 6 (IC50 = 10 nM) showed better
activity than JNJ7777120 (IC50 = 49 nM) tested in the same conditions.

2.3.4. Comparison of Intrinsic Activities

In the next step, we decided to compare the intrinsic activities of compounds toward
two transduction pathways. Because both functional assays were conducted in different
conditions, we first calculated Kb values using the Leff–Dougall variant of the Cheng–
Prusoff equation (Equation (1)) [65].

Kb = IC50/ ((2 + ([Ag]/[EC50])
n)1/2 − 1) (1)

where: IC50, concentration of antagonist that inhibits agonist response by 50%; [Ag],
concentration of agonist employed in the assay; [EC50], agonist EC50 value in the assay; n,
Hill slope of the concentration–response curve of the agonist.

To compare the two pathways, we transformed the data to pKb values and calculated
the differences in pKb values between the two pathways (Equation (2)).

Bias factor = pKb β−arr − pKb cAMP (2)

where: pKb − log from Kb values; β-arr, β-arrestin pathway; cAMP, cAMP pathway.
Calculated pKb values and bias factors are presented in Table 3. A bias factor above 0

suggests a ligand bias towards the β-arrestin pathway while a bias factor below 0 suggests
a ligand bias toward the cAMP pathway.

Table 3. Calculated pKb and bias factors for tested ligands a.

No pKb β-arrestin
± SEM

pKb cAMP
± SEM

Bias Factor
(pKb β-arrestin–pKb cAMP)

± SEM

2 7.32 ± 0.05 6.52 ± 0.03 0.8 ± 0.1
3 7.78 ± 0.06 7.43 ± 0.01 0.4 ± 0.1
4 7.94 ± 0.01 7.44 ± 0.01 0.5 ± 0.0
5 7.78 ± 0.04 7.12 ± 0.05 0.7 ± 0.1
6 8.79 ± 0.03 8.45 ± 0.07 0.3 ± 0.1
7 8.63 ± 0.04 7.94 ± 0.03 0.7 ± 0.1

TR-AF-49 7.95 ± 0.04 7.02 ± 0.02 0.9 ± 0.0
8 8.17 ± 0.06 6.58 ± 0.02 1.6 ± 0.1

10 7.87 ± 0.03 6.8 ± 0.01 1.1 ± 0.0
11 7.8 ± 0.07 6.65 ± 0.03 1.2 ± 0.1
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Table 3. Cont.

No pKb β-arrestin
± SEM

pKb cAMP
± SEM

Bias Factor
(pKb β-arrestin–pKb cAMP)

± SEM

12 8.21 ± 0.08 7.33 ± 0.03 0.9 ± 0.1
14 8.41 ± 0.05 7.86 ± 0.18 0.6 ± 0.2
16 7.63 ± 0.12 6.66 ± 0.09 1.0 ± 0.1
17 6.93 ± 0.07 6.59 ± 0.04 0.3 ± 0.1
18 7.96 ± 0.02 7.19 ± 0.11 0.8 ± 0.1
19 8.25 ± 0.09 6.84 ± 0.08 1.4 ± 0.1

JNJ7777120 8.04 ± 0.06 7.76 ± 0.02 0.3 ± 0.1
Thioperamide 7.47 ± 0.08 6.8 ± 0.03 0.7 ± 0.1

a Bias factor above 0 suggests ligand bias towards the beta-arrestin pathway while a bias factor below 0 suggests
ligand bias toward the cAMP pathway. Blue highlights the results with the highest bias factors for the ß-arrestin
pathway (bias factor ≥ 1).

All tested compounds showed bias towards the ß-arrestin pathway (Table 3, Figure 5).
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All tested compounds showed bias towards the β-arrestin pathway (Table 3, Figure 5).
In general, triazine derivatives with aliphatic moiety (10–19; Table 3, Figure 5) showed
higher bias towards the β-arrestin pathway than those with alicyclic fragments (2–8; Table 3,
Figure 1). The highest bias towards the β-arrestin pathway (bias factor ≥ 1) was observed
for compounds 8, 10, 11, 16, and 19, while the most balanced activity (bias factor ≤ 0.5)
was determined for compounds 3, 6 and 17. Among alicyclic derivatives, the analysis
of the bias factor vs. compound structure relationship showed that compounds with a
6-membered ring always represented higher bias for the β-arrestin pathway than the ones
with a 5-membered ring (8 vs. 7; TR-AF-49 vs. 6; 5 vs. 4; Table 3, Figure 5). The structure
element that could be linked to higher bias among aliphatic derivatives (except 11) was
straight aliphatic moiety over branched (12, 14 vs. 10; 17, 18 vs. 16). The most active
H4R ligand in the whole series (6), presented balance activity towards both cAMP and
β-arrestin pathways.

2.3.5. Toxicity Evaluation of Compound 6

Toxic substances can affect the cells. Early in the research process, it is crucial to
determine whether obtained compounds can induce such effects. From our series of
compounds, compound 6 was selected for toxicity evaluation. MTS assay was used to test
toxicity on HepG2 and SH-SY5Y cell lines. HepG2 cells closely reflect the human liver cell
model [66] whereas SH-SY5Y neuroblastoma cells are used in models of neurodegenerative
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diseases (especially Parkinson’s disease) to study the cellular and molecular factors that
lead to these disorders [67].

Compound 6, at concentrations ranging from 0.78 µM to 50 µM, was incubated with
the respective cell lines for 48 h (HepG2) or 24 h (SH-SY5Y). Then, MTS reagent was
added and absorbances at 490 nm were read after 1 h. The recorded results are shown in
Figure 6A,B. For both cell lines, compound 6 did not reduce their viability by more than
50%, even at the highest concentration. The reduction in SH-SY5Y cell viability (Figure 6B)
of an average of 4–12% was observed over the range of concentrations. For the HepG2 cell
line (Figure 6A), the compound did not show significant toxicity in the tested concentration
range (except for 6.25 µM concentration).
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Figure 6. Toxicity evaluation of compound 6 and cytostatic drug doxorubicin (Dox) in HepG2 (A)
and SH-SY5Y cells (B). Each point represents the mean ± SEM of two independent experiments,
each of which consisted of three replicates per treatment group. Statistical analyses were performed
using GraphPad Prism software 8.0. Statistical significance was evaluated by one-way ANOVA with
post-hoc Dunnett test at significance level α = 0.05; p-values are detailed in the figure.

2.3.6. Permeability of Compound 6 through Blood Brain Barrier

The ability of compound 6 to cross the blood–brain barrier (BBB) was checked using
the experimental PAMPA method as described previously [68]. This test is a popular
method for estimating the possibility of crossing BBB through passive transport. The
compound 6 was tested at a concentration of 200 µM and the incubation time was 5 h.
Caffeine was used as a standard well-permeable compound. The results obtained are
shown in Table 4. Compound 6 showed a high permeability. The calculated Pe value
for this compound (Pe = 12.26 × 10−6 cm/s) was even slightly higher than for caffeine
(Pe = 9.78 × 10−6 cm/s). In addition, mass retention (R%) was calculated, which was 3.18%
for 6 and 1.54% for caffeine. These values show that both compound 6 and caffeine were
retained, to a small extent, in the artificial membrane.

