
Citation: Saltiel, J.; Krishnan, S.B.;

Gupta, S.; Chakraborty, A.; Hilinski,

E.F.; Lin, X. Photochemistry and

Photophysics of

Cholesta-5,7,9(11)-trien-3β-ol in

Ethanol. Molecules 2023, 28, 4086.

https://doi.org/10.3390/

molecules28104086

Academic Editor: Alistair J. Lees

Received: 21 April 2023

Revised: 8 May 2023

Accepted: 9 May 2023

Published: 14 May 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

molecules

Article

Photochemistry and Photophysics of
Cholesta-5,7,9(11)-trien-3β-ol in Ethanol
Jack Saltiel * , Sumesh B. Krishnan, Shipra Gupta, Anjan Chakraborty, Edwin F. Hilinski and Xinsong Lin

Department of Chemistry and Biochemistry, Florida State University, Tallahassee, FL 32306-4390, USA;
skrishnan2@fsu.edu (S.B.K.); shigupta@valdosta.edu (S.G.); anjanc@iiti.ac.in (A.C.);
hilinski@chem.fsu.edu (E.F.H.); xlin@chem.fsu.edu (X.L.)
* Correspondence: jsaltiel@fsu.edu

Abstract: Cholesta-5,7,9(11)-trien-3β-ol (9,11-dehydroprovitamin D3, CTL) is used as a fluorescent
probe to track the presence and migration of cholesterol in vivo. We recently described the photo-
chemistry and photophysics of CTL in degassed and air-saturated tetrahydrofuran (THF) solution,
an aprotic solvent. The zwitterionic nature of the singlet excited state, 1CTL* is revealed in ethanol, a
protic solvent. In ethanol, the products observed in THF are accompanied by ether photoadducts
and by photoreduction of the triene moiety to four dienes, including provitamin D3. The major
diene retains the conjugated s-trans-diene chromophore and the minor is unconjugated, involving
1,4-addition of H at the 7 and 11 positions. In the presence of air, peroxide formation is a major
reaction channel as in THF. X-ray crystallography confirmed the identification of two of the new
diene products as well as of a peroxide rearrangement product.
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1. Introduction

Cholesta-5,7,9(11)-trien-3β-ol (CTL) and its close relative, 9(11)-dehydroergosterol
(DHE) are natural products [1–6] that possess fluorescent [7] conjugated triene moieties
embedded in the rigid cholestane skeleton.
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CTL differs from cholesterol only by the two additional double bonds at the C7 and C9
positions and DHE also differs in the side chain at C17. Consequently, CTL and DHE have
been used as fluorescence probes for studies of cholesterol trafficking and membrane organi-
zation in vivo [8–11]. Because CTL and DHE are photochemically active, their fluorescence
intensity decreases on prolonged excitation leading to photobleaching and fluorescence
recovery studies [12]. Our initial studies of the photochemistry and photophysics of CTL
and its 25-hydroxy derivative, HOCTL, were carried out in tetrahydrofuran (THF), an
aprotic solvent [13]. The presence of the OH substituent at C25 of CTL led to facile crystal-
lization of photoproducts and allowed us to confirm results from early pioneering studies
by the Windaus and Barton groups [14–16] using X-ray crystallography (Scheme 1) [13].
The peroxide had been obtained from DHE by eosin sensitization [14,15] and its structure
was proposed by Fieser [17] before the role of 1∆g singlet oxygen (1O2*) in such reactions
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was known. 1O2* luminescence observed on irradiation of an air-saturated solution of CTL
in CCl4 established the formation of CTL triplets that transfer energy to 3O2 [18].
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Scheme 1. Photochemistry of HOCTL in THF.