Table 4. Permeability coefficient and mass retention of compound 6.

Compound Pe
1,2 [10−6 cm/s] ± SD Mass Retention (R)

6 12.26 ± 0.31 3.15%
Caffeine 9.78 ± 1.75 1.54%

1 tested in triplicate; 2 for permeable compounds Pe is higher than 1.5 × 10−6cm/s.

2.4. In Vivo Pharmacological Studies

The localization of H4Rs in various immune and neuronal cells [4] suggests their
involvement in the mechanisms of pain transduction, transmission, and perception. It has
been proven that H4R ligands show analgesic properties in pain, especially of inflammatory
origin [27,31]. Pain and pruritus are distinct unpleasant sensations, but, in many ways,
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they are closely related. Both sensations share many integral similarities such as largely
overlapping mediators and receptors [69,70]. It has been reported that H4R antagonists
effectively attenuate experimental pruritus [71]. The above-mentioned data encouraged us
to test compound 6 in animal models of inflammatory pain and itch.

2.4.1. Antinociceptive Activity of Compound 6 in Formalin Test

A commonly used screening method to test new molecules with analgesic potential
is the formalin test. Local injection of formalin induces two phases of the nociceptive
response. The early phase (I) is associated with immediate activation of the nociceptors
mainly dependent on chemical stimulation of TRPA1 receptors and is related rather to
acute neurogenic pain. The late phase (II) is the result of tissue damage, a subsequent
inflammatory response, and sensitisation of the spinal reflex circuits. Furthermore, it has
been suggested that formalin induces pathological changes that resemble those observed
in nerve injury and neuropathic pain [72]. The biphasic response and a plethora of mecha-
nisms involved in the nociceptive response to formalin make the formalin test a valuable
tool in the assessment of the analgesic efficacy of a variety of compounds.

The administration of compound 6 to mice did not significantly affect the duration of
the nociceptive response in the acute phase of the formalin test [F(3,30) = 1.547, p = 0.22]
(Figure 7), but at the doses of 50 mg/kg and 75 mg/kg it significantly attenuated the
paw licking or biting behaviour in the late phase [F(3,30) = 2.955, p < 0.01]. The results
show that compound 6 has no significant influence on acute pain but effectively attenuates
inflammatory pain. Interestingly, the analgesic effect had no dose-dependent character.
The most potent effect was observed at a dose of 50 mg/kg (44.02% of the control group).
Administration of a higher dose of 75 mg/kg resulted in a less pronounced effect (56.62%
of the control group). This u-shaped response is often observed in analgesic agents, and
in this case, it may be the result of the fact that H4R plays a different role in inflammatory
cells and neurones. The blockade of H4Rs expressed in inflammatory cells results in anti-
inflammatory and analgesic effects. On the contrary, the activation of neuronal H4Rs leads
to analgesia [73]. We hypothesize that the higher dose of compound 6 could antagonize
neuronal H4Rs in a more pronounced way than the lower dose, thus attenuating the overall
analgesic effect.
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Figure 7. The effect of compound 6 on the duration of licking/biting behaviour in the acute phase
(0–5 min after formalin injection and in the late phase (15–30 min after formalin injection). The tested
compound or vehicle (1% Tween 80) were administered 30 min intraperitoneally (i.p.) before the
test. The results are presented as bar plots showing the mean ± SEM. Statistical analysis: one-way
ANOVA followed by Dunnett’s post hoc test, * p < 0.05, ** p < 0.01, n = 8–10 mice per group.

2.4.2. Antinociceptive and Anti-Inflammatory Activity of Compound 6
in Carrageenan-Induced Inflammatory Pain and Oedema

Compound 6 showed activity in the late phase of the formalin test, which revealed its
analgesic activity in inflammatory pain. We wanted to confirm the activity in an additional
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model of inflammation in another species. To evaluate the influence of compound 6 on acute
inflammation, such as oedema and hyperalgesia, we tested it in the carrageenan-induced
inflammation model in rats. Subplantar injection of carrageenan significantly induced
oedema (F(5,100) = 31.0, p < 0.0001). The paw volume increased from 0.92 ± 0.03 cm3 be-
fore carrageenan injection to the values of 1.36 ± 0.03 cm3, 1.64 ± 0.03 cm3, 1.95 ± 0.04 cm3,
1.98 ± 0.07 cm3 and 1.98 ± 0.07 cm3, respectively 1, 2, 3, 6, and 24 h after injection, which
corresponds to the increase by 48.9%, 79.3%, 113.0%, 115.2% and 114.1%, respectively. The
time course of the development of rat paw oedema (Figure 8A) shows that compound 6 sig-
nificantly reduced paw oedema (F3,20) = 11.33, p = 0.0001). The effect was dose-dependent,
and the administration of the most potent dose of 75 mg/kg also resulted in the paw
volume increase but only by 22.1%, 46.3%, 72.6%, 76.8% and 55.8%. As oedema is one of
the most significant symptoms of inflammation resulting from the release of inflamma-
tory mediators, we may conclude that compound 6 has some anti-inflammatory activity.
Experiments with analgesimeter and Plantar test apparatus showed that carrageenan in-
duces significant mechanical and thermal hyperalgesia (F(3, 15) = 40.48, p < 0.001 and
F(5, 25) = 9.85, p < 0.001). The response to mechanical stimuli was observed as the pain
withdrawal threshold (Figure 8B) decreased from the value of 138.33 ± 1.05 g (baseline)
before carrageenan injection to the value of 120.83 ± 2.0 g (87.3% of the baseline) 3 h
after injection, 125.83 ± 2.51 (90.9% of the baseline) 6 h after injection, and 124.17 ± 2.0
(89.7% of the baseline). Compound 6 at the dose of 50 mg/kg significantly increased the
pain withdrawal threshold to 122.1%, 119.5% and 111.7% of the baseline. Whereas at the
dose of 75 mg/kg compound 6 significantly increased the pain withdrawal threshold to
107.5%, 113.2% and 113.8% of the baseline. The results obtained confirmed its analgesic
activity in mechanical inflammatory hyperalgesia. The interesting fact is that the effect had
a long-lasting character and was observed even after 24 h after compound administration.
We claim that the effect may result from the inhibition of the release of inflammatory
mediators and subsequent inhibition of peripheral and central sensitization. In the vehicle-
treated group, the response for thermal stimuli observed as the paw withdrawal latency
(Figure 8C) decreased from the value of 11.90 ± 0.98 s (baseline) before carrageenan in-
jection to the values of 7.43 ± 1.08 s (62.44% of the baseline), 7.75 ± 0.89 s (65.13% of the
baseline), 5.43 ± 0.76 s (45.63 % of the baseline), 5.45 ± 0.70 s (45.80% of the baseline) and
8.90 ± 1.06 s (74.79% of the baseline) 1, 2, 3, 6 and 24 h after the injection, respectively.
Compound 6 only at a dose of 75 mg/kg significantly (F(3,20) = 25.22, p < 0.0001) increased
paw withdrawal latency. The effect was not as persistent as in the mechanical hyperalgesia
and was observed only 1, 2 and 3 h after induction of inflammation. The administration of
75 mg/kg increased the latency of paw withdrawal to 129.5%, 103.6% and 86.3% of baseline
1, 2 and 3 after inflammation induction, respectively. The results (the level of pain reactivity
over-reaching baseline) show that compound 6 attenuates inflammatory hypersensitivity
and induces analgesia.

Taking into account all the results of the analgesic activity of compound 6, we propose
the hypothesis that its anti-inflammatory properties resulting from the antagonism of H4R
are central to the overall in vivo analgesic profile of the compound. As an H4R antagonist,
compound 6 can reduce inflammation by inhibiting the release of inflammatory mediators
from immune cells decreasing the migration of immune cells to the site of inflammation.
It may subsequently inhibit the process of inflammatory sensitization of the peripheral
nerve endings and synapses in the dorsal horn of the spinal cord. The results of the
formalin test support the hypothesis. On the one hand, compound 6 did not affect the
first phase, which resulted from the direct stimulation of nociceptors, proving that this
compound had no impact on processes such as transformation and transduction. On the
other hand, compound 6 significantly inhibited the late phase, which depends at least partly
on inflammatory sensitization. Significant anti-inflammatory activity was additionally
confirmed in the carrageenan-induced inflammatory model, where compound 6 reduced
oedema formation and inflammatory hyperalgesia.
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Figure 8. Effect of compound 6 on carrageenan-induced oedema (A), mechanical hyperalgesia (B)
and thermal hyperalgesia (C) developed after subplantar injection of 1% carrageenan in rats. Data are
expressed as means ± SEM for 5–6 animals. Time 0—the initial reaction considered as the nociceptive
reaction before carrageenan administration. Statistical significance compared to vehicle-treated
animals: * p < 0.05, ** p < 0.01, *** p < 0.001, **** p < 0.0001. Statistical analysis: two-way ANOVA
post hoc Bonferroni test. Statistical significance compared to initial value (0 time point) in the vehicle-
treated group: # p < 0.05, ## p < 0.01, ### p < 0.0001. Statistical analysis: one-way ANOVA followed
by Dunnett’s post hoc test.

2.4.3. Antipruritic Effect of Compound 6 in Histamine- and Chloroquine-Induced Pruritus

Chemically induced itch can be classified into histamine-dependent and histamine-
independent subclasses. The first type results from the stimulation of histamine H1 re-
ceptors (H1Rs) on itch-mediating primary sensory neurons. The second one results from
the stimulation of distinct types of ion channels and receptors such as Mas-related G
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protein-coupled receptors (Mrgprs), protease-activated receptors (PARs), bile acid recep-
tors (TGR5), toll-like receptors (TLRs), and transient receptor potential subfamily V1/A1
(TRPV1/A1). An example of histamine-independent itch is the sensation induced by the
MrgprA3 agonist–chloroquine (CQ) [74]. Classical antihistamine agents, which are H1Rs
antagonists, attenuate histamine-dependent itch, but not the histamine-independent [75].
We tested compound 6 in two different pruritus mice models to assess its potential to affect
histamine-dependent and histamine-independent itch (Figure 9).
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Figure 9. The effect of compound 6 and reference compound pyrilamine (Pyr) on the number of
scratching bouts during 60 min-long observation in histamine-induced pruritus (A) and 30 min-long
observation in chloroquine-induced pruritus (B). The tested compound or vehicle (1% solution of
Tween 80) was administered intraperitoneally (i.p.) 30 min before the intradermal (i.d.) injection of
histamine or chloroquine. The results are presented as bar plots showing the mean ± SEM. Statistical
analysis: one-way ANOVA followed by Dunnett’s post hoc test, * p < 0.05, ** p < 0.01, *** p < 0.001,
n = 8–10 mice per group.

Intradermal injection of histamine induced scratching bouts in the amount of 62.11 ± 9.4.
Compound 6 significantly reduced scratching behaviour (F(3,30) = 7.80, p < 0.001). Ad-
ministration of the most effective dose of 25 mg/kg resulted in a decrease in scratch bouts
to the value of 8.37 ± 1.96 (13.47% of the control value). Histamine H1R antagonist pyril-
amine (used as reference ligand) at the dose of 10 mg/kg significantly reduced scratching
behaviour to the value of 28.56 ± 3.55 scratch bouts.

Intradermal injection of the CQ solution resulted in robust scratching behaviour mani-
fested as 72.20 ± 11.59 scratch bouts during the 30 min observation. A single administration
of compound 6 at doses 25 mg/kg and 50 mg/kg significantly decreased the number of
scratch bouts but the effects of doses of 6.25 mg/kg and 12.5 mg/kg were not statisti-
cally significant (F(5,44) = 19.14, p < 0.0001). The most effective dose of compound 6 was
50 mg/kg, which decreased the number of scratch bouts to 18.14 ± 3.48 (25.12% of the
control value) whereas pyrilamine (at the dose of 10 mg/kg) did not significantly reduce
scratching behaviour. When comparing the activity of the tested in both used models, it
should be noted that the efficacy (higher maximal effect) and potency (lower doses needed
to obtain the same result) of the compound were better in histamine-induced pruritus.
Nevertheless, compound 6 was also active in histamine-independent itch, which contrasts
with the activity of pyrilamine representing a commonly used drug in the treatment of
pruritus. This H1R antagonist showed activity in histamine-induced itch but was inactive
in CQ-induced itch. The wide spectrum of antipruritic activity of compound 6 is very
promising, considering that histamine-independent itch is still a crucial clinical problem in
pruritus treatment.