Followed by UV, the loss of CTL or HOCTL in THF is accompanied by the appearance
of a structureless peak at 261 nm due to the formation of the rearranged products RP1 or
HORP1 [13]. In contrast, a 1930 study found that upon direct excitation of DHE in ethanol,
the λmax of the photoproduct mixture is at 243 nm [19]. We resolve this discrepancy by
showing that on irradiation of HOCTL in degassed ethanol the rearranged product (HOP1,
37%) is accompanied by formation of at least two ethers: 6α-ethoxy-3β-cholesta-7,9(11)-diene-
3,25-diol (HOE1, 24.5%) and 6β-ethoxy-3β-cholesta-7,9(11)-diene-3,25-diol (HOE2, 13.4%); and
four dienes: 3β-cholesta-7,9(11)-diene-3,25-diol (HOD1, 9.1%), 3β-cholesta-5,7-diene-3,25-diol
(HOPro, 3.0%), 3β-cholesta-5,8-diene-3,25-diol, (HOD2 0.7%), and 3β-cholesta-6,8-diene-
3,25-diol (HOD3, 8.2%) (Scheme 2). In the presence of air, at high CTL concentrations,
peroxide formation is the dominant reaction in both solvents. The 25-OH substituent
does not influence the photochemistry or photophysics. During the HPLC purification of
HOCTLP, we isolated a hitherto unknown rearrangement product.
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Scheme 2. Additional photoproducts from HOCTL in ethanol.

2. Results
2.1. Photochemical Observations

A degassed 3.0 mL aliquot of HOCTL (5.43 × 10−5 M, contaminated with 2% HOPro)
in ethanol was irradiated in a 13 mm Pyrex test tube provided with a sidearm to which a
0.50× 1.0 cm quartz cell was attached via a graded seal. Figure 1 shows the UV evolution of
HOCTL irradiated at λexc = 313 nm at 24.0 ◦C (time sequence 0, 10, 20, 30, 40, 60, 80, 100, 120,
180, 270 and 360 min). The photoproduct mixture has λmax = 244 nm and an isosbestic point
is maintained at 279 nm. Similar results were obtained in parallel experiments on CTL.
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Figure 1. Irradiation of [HOCTL]0 = 5.43 × 10−5 M in ethanol.

2.2. Photoproducts

For product isolation and identification, we irradiated 520 mL of a HOCTL (2.65
× 10−4 M, contaminated with 5% HOPro) solution in a Hanovia reactor using a 450 W
Hanovia Hg lamp and the 313 nm filter solution. The solution was outgassed with Ar
for 1.0 h prior to the irradiation and a constant flow of Ar was maintained during the
irradiation. The progress of the photoreaction was monitored by UV-vis spectroscopy and
near completion was achieved after 6 h. The solution was concentrated with a Büchi rotary
evaporator and taken to dryness to remove ethanol using a vacuum pump. The 1H NMR of
the crude mixture was recorded in CD3OD, (Figure S1 in the Supporting Information, SI).
The mixture was then dissolved in 1.0 mL CHCl3 and injected onto the semi-preparative
HPLC column. Initial elution with hexane/ethanol with ethanol gradually increasing from
0 to 3% was followed by up to 70% ethanol to wash all ethers from the column. The flow
rate was 5 mL/min, 5.0 mL fractions were collected and the progress of the separation was
followed by UV. Separation of HOPro, HOCTL, HORP1, HOD1 and HOD2 was challenging
due to very similar retention times. HOPro, HOD1, HOCTL, and HORP1 eluted in fractions
containing 1.43–1.45% ethanol. The earliest fractions containing mainly HOPro were
discarded. Fractions rich in HOD1 were in the 1.43–1.44% ethanol range and fractions rich
in HORP1 eluted with 1.44–1.45% ethanol. HOD1 fractions were combined, concentrated,
dried and dissolved in 1.0 mL CHCl3 and separately chromatographed using hexane/ethyl
acetate as the solvent system with ethyl acetate gradually increasing from 0 to 20%. Pure
HOD1 was collected in 2–3 mL fractions at 14.8% ethyl acetate. HORP1 fractions were
also combined and subjected to a third chromatography with hexane/ethyl acetate eluent.
Pure HORP1 was collected in 0.6 mL fractions at 11.5% ethyl acetate. The final fractions
from the first chromatography containing HOE1 and HOE2 were combined, concentrated,
dried, dissolved in 1 mL CHCl3 and re-chromatographed using the hexane/ethanol solvent
system. Pure HOE1 and pure HOE2 were collected in fractions containing 2.4 and 2.6%
ethanol, respectively. The 1H NMR of pure HORP1 above was identical to the spectrum we
reported for the rearrangement product in THF [13]. Its UV spectrum was also identical
to the spectrum we observed in THF except that its λmax shifted from 261 nm in THF to
259 nm in ethanol. The UV spectra of the conjugated s-trans-diene, HOD1, λmax = 242 nm,
and of the s-trans-diene ether products, HOE1 and HOE2, λmax = 243 nm, account for the
λmax of the product mixture in Figure 1. Windaus et al. reported λmax = 245 nm [20] for
3β-∆7,9-cholestadienol and a more recent measurement gave λmax = 243 nm [21,22]. The
UV spectra of HOD1 and HOE1 are very similar (Figure 2), reflecting the shared presence
of the s-trans-diene chromophore. The UV spectrum of HOE2 is relatively structureless
(Figure S2). Isolation of the unconjugated diene, HOD2, was serendipitous as it appeared
as crystals in one of the chromatography fractions.
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1H NMR spectra of the photoproducts are shown in Figures S3–S6 in the Supplemen-
tary Materials. They are as follows: Figure S3, HOD1 (CD3OD, 500 MHz, δ): 5.49 (1H, d),
5.39 (1H, s), 3.50 (1H, m), 2.27–2.35 (1H, dd), 2.18 (1H, t), 2.11 (1H, d), 1.98 (2H, m), 1.89
(2H, m), 1.74–1.87 (2H, m), 1.69 (1H, m), 1.30–1.53 (17H, m), 1.17 (6H, s), 1.07 (1H, m), 0.97
(3H, d), 0.92 (3H, s), 0.54 (3H, s). Figure S4, HOD2 (CDCl3, 500 MHz, δ): 5.43 (1H, t), 3.54
(1H, m), 2.53 (2H, m), 2.26–2.38 (2H, m), 2.06–2.21 (3H, m), 1.96–2.03 (1H, m), 1.83–1.95 (4H,
m), 1.26–1.70 (23H, m), 1.21 (3H, s), 1.19 (3H, s), 0.99–1.10 (3H, m), 0.95 (3H, s), 0.65 (3H, s).
Figure S5, HOE1 (CD3OD, 500 MHz, δ): 5.57 (1H, d), 5.43 (1H, s), 3.73 (1H, m), 3.58 (1H, d),
3.47 (2H, m), 2.35 (1H, dd), 2.10–2.27 (4H, m), 1.9–2.06 (3H, m), 1.77–1.88 (3H, m), 1.23–1.55
(18H, m), 1.18–1.23 (3H, t), 1.17 (8H, s), 0.97 (6H, t) 0.55 (3H, s). Figure S6, HOE2 (CD3OD,
500 MHz, δ): 5.67 (1H, d), 5.40 (1H, s), 3.91 (1H, t), 3.67 (1H, s), 3.60 (2H, m), 2.40 (1H, dd),
2.36–2.43 (1H, dd), 2.22–2.28 (1H, t), 2.16–2.22 (1H, d), 1.94–2.06 (3H, m), 1.59–1.85 (5H, m),
1.23–1.58 (18H, m), 1.15–1.23 (13H, m), 1.07 (m, 2H), 0.97 (3H, m), 0.91 (1H, m), 0.61 (1H, s).