3. Materials and Methods
3.1. Synthesis of Compounds

Reagents were purchased from Alfa Aesar (Haverhill, MA, USA) or Sigma Aldrich
(Darmstadt, Germany) and were used without further purification. Melting points (Mp.)
were measured on a MEL-TEMP II (LD Inc., Long Beach, CA, USA) melting point apparatus
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and are uncorrected. Mass spectra (LC/MS) were conducted on Waters TQ Detector (Water
Corporation, Milford, CT, USA) mass spectrometer. Retention times (tR) are given in
minutes. All compounds showed UPLC/MS purity > 96%. 1H NMR spectra were recorded
on a Mercury 300 MHz PFG spectrometer (Varian, Palo Alto, CA, USA) in DMSO-d6.
13C NMR spectra were recorded on FTNMR 500 MHz spectrometer (Joel Ltd., Akishima,
Tokyo, Japan) in DMSO-d6. Chemical shifts were expressed in parts per million (ppm)
using the solvent signal as an internal standard. Data are reported in the following order:
multiplicity (br., broad; d, doublet; m, multiplet; quin, quintet; s, singlet; sxt, sextet; t,
triplet), approximate coupling constants J expressed in Hertz (Hz), number of protons.
Elemental analysis was performed on an Elemental Analyser Vario El-III (Hanau, Germany).
The results are in agreement with the theoretical values within ± 0.4%. TLC data were
obtained with Merck (Darmstadt, Germany) silica gel 60F254 aluminium sheets with the
following detection with UV light and evaluation with Dragendorff’s reagent (solvent
system: methylene chloride:methanol 1:1).

3.1.1. Synthesis of Esters

Esters 1a–1k, 1m–1r and 1s were obtained from proper commercially available car-
boxylic acid according to the method described previously [61].

3.1.2. Synthesis of Triazines 2–20—General Procedure

To a freshly prepared sodium methoxide (12 mmol Na in 5 mL of methanol)
4-methylpiperazin-1-yl biguanide dihydrochloride (5 mmol) was added and the mixture
was stirred at room temperature for 2–3 h. Then, a crude suitable carboxylic acid ester
(5 mmol) was added and the mixture was further stirred for 48–84 h at room temperature.
After that time, the solvent was evaporated, and was added to the residue water (5 mL).
The precipitated product was filtrated and crystallized from a proper solvent.

4-Cyclopropyl-6-(4-methylpiperazin-1-yl)-1,3,5-triazin-2-amine (2)
Synthesis from prepared methyl cyclopropanecarboxylate 1a (5 mmol). Crystallization:

CH3OH. Yield 3%, m.p. 156–159 ◦C, C11H18N6 (MW = 234.31). LC/MS+: purity: 100%,
tR = 0.649, (ESI) m/z [M+H]+ 235.097. 1H NMR (300 MHz, DMSO-d6) δ: 6.60 (br. S., 2H),
3.63 (br. s., 4H), 2.25 (t, J = 4.62 Hz, 4H), 2.16 (s, 3H), 1.56–1.75 (m, 1H), 0.70–0.95 (m, 4H).
13C NMR (126 MHz, DMSO-d6) δ: 178.7, 167.0, 164.7, 54.9, 46.3, 42.8, 17.7, 9.2. Anal. Calcd.
For C11H18N6: C, 56.43; H, 7.68; N, 35.87%. Found: C, 56.06; H, 7.56; N, 35.61%.

4-Cyclobutyl-6-(4-methylpiperazin-1-yl)-1,3,5-triazin-2-amine (3)
Synthesis from prepared methyl cyclobutanecarboxylate 1b (5 mmol). Crystallization:

CH3OH. Yield 14%, m.p. 127–132 ◦C, C12H20N6 (MW = 248.12). LC/MS+: purity: 100%,
tR = 0.671, (ESI) m/z [M+H]+ 249.110. 1H NMR (300 MHz, DMSO-d6) δ: 6.69 (br. s.,
2H), 3.67 (br. s., 4H), 3.20 (quin, J = 8.46 Hz, 1H), 2.02–2.36 (m, 11H), 1.84–2.00 (m, 1H),
1.68–1.83 (m, 1H). 13C NMR (126 MHz, DMSO-d6) δ: 179.6, 167.4, 165.1, 54.9, 46.3, 42.9,
42.1, 26.5, 18.3. Anal. Calcd. For C12H20N6: C, 56.65; H, 7.79; N, 32.67%. Found: C, 57.20;
H, 7.94; N, 32.62%.

4-Cyclopentyl-6-(4-methylpiperazin-1-yl)-1,3,5-triazin-2-amine (4)
Synthesis from prepared methyl cyclopentanecarboxylate 1c (5 mmol). Crystalliza-

tion: CH3OH. Yield 9%, m.p. 163–169 ◦C, C13H22N6 (MW = 262.37). LC/MS+: purity:
100%, tR = 0.722, (ESI) m/z [M+H]+ 263.268.1H NMR (300 MHz, DMSO-d6) δ: 6.65 (br. s.,
2H), 3.66 (br. s., 4H), 2.74 (quin, J = 8.02 Hz, 1H), 2.26 (t, J = 4.74 Hz, 4H), 2.16 (s, 3H),
1.50–1.85 (m, 8H). 13C NMR (126 MHz, DMSO-d6) δ: 181.2, 167.4, 165.1, 54.9, 47.9, 46.3,
42.8, 31.9, 26.1. Anal. Calcd. For C13H22N6: C, 59.51; H, 8.45; N, 32.04%. Found: C, 59.66;
H, 8.46; N, 32.01%.

4-Cyclohexyl-6-(4-methylpiperazin-1-yl)-1,3,5-triazin-2-amine (5)
Synthesis from prepared methyl cyclohexanecarboxylate 1d (5 mmol). Crystallization:

CH3OH. Yield 14%, m.p. 133–138 ◦C, C14H24N6 (MW = 276.39). LC/MS+: purity: 56.50%,
tR1 = 2.674, (ESI) m/z [M+H]+ 277.255 + 43.50%, tR2 = 2.992, (ESI) m/z [M+H]+ 277.179.
1H NMR (300 MHz, DMSO-d6) δ: 6.65 (br. s., 2H), 3.66 (br. s., 4H), 2.07–2.37 (m, 8H),
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1.55–1.89 (m, 5H), 1.34–1.53 (m, 2H), 1.04–1.33 (m, 3H). 13C NMR (126 MHz, DMSO-d6) δ:
181.1, 167.4, 165.1, 54.9, 46.7, 46.3, 42.8, 31.1, 26.2, 26.1. Anal. Calcd. For C14H24N6: C, 60.84;
H, 8.75; N, 30.41%. Found: C, 60.69; H, 8.75; N, 30.36%.

4-(Cyclopentylmethyl)-6-(4-methylpiperazin-1-yl)-1,3,5-triazin-2-amine (6)
Synthesis from prepared methyl 2-cyclopentylacetate 1e (5 mmol). Crystallization:

C2H5OH/H2O. Yield 22%, m.p. 165–168 ◦C, C14H24N6 (MW = 276.39). LC/MS+: purity:
100%, tR = 2.34, (ESI) m/z [M+H]+ 277.44. 1H NMR (300 MHz, DMSO-d6) δ: 6.65 (br. s.,
2H), 3.65 (br. s., 4H), 2.21–2.37 (m, 7H), 2.16 (s, 3H), 1.37–1.77 (m, 6H), 1.05–1.30 (m, 2H).
13C NMR (126 MHz, DMSO-d6) δ: 177.5, 167.3, 165.0, 54.9, 46.3, 44.7, 42.9, 38.5, 32.5, 25.1.