1H NMR spectra of HOD1 and HOD2, but without the 25-OH group, are known [23].
The α-ethoxy assignment to HOE1 is based on its COSY and NOESY 1H NMR spectra.
The COSY spectrum (Figure S7) allowed the assignment of the C6 proton at δ 3.58 (d, J
10 Hz–due to coupling to the C5 proton) based on its being correlated to the C7 vinyl proton
at δ 5.43 (broad s) (Figure S8 (expanded region of Figure S7)). The vinyl H at C11 at δ 5.57 (d)
is correlated with the C12 protons at δ 2.35 (dd) (Figure S9 (expanded region of Figure S7)).
The proximity of the C6 proton to the protons of the C17 methyl group, revealed by the
NOESY spectrum (Figure S10) established its β orientation and the α disposition of the
ethoxy group. Additional support for our assignment is provided by the 1H NMR spectra
in CDCl3 of the analogous ∆7 compounds shown below [24].
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The vinyl Hs at C7 of 6α-OH and 6β-OH appear at δ 5.18 (br s) and 5.45 (br d),
respectively, and the Hs at C6 appear at 3.8 (m) and 3.92 (m) in the same order. We observed
the same chemical shift difference in the same direction for the C6 proton in HOE1 (δ 3.58)
and HOE2 (δ 3.68), Also significant is the appearance of the C7 vinyl Hs of 6α-OH and
HOE1 as broad singlets and the C7 vinyl Hs of 6β-OH and HOE2 as broad doublets.

HOCTLP, a major product from the irradiation of HOCTL in ethanol in the presence of
air [13], was also purified by semi-preparative HPLC. During a purification run, we noticed
the formation of small crystals in one of the fractions. Recrystallization from ethanol gave
X-ray quality needle-like crystals that correspond to a peroxide rearrangement product, RP2,
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with a 5-membered A ring and a 7-membered B ring (Scheme 3). The 1H NMR spectrum of
the compound recorded in CDCl3 is shown in Figure S9. Characteristic peaks in the 1H
NMR spectrum of RP2 in CDCl3 were a singlet at δ 13.94 for the hydrogen-bonded OH
proton and a triplet at δ 5.460 for the single vinyl proton.
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Scheme 3. HOCTLP thermal rearrangement.

2.3. X-ray Structures

We concentrated our studies on HOCTL because of the relative ease of obtaining good-
quality crystals when the 25-hydroxy group is present. Definitive structure assignment to
the two diene photoproducts, HOD1 and HOD2, was achieved using X-ray crystallography
(Figure 3). The X-ray crystal structure of the peroxide rearrangement product is shown
in Figure 4. Mercury cif files and structural details are provided in Tables S1–S22 in the
Supplementary Materials.
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2.4. Photoproduct Quantum Yields

The quantum yield measurement of HORP1 formation in ethanol was carried out in
parallel with the previously described experiment [13] in THF. HOCTL contaminated with
11% Pro based on 1H NMR and UV analysis was used. Three-milliliter aliquots of degassed
HOCTL solutions, 4.01× 10−3 M in ethanol, were irradiated in the Moses merry-go-round [25]
in parallel with the 3.0 mL 4.27 × 10−2 M degassed pentane solution of trans-stilbene, t-St,
(0.011% cis-stilbene by GC), used for actinometry. The samples were immersed in a water
bath whose temperature was maintained at 25 ◦C. A 450 W Hanovia lamp was employed
together with the 313 nm filter solution. Pro is transparent at λexc = 313 nm and does not
interfere with these measurements. Following 12 h irradiation, HOCTL conversions to
HORP1 based on the relative areas of the vinyl protons being 7.4% in ethanol (1H NMR),
while trans-→ cis-stilbene conversion corrected for backreaction [26] was 12.38 ± 0.23%
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cis-stilbene. With the use of φtc = 0.52 in the actinometer [25], we obtain φHORP1 = 0.024
in ethanol. This experiment was repeated with pure HOCTL, 1.0 × 10−3 M, and [t-St] =
4.01 × 10−2 M, as above, except that the irradiation was carried out with a 550 W lamp at
26.4 ◦C. Conversions were 8.33% HORP1 and 4.46% c-St (corrected) confirming the φHORP1
= 0.024 value.