4-(Cyclopent-2-enylmethyl)-6-(4-methylpiperazin-1-yl)-1,3,5-triazin-2-amine (7)
Synthesis from prepared methyl 2-(cyclopen-1-en-1-yl)acetate 1f (5 mmol). Crystal-

lization: C2H5OH/H2O. Yield 20%, m.p. 166–169 ◦C, C14H22N6 (MW = 274.36). LC/MS+:
purity: 100%, tR = 2.01, (ESI) m/z [M+H]+ 275.45. 1H NMR (300 MHz, DMSO-d6) δ:
6.67 (br. s., 2H), 5.58–5.81 (m, 2H), 3.66 (br. s., 4H), 3.08 (br. s., 1H), 2.37–2.44 (m, 1H),
2.12–2.36 (m, 10H), 1.87–2.03 (m, 1H), 1.36–1.53 (m, 1H). 13C NMR (126 MHz, DMSO-d6) δ:
177.0, 167.3, 165.0, 135.5, 130.8, 54.9, 46.3, 44.7, 44.1, 42.9, 31.9, 29.7.

4-(Cyclohexenylmethyl)-6-(4-methylpiperazin-1-yl)-1,3,5-triazin-2-amine (8)
Synthesis from prepared methyl 2-(cyclohex-1-en-1-yl)acetate 1g (5 mmol). Crystal-

lization: C2H5OH/H2O. Yield 22%, m.p. 149–153 ◦C, C15H24N6 (MW = 288.41). LC/MS+:
purity: 100%, tR = 2.50, (ESI) m/z [M+H]+ 289.41. 1H NMR (500 MHz, DMSO-d6) δ:
6.46–6.94 (m, 2H), 5.37 (br. s., 1H), 3.63 (br. s., 4H), 2.94 (s, 2H), 2.24 (t, J = 4.73 Hz, 4H),
2.14 (s, 3H), 1.91 (br. s., 4H), 1.37–1.59 (m, 4H). 13C NMR (126 MHz, DMSO-d6) δ: 176.3,
167.4, 165.1, 134.8, 123.5, 54.9, 47.7, 46.3, 42.9, 28.6, 25.3, 22.9, 22.4.

4-(1-Adamantylmethyl)-6-(4-methylpiperazin-1-yl)-1,3,5-triazin-2-amine (9)
Synthesis from prepared methyl 2-(adamantan-1-yl)acetate 1h (5 mmol). Purification:

product insoluble in reflux CH3CN. Yield 4%, m.p. 200–201 ◦C, C19H30N6 (MW = 342.48).
LC/MS+: purity: 100%, tR = 3.46, (ESI) m/z [M+H]+ 343.32. 1H NMR (300 MHz, DMSO-d6)
δ: 6.63 (br. s., 2H), 3.65 (br. s., 4H), 2.03–2.32 (m, 9H), 1.88 (br. s., 3H), 1.42–1.69 (m, 12H).
13C NMR (126 MHz, DMSO-d6) δ: 175.4, 167.1, 164.8, 54.9, 53.2, 46.3, 43.0, 37.0, 33.7, 28.7.

4-Butyl-6-(4-methylpiperazin-1-yl)- 1,3,5-triazin-2-amine (10)
Synthesis from commercial methyl pentanoate 1i (5 mmol). Crystallization: CH3OH/H2O.

Yield 31%., m.p. 117–118 ◦C, C12H22N6 (MW = 250.34). LC/MS+/−: purity: 97.39%,
tR = 1.64 (ESI) m/z [M+H]+ 251.21. 1H NMR (300 MHz, DMSO-d6) δ: 6.66 (br. s., 2H),
3.66 (br. s., 4H), 2.20–2.41 (m, 6H), 2.16 (s, 3H), 1.57 (quin, J = 1.00 Hz, 2H), 1.28 (sxt,
J = 1.00 Hz, 2H), 0.86 (t, J = 7.33 Hz, 3H). 13C NMR (DMSO-d6, 126 MHz) δ: 178.0, 167.3,
165.0, 54.9, 46.3, 42.8, 38.4, 29.7, 22.5, 14.4. Anal. Calcd. For C12H22N6: C, 57.59; H, 8.86; N,
33.56%. Found: C, 57.51; H, 9.31; N, 34.15%.

4-(4-Methylpiperazin-1-yl)-6-(pentan-2-yl)-1,3,5-triazin-2-amine (11)
Synthesis from prepared methyl 2-methylpentanoate 1j (5 mmol). Crystallization:

CH3OH/H2O. Yield 8%, m.p. 138–140 ◦C, C13H24N6 (MW = 264.37). LC/MS+: purity:
100%, tR = 2.05, (ESI) m/z [M+H]+ 265.30. 1H NMR (300 MHz, DMSO-d6) δ: 6.68 (br. s.,
2H), 3.66 (br. s., 4H), 2.34–2.44 (m, 1H), 2.20–2.33 (m, 4H), 2.16 (s, 3H), 1.53–1.74 (m, 1H),
1.00–1.43 (m, 6H), 0.75–0.89 (m, 3H). 13C NMR (126 MHz, DMSO-d6) δ: 181.7, 167.5, 165.1,
54.9, 46.3, 42.9, 42.1, 37.7, 20.7, 19.6, 14.6.

4-(2-Methylbutyl)-6-(4-methylpiperazin-1-yl)-1,3,5-triazin-2-amine (12)
Synthesis from prepared methyl 3-methylpentanoate 1k (5 mmol). Crystallization:

CH3OH/H2O. Yield 8%, m.p. 115–116 ◦C, C13H24N6 (MW = 264.37). LC/MS+: purity:
100%, tR = 1.99, (ESI) m/z [M+H]+ 265.30. 1H NMR (300 MHz, DMSO-d6) δ: 6.69 (br. s.,
2H), 3.65 (br. s., 4H), 2.21–2.40 (m, 5H), 2.03–2.20 (m, 4H), 1.79–1.99 (m, 1H), 1.02–1.41 (m,
2H), 0.73–0.91 (m, 6H). 13C NMR (126 MHz, DMSO-d6) δ: 177.4, 167.3, 165.0, 54.9, 46.3, 45.8,
42.9, 33.5, 29.5, 19.7, 11.8.

4-(2-Methoxypropyl)-6-(4-methylpiperazin-1-yl)-1,3,5-triazin-2-amine (13)
Synthesis from commercial ethyl crotonate 1l (5 mmol). Crystallization: CH3CN. Yield

10%, m.p. 148–151 ◦C, C12H22N6O (MW = 266.34). LC/MS+: purity: 55.28%, tR = 0.98, (ESI)
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m/z [M+H]+ 267.23, purity: 44.72%, tR = 1.15, (ESI) m/z [M+H]+ 267.23. 1H NMR (300 MHz,
DMSO-d6) δ: 6.72 (br. s., 2H), 3.73–3.88 (m, 1H), 3.66 (br. s., 4H), 3.18 (s, 3H), 2.56-2.68 (m,
1H), 2.20–2.38 (m, 5H), 2.16 (s, 3H), 1.07 (d, J = 6.45 Hz, 3H).