The presence of an isosbestic point in the UV spectra in Figure 1 and the fact that
spectral matrices obtained in similar experiments on PCA-SM treatment behave as robust
two-component systems (see Figures S10 and S11 in the Supplementary Materials), shows
that the product composition is maintained throughout the photoreaction. Therefore, the
final photoproduct composition reflects the relative formation quantum yields. The ex-
periment was repeated without any HOPro contaminant in order to establish HOPro as
a photoproduct. The vinyl and the C18 methyl protons contribute almost uniquely to the
spectra and were used to determine the product composition. Expanded NMR regions in
CD3OD from the irradiation of pure HOCTL are shown in Figure 5. Quantum yields were
obtained from product contributions, determined by cutting and weighing in triplicate the
vinyl and C18 methyl peaks, and setting the masses of the HORP1 peaks equal to a quantum
yield of 0.024. Only in the case of HOD2 were chemical shifts based on spectra measured in
CDCl3 (see Supplementary Materials). The two 1H NMR analyses give remarkably similar
product yields (see the Supplementary Materials), the averages of which are shown in
Table 1. The isolated photoproducts account for 88% of HOCTL loss.
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Table 1. Photoproduct quantum yields in degassed ethanol, 25 ◦C a.

Compound C18 Me/δ Vinyl H/δ % b φP

HOPro 0.657 5.57 C6 3.0 (2) 0.0019

HORP1 0.590 5.45/5.38 c 37.0 (2) 0.0240

HOD1 0.542 5.52 C11 9.1 (2) 0.0059

HOD2 0.627 5.45 C6 0.7 (1) 0.00045

HOD3 5.82 C7 8.2 (2) 0.0053

HOE1 0.558 5.60 C11 24.5 (2) 0.0159

HOE2 0.609 5.69 C11 13.4 (2) 0.0087
a 1H NMR spectra in CD3OD, except that HOD2 was measured in CDCl3. b Values in parentheses are uncertainties
in the last significant figure(s) shown. c Vinyl protons at C7 and C11, respectively.

In the presence of air, peroxide formation becomes the dominant photoreaction. Fur-
thermore, as in THF [13], the relative yield of peroxide increases at higher CTL or HOCTL
concentrations. Measurements in ethanol were carried out in parallel with those described
for THF [13]. Peroxide quantum yields as a function of [HOCTL] are given in Table 2.

Table 2. Peroxide (HOCTLP) quantum yields, 24 ◦C.

103[HOCTL]/M−1 φPer τ∆/µs

1.34 0.055 14.8

2.00 0.071 14.6

4.01 0.093 14.0

2.5. Fluorescence Measurements

We determined the effect of O2 on HOCTL fluorescence intensity and fluorescence
lifetime by measuring the fluorescence of Ar-bubbled, air-saturated and O2-bubbled ethanol
solutions (Table 3). For the fluorescence quantum yield measurements, the temperature
in the jacketed cuvette was maintained at 20.0 ◦C by circulating cold water from a Neslab
RTE-4DD heating/cooling bath. Values measured at 25 ◦C, are also shown in Table 3. For
the lifetime measurements, samples were excited with a 295 nm, <0.75 ns diode pulse, and
fluorescence decay was monitored at 367 nm at room temperature T (20.3 ◦C). Average
lifetime values and the range of χ2 values are given in Table 3. A second minor (3–5%)
longer-lived component (3–6 ns) was ignored, as it is probably due to an impurity. We
calculated the [O2] values in Table 3 for air- and O2-saturated ethanol using O2 mole
fraction data [27], the density [28] and the vapor pressure of ethanol at 20 ◦C [29].

Table 3. O2 quenching of HOCTL fluorescence in ethanol, 20 ◦C.

[O2]/M φf 25 ◦C φf 20 ◦C τf/ns χ2 10−8 φf/τf

Ar 0 0.0281 0.0353 0.206 1.9 1.71

Air 0.00194 0.0277 0.0345 0.200 1.7 1.72

O2 0.00924 0.0245 0.0322 0.188 1.5 1.72

2.6. HOCTL Triplet

A 3 mL aliquot of an ethanol solution containing 3.79 × 10−3 M HOCTL and 2.5 ×
10−3 M benzophenone was transferred into a Pyrex tube equipped with a standard taper
joint, provided with a grease trap and attached via a graded seal to a standard 1.0 cm2

UV cell. The solution was degassed using six freeze-pump-thaw cycles to <10−4 Torr and
flame-sealed at a constriction. Pulse excitation at 370 nm led to transient spectra recorded
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periodically in the 0–100 µs time scale. As in THF [13], in addition to the known transient
absorptions of the benzophenone triplet and the benzophenone ketyl radical [30,31], we
observed a new transient absorption, assigned to 3HOCTL*, with λmax = 390 nm and a
shoulder at 408 nm (Figure 6a) slightly blue-shifted from the values in THF [13]. Decay
monitored at 395 nm, Figure 6b, is monoexponential and gives τ = 73.5 µs.
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3. Materials and Methods
3.1. Materials

Sources and purifications of 7-dehydrocholesterol (provitamin D3, Pro), 25-hydroxypro-
vitamin D3 (HOPro) as well as the syntheses and purifications of their 9(11) dehydro
derivatives, CTL and HOCTL, were previously described [13]. Ethanol (Koptec, 200 proof,
absolute/anhydrous), hexane (EMD, HPLC grade), CHCl3 (EMD, HPLC grade) and ethyl
acetate (EMD, HPLC grade) were used as received.

3.2. Analytical Methods

Analysis of product composition was by GC, 1H NMR, UV-vis, fluorescence, MS and
GC/MS, as previously described [13]. We employed a Beckman Ultrasphere 5 µm Si 250
× 10 mm column for semi-preparative HPLC purifications. The solvent systems used
were hexane/ethyl acetate and hexane/ethanol for HOCTL photoproducts: 5 mL/min,
monitored at 240 or 280 nm. UV-vis absorption spectra were measured on a Varian Cary 300B
spectrometer. Fluorescence spectra were measured using a Horiba Fluoromax 4 fluorometer.
Fluorescence lifetimes were determined using a different Horiba Fluoromax 4 instrument
equipped with a time-correlated single-photon counting accessory and an R928 PMT detector
(Hamamatsu). The light source was a 296 nm nanoLED (Horiba) having a pulse duration
of <0.75 ns and a 1 MHz repetition rate. The photon count was set at 10,000 and the time-
to-amplitude converter range was set at 50 ns. The instrument response function was
obtained by collecting Rayleigh scatter at 296 nm. Fluorescence lifetimes were determined
by reconvoluting the instrument response function with exponential decay using DAS6
(Horiba) fluorescence decay analysis software. The quality of the fits was judged by χ2

values, standard deviations of derived lifetimes and visual inspection of the residuals.
Absolute fluorescence quantum yields were measured with the use of a Hamamatsu
Quantaurus-QY spectrometer equipped with a 150 W Xenon arc lamp. The instrument
employs an integrated sphere sample chamber with a cooled back-thinned 1024-channel
charge-coupled device sensor as the detector. This avoids the need for a fluorescence standard
by using the attenuation in the area of the Rayleigh scattered light peak at λexc = 325 nm to
measure photon absorption. HOCTL solutions were outgassed with oxygen or argon for 2 h
prior to quantum yield and lifetime measurements. Transient absorption measurements
and triplet decay kinetics were measured using an Edinburgh Instruments LP980-KS Laser
Flash Photolysis spectrometer. A Continuum Nd:YAG laser provided the excitation pulse
and transient absorption was monitored with a 150 W Xenon lamp. A Bruker 500 MHz
NMR spectrometer was used to measure NMR spectra in CDCl3 and CD3OD.
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3.3. Crystallography