4-Isopentyl-6-(4-methylpiperazin-1-yl)-1,3,5-triazin-2-amine (14)
Synthesis from prepared methyl 4-methylpentanoate 1m (5 mmol). Crystallization:

CH3OH/H2O. Yield 16%, m.p. 123–126 ◦C, C13H24N6 (MW = 264.37). LC/MS+: purity:
100%, tR = 2.16, (ESI) m/z [M+H]+ 265.48. 1H NMR (300 MHz, DMSO-d6) δ: 6.66 (br. s., 2H),
3.65 (br. s., 4H), 2.22–2.36 (m, 6H), 2.16 (s, 3H), 1.37–1.62 (m, 3H), 0.86 (d, J = 5.90 Hz, 6H).
13C NMR (126 MHz, DMSO-d6) δ: 178.3, 167.3, 165.0, 54.9, 46.3, 42.9, 36.8, 36.7, 27.9, 22.9.

(E) 4-(But-1-enyl)-6-(4-methylpiperazin-1-yl)-1,3,5-triazin-2-amine (15)
Synthesis from prepared methyl pent-2-enoate 1n (5 mmol). Crystallization: CH3OH/H2O.

Yield 13%, m.p. 125–126 ◦C, C12H20N6 (MW = 248.33). LC/MS±: purity: 96.43%, tR = 1.56,
(ESI) m/z [M+H]+ 249.22; purity: 3.57%, tR = 1.72, (ESI) m/z [M+H]+ 249.15. 1H NMR
(300 MHz, DMSO-d6) δ: 6.69 (br. s., 2H), 5.34–5.70 (m, 2H), 3.65 (br. s., 4H), 3.05 (d,
J = 6.67 Hz, 2H), 2.22–2.31 (m, 4H), 2.17 (s, 3H), 1.60 (d, J = 0.77 Hz, 3H).

4-(But-3-enyl)-6-(4-methylpiperazin-1-yl)-1,3,5-triazin-2-amine (16)
Synthesis from prepared methyl pent-4-enoate 1o (5 mmol). Crystallization: CH3CN.

Yield 8%, m.p. 132–133 ◦C, C12H20N6 (MW = 248.33). LC/MS+: purity: 100%, tR = 1.40, (ESI)
m/z [M+H]+ 249.2. 1H NMR (300 MHz, DMSO-d6) δ: 6.71 (br. s., 2H), 5.74–5.92 (m, 1H),
4.84–5.13 (m, 2H), 3.66 (br. s., 4H), 2.30–2.44 (m, 4H), 2.26 (t, J = 4.69 Hz, 4H), 2.16 (s, 3H).
13C NMR (126 MHz, DMSO-d6) δ: 177.2, 167.3, 165.0, 138.6, 115.4, 54.9, 46.3, 42.9, 37.8, 31.3.

4-(4-Methylpiperazin-1-yl)-6-(pent-4-en-2yl)-1,3,5-triazin-2-amine (17)
Synthesis from prepared methyl 2-methylpent-4-enoate 1p (5 mmol). Crystallization:

CH3OH/H2O. Yield 10%, m.p. 134–136 ◦C, C13H22N6 (MW = 262.35). LC/MS±: purity:
100%, tR = 1,79, (ESI) m/z [M+H]+ 263.22. 1H NMR (300 MHz, DMSO-d6) δ: 6.68 (br. s., 2H),
5.60–5.81 (m, 1H), 4.85–5.05 (m, 2H), 3.66 (br. s., 4H), 2.51–2.56 (m, 1H), 2.35–2.45 (m, 1H),
2.27 (t, J = 4.87 Hz, 4H), 2.03–2.20 (m, 4H), 1.09 (d, J = 6.67 Hz, 3H). 13C NMR (126 MHz,
DMSO-d6) δ: 180.9, 167.4, 165.1, 137.6, 116.5, 54.9, 46.3, 42.9, 42.0, 19.1.

4-(2-Methylbut-3-enyl)-6-(4-methylpiperazin-1-yl)-1,3,5-triazin-2-amine (18)
Synthesis from prepared methyl 3-methylpent-4-enoate 1r (5 mmol). Crystallization:

CH3OH/H2O. Yield 25%, m.p. 113–115 ◦C, C13H22N6 (MW = 262.35). LC/MS+: purity:
100%, tR = 1.78, (ESI) m/z [M+H]+ 263.24. 1H NMR (300 MHz, DMSO-d6) δ: 6.69 (br. s.,
2H), 5.66–5.94 (m, 1H), 4.81–5.03 (m, 2H), 3.66 (br. s., 4H), 2.63–2.80 (m, 1H), 2.34–2.44 (m,
1H), 2.20–2.32 (m, 5H), 2.16 (s, 3H), 0.94 (d, J = 6.45 Hz, 3H). 13C NMR (126 MHz, DMSO-d6)
δ: 176.6, 167.3, 165.0, 144.2, 113.2, 54.9, 46.3, 45.4, 42.9, 35.8, 19.8.

4-(4-Methylpiperazin-1-yl)-6-pentyl-1,3,5-triazin-2-amine (19)
Synthesis from commercial ethyl hexanoate 1q (5 mmol). Crystallization: CH3OH/H2O.

Yield 40%, m.p. 173–178 ◦C, C13H24N6 (MW = 264.37). LC/MS+/−: purity: 100%, tR= 2.19,
(ESI) m/z [M+H]+ 265.23. 1H NMR (300 MHz, DMSO-d6) δ: 6.66 (br. s., 2H), 3.66 (br. s.,
4H), 2.20–2.38 (m, 6H), 2.16 (s, 3H), 1.60 (quin, J = 7.33 Hz, 2H), 1.18–1.30 (m, 4H), 0.84 (t,
J = 6.74 Hz, 3H). 13C NMR (126 MHz, DMSO-d6) δ: 178.0, 167.3, 165.0, 54.9, 46.3, 42.9, 38.6,
31.6, 27.2, 22.5, 14.4. Anal. calcd. for C13H24N6 x H2O (MW = 282.39): C, 55.29; H, 9.28; N,
29.76%. Found: C, 55.30; H, 9.71; N, 30.21%.

(E)-4-(4-Methylpiperazin-1-yl)-6-(pent-2-enyl)-1,3,5-triazin-2-amine (20)
Synthesis from prepared methyl (E) hex-3-enoate 1s (5 mmol). Crystallization:

CH3OH/H2O. Yield 15%, m.p. 117–119 ◦C, C13H22N6 (MW = 262.36). LC/MS+/−: purity:
98.57%, tR = 2.05, (ESI) m/z [M+H]+ 263.35. 1H NMR (300 MHz, DMSO-d6) δ: 6.71 (br. s.,
2H), 5.40–5.68 (m, 2H), 3.65 (br. s., 4H), 3.05 (d, J = 5.90 Hz, 2H), 2.26 (t, J = 4.87 Hz, 4H),
2.16 (s, 3H), 1.87–2.06 (m, 2H), 0.91 (t, J = 7.44 Hz, 3H). 13C NMR (126 MHz, DMSO-d6) δ:
176.6, 167.4, 165.0, 134.0, 125.5, 54.9, 46.3, 42.9, 42.4, 25.6, 14.1.
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3.2. In Vitro Biological Studies
3.2.1. Histamine H4 Receptor Affinity

Affinities of all triazine derivatives were determined in a [3H] histamine (f.c. 10 nM)
displacement assay using membrane preparations from Sf 9 cells expressing human H4R
and co-expressed with Gαi2 and Gβ1γ2 subunits as described previously [44]. Nonspecific
binding was determined in the presence of unlabelled JNJ7777120 (10 mM).

3.2.2. β-Arrestin Recruitment Assay

All used media and reagents except DMSO and tested compounds were purchased
from ThermoFisher Scientific, Waltham, MA, USA. DMSO was from CarlRoth (Karlsruhe,
Germany) and histamine was from Sigma Aldrich (Darmstadt, Germany). Tango-H4-bla
U2OS cells were cultured in McCoy’s 5A medium supplemented according to the provider’s
recommendation (dialyzed FBS 10%, NEAA 0.1 mM, HEPES 25 mM, sodium pyruvate
1 mM, penicillin/streptomycin 100 U/mL, zeocin 200 µg/mL, hygromycin 50 µg/mL, G418
(geneticin) 100 µg/mL) in a CO2 incubator (HERAcell240, Heraeus, Hanau, Germany) at
37 ◦C in a humidified atmosphere containing 5% CO2. The day before the experiment
cells were collected from the culture flask with trypsin and seeded in 384 well black-wall,
clear-bottom plate (PerkinElmer, Waltham, MA, USA) in concentration 10,000 cells/well
in FreeStyle medium. After 24 h of incubation, the cells were checked under the micro-
scope and the dilutions of tested compounds were prepared and added to the wells. In
agonist mode compounds were added to the wells and plates were placed in the incu-
bator (HERAcell240, Heraeus, Hanau, Germany) for 16 h. In antagonist mode, first, the
compounds were added to the wells, plates were incubated for 30 min, then histamine
solution (corresponding to EC80—500 nM) was added and plates were put in the incubator
for 16 h. After this time β-lactamase substrate mixture was prepared and added to wells
(8 µL/well). Cells were incubated for 2 h at room temperature in the dark then the signal
was read using an EnSpire microplate reader (PerkinElmer, Waltham, MA, USA). Drawing
of dose-dependent curves and IC50 calculation for compounds were made using GraphPad
Prism 6 (GraphPad Software, San Diego, CA, USA).

3.2.3. cAMP Accumulation Assay

Intrinsic activity in G protein-dependent pathway was measured with homogenous
TR-FRET immunoassay, using LANCE Ultra cAMP kit and CHO-K1 H4R cell line or γ-
irradiated recombinant CHO-K1 H4R cells (all from PerkinElmer). If frozen CHO-K1 H4R
cells were used cells had been thawed in a 37 ◦C water bath and placed in the culture flask
with DMEM/F12 medium supplemented with 10 % FBS the day before the experiment.
If the CHO-K1 H4R cell line was used it had been cultivated in DMEM/F12 10% FBS
400 µg/mL geneticin and passaged three times a week. On the experiment day cells
were detached using Tryple, collected, centrifuged and resuspended in stimulation buffer
(HBSS, 100 mM RO-201724, 5 mM HEPES, 0.1% BSA, pH 7.4). The antagonist activity was
measured in a white, opaque, 384-well microplate (PerkinElmer) with a total volume of
20 µL. Cells (1000 cells/well) were incubated with forskolin (10 µM), histamine (140 nM)
and tested antagonists (0.003–100 µM) for 30 min at room temperature. After incubation,
5 µL of europium chelate-labelled cAMP tracer and 5 µl of ULight-labelled anti-cAMP mAb
working solutions were added, mixed and incubated for 1 h. TR-FRET signal was read
using a microplate reader (PerkinElmer, Waltham, MA, USA).

3.2.4. PAMPA Assay

The GentestTM PAMPA Plate System, purchased from Corning (Tewksbury, MA, USA),
was used for permeability evaluation. Caffeine (a reference) and the compound tested were
dissolved in DMSO (10 mM stocks) and after dilution to 200 µM in PBS (pH 7.4), added to
donor wells. Then, after incubation for 5 h at room temperature, concentrations of tested
compounds in donor and acceptor wells were estimated by the mass spectra (LC/MS)
method as described previously [68]. The UPLC/MS Waters ACQUITYTM TQD system
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with the TQ Detector (Waters, Milford, CT, USA) was used for this detection. The assay
was performed in triplicate. The permeability value (Pe) was calculated using the formula
described by Chen et al. [76].

3.2.5. Toxicity Evaluation

The hepatoma cell line HepG2 (ATCC® HB-8065TM) and SH-SY5Y CRL-2266 neu-
roblastoma cell line were used to evaluate the toxicity of tested compounds. Tests were
conducted as described previously [77]. CellTiter 96® Aqueous Non-Radioactive Cell
Proliferation Assay was purchased from Promega (Madison, WI, USA). Compounds were
tested at 7 concentrations (0.78, 1.56, 3.125, 6.25, 12.5, 25 and 50 µM). Cell viability was
determined after incubation with compounds for 24 h (HepG2) or 48 h (SH-SY5Y). Each
experiment was performed twice in triplicate.

3.3. In Vivo Studies
3.3.1. Animals

The experiments were carried out on adult male Albino Swiss mice (CD-1, 18–25 g)
and male Wistar rats (Krf:(WI) WU), 180–250 g). The animals were housed in plastic cages
in a room at a constant temperature of 20 ± 2 ◦C, under a light/dark (12:12) cycle and
had free access to a standard pellet diet and water. The experimental groups consisted
of 6–12 animals, all the animals were used only once and they were killed by cervical
dislocation immediately after the assay. The rats were previously anaesthetized with
sodium pentobarbital (60 mg/kg). The minimum number of animals was used needed
to obtain definite and normally distributed results with the utilized test. Behavioural
measures were scored by trained observers, which were blind to experimental conditions.
The treatment of laboratory animals in the present study was in full accordance with the
respective Polish regulations. All procedures were conducted according to the guidelines
of ICLAS (International Council on Laboratory Animal Science) and approved by the Local
Ethics Committee of the Jagiellonian University in Kraków (105/2016 and 666/2022).

3.3.2. Formalin Test

The procedure used was essentially the same as that described previously [77,78].
Briefly, the pain was induced by the intraplantar injection of 20 µL of 2.5% formalin
solution into the right hind paw of the mice. The total time (in s) spent on licking the
injected paw during periods of 0–5 min (early phase, neurogenic) and 15–30 min (late
phase, inflammatory) was measured and was considered as an indicator of nociceptive
behaviour. Before formalin injection different groups of mice were treated i.p. with vehicle
(10 mL/kg, negative control) and the dose–response of the investigated compound.

3.3.3. Carrageenan-Induced Inflammatory Pain and Oedema

The procedure used was described previously [35]. Briefly, the inflammation and
paw oedema was induced by subplantar injection of 0.1 mL of 1% carrageenan (made in
PBS) into the right hind paw of the rat. The paw volume was measured by the dislocation
of the water column of the plethysmometer (Plethysmometer 7140, Ugo Basile). The
hyperalgesic response to mechanical stimuli was measured using Analgesy Meter 37215,
Ugo Basile. The intensity of the applied force, in grams, was recorded when the paw was
withdrawn (withdrawal threshold). Moreover, the hyperalgesic response to thermal stimuli
was determined by using a plantar test apparatus (Commat Ltd., Ankara, Turkey). The
latency to the heat stimulus was automatically recorded. Three subsequent applications of
the heating stimulus were done, separated by 1- to 2-min intervals, and the mean of these
measures was taken.

3.3.4. Histamine- and Chloroquine-Induced Pruritus

The surface (around 2 cm2) of the mice’s nape was shaved at least 2 days prior to
experiments. On the day of the experiment, mice were individually placed in plastic
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chambers (15 × 15 × 30 cm) and after the 30 min habituation period, they were given an
intradermal (i.d.) injection of histamine dihydrochloride (10 µmol/site) or chloroquine
(CQ, 200 µg/site), which were dissolved in physiological saline and administrated in the
constant volume of 20 µL. Immediately after the injection, scratching (series of movements
considered as a single scratching bout) of the injected site by the hind paw was counted
for 60 min or 30 min after histamine and CQ administration, respectively [77–80]. Before
pruritogens injection different groups of mice were treated i.p. with vehicle (10 mL/kg,
negative control) or the dose–response of investigated compound.

4. Conclusions

In two series (alicyclic and aliphatic), nineteen new alkylaminopiperazinyl-1,3,5-
triazines were obtained and pharmacologically evaluated. Most compounds (eleven)
showed comparable or weaker affinities for hH4R (100 < Ki < 600 nM) than the lead struc-
ture TR-AF-49 (Ki = 160 nM). Two compounds (6 and 7) had good affinities with Ki values
below 100 nM whereas for six compounds very low affinities were observed (Ki > 1000 nM).
The summary of SAR analysis is shown in Figure 10. Compounds with substituents such
as a cyclobutyl (3), a butyl (10) or a 3-methylbutyl (14) had a comparable affinity to the
lead TR-AF-49 (Ki ~ 200 nM). The introduction of a lower ring (a cyclopentyl instead of
a cyclohexyl) increased hH4R affinity (Ki < 100 nM) and compound 6 is the most potent
compound in both series. Other changes especially in the alkyl chain led to a decrease
in affinity.
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Figure 10. SAR analysis of hH4R affinities of alkyl derivatives of 4-(4-methylpiperazin-1-yl)-1,3,5-
triazin-2-amines.

All the compounds tested in functional assays (β-arrestin recruitment, cAMP accumu-
lation) in the agonist and antagonist modes showed only antagonistic effects. Although
the mode of action was the same (antagonistic), different behaviour was observed toward
the tested signalling pathways. Most of the compounds favoured the β-arrestin pathway.
Compound 6 showed the highest antagonist activity compared to the other compounds
tested and the reference ligand JNJ7777120. The analysis of calculated bias coefficients
clearly showed the balanced activity of this compound toward the cAMP and β-arrestin
pathways. Further in vitro studies of compound 6 demonstrated low neurotoxicity to
SH-SY5Y cells and hepatotoxicity to HepG2 cells. The PAMPA assay allowed us to estimate
the high capacity of compound 6 to penetrate BBB. In in vivo studies, we found that com-
pound 6, decreased nociceptive response in some animal models of inflammatory pain also
attenuating inflammatory oedema. Furthermore, we showed that the tested compound
decreased scratching behaviour in mice in different models of itch. However, compound 6
showed better efficacy and potency in decreasing scratching behaviour than in decreasing
the nociceptive response. This observed anti-inflammatory effect is not surprising as H4R is
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located in cells and tissues associated with inflammation. Our previous studies showed that
the aryl derivatives of 1,3,5-triazine (e.g., TR7) tested in in vivo models of inflammation
induced by carrageenan or zymosan decreased the production of inflammatory cytokines
such as TNFa and IL-1b and reduced the production of reactive oxygen species [35]. It is
possible that compound 6 shows a similar mechanism of action, but further studies are
needed to confirm this.

We consider that compound 6 is a selective H4R antagonist and has no significant
affinity to H1R (in a preliminary study, compound 6 showed 0% activity at 10 µM) and
histamine H3 receptor (data based on our previous experiments with H4R ligands [44]).

To conclude, compound 6 is a promising lead structure for structural modifications,
further in vitro studies (e.g., metabolic stability), and in vivo studies to test its efficacy in
other pain and itch models, and to try to find the mechanism of its anti-inflammatory effect.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/molecules28104199/s1, Spectral information (1H-NMR and 13C-
NMR) of synthesized compounds.
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Stark, H.; et al. Eosinophils adhesion assay as a tool for phenotypic drug screening-The pharmacology of 1,3,5–Triazine and
1H-indole like derivatives against the human histamine H4 receptor. Eur. J. Pharmacol. 2021, 890, 173611. [CrossRef]

58. Zampeli, E.; Tiligada, E. The role of histamine H4 receptor in immune and inflammatory disorders. Br. J. Pharmacol. 2009,
157, 24–33. [CrossRef]

59. Atanasov, A.G.; Zotchev, S.B.; Dirsch, V.M.; The International Natural Product Sciences Taskforce; Supuran, C.T. Natural products
in drug discovery: Advances and opportunities. Nat. Rev. Drug Discov. 2021, 20, 200–216. [CrossRef]

60. Al-Humaidi, J.Y.; Shaaban, M.M.; Rezki, N.; Aouad, M.R.; Zakaria, M.; Jaremko, M.; Hagar, M.; Elwakil, B.H. 1,2,3-Triazole-
Benzofused Molecular Conjugates as Potential Antiviral Agents against SARS-CoV-2 Virus Variants. Life 2022, 12, 1341. [CrossRef]
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