HOD1 and HOD3 crystals, approximately 0.33 × 0.24 × 0.07 mm3, were adhered to a
MiTeGen loop with Paratone oil. Crystallographic data were collected at 150 K on a Rigaku-
Oxford Diffraction XtaLAB-Synergy-S diffractometer with a Hypix-6000HE (Hybrid Photon
Counting) detector, using Cu-Kα radiation of wavelength 1.54187 Å. The intensity data
were measured by ω-scan with 0.5◦ oscillations for each frame with an intensity greater
than 10:1 for the data-to-parameter ratio. The program suite CrysAlisPro was used for data
collection, absorption correction, and data reduction. The structures were solved with the
dual-space algorithm using SHELXT and were refined by full-matrix least-squares methods
on F2 with SHELXL-2014 using the GUI Olex2 program [32]. HOP2 and HOP3, C27H44O2,
crystallized in the orthorhombic crystal system, with the space group P212121. All non-
hydrogen atoms were refined anisotropically. Hydrogen atoms were inserted at calculated
positions or, if possible, based on difference Fourier analysis, and refined with a riding
model or without restrictions.

3.4. Irradiation Procedures

Sample preparation and degassing procedures were described previously [26]. We
used Hanovia reactors for preparative experiments and a Moses merry-go-round [25]
apparatus, immersed in a thermostatted water bath, for quantum yield measurements.
We employed medium-pressure 200 W and 450 W Hg lamps. The 313 nm Hg line was
isolated using a filter solution prepared by dissolving potassium chromate, 0.4 g, and
sodium carbonate, 1.50 g, in 1.0 L. This solution was also used in the THF experiments [13].
The trans → cis photoisomerization of stilbene in pentane (λexc = 313 nm was used for
actinometry), φtc = 0.52 [26]. Pyrex tubes, 13 mm o.d., fitted with standard taper joints and
grease traps were loaded with 3.0 mL aliquots of solutions. These were degassed using 4–6
freeze-pump-thaw cycles to <10−4 Torr and flame-sealed at a constriction. All operations,
including analyses, were performed under nearly complete darkness (red light). Ar, N2
and O2 outgassed solutions were used in some experiments.

4. Discussion

The results in Table 1 show that 63% of the HOCTL photoproducts involve reaction
with ethanol. Furthermore, 47% of the photoproducts, HOE1, HOE2 and HOD1 have the
same s-trans heteroannular diene moiety. This conjugated 1,3-diene accounts for the shift in
the photoproduct UV λmax from 260 nm in THF [13] to 244 nm in ethanol (Figure 1) [19].
With four ring residues and two exocyclic double bonds, the Woodward–Fieser rules [33,34]
predict the λmax of all three s-trans-1,3-dienes to be at 244 nm, very close to the λmax in
Figures 2 and S2. Although HORP1 at 37% is the major photoproduct in degassed ethanol, it
appears as a shoulder at ~260 nm in Figure 1 due to its significantly lower molar extinction
coefficient [13].

4.1. Mechanism

Three mechanisms for the photoaddition of alcohols to olefins have been documented.
One involves alkene photoionization followed by reaction of the radical cation with al-
cohol [35], the second involves photochemical formation of a high-energy ground state
intermediate, such as a trans-cyclohexene [36,37], or a bicyclobutane [38,39] that reacts
with alcohol, and the third involves trapping of an excited state twisted zwitterionic in-
termediate [40,41]. Dauben and Ritscher first proposed a zwitterionic excited diene state
as the intermediate in the stereospecific photocyclization of trans-3-ethylidenecyclooctene
to bicyclobutane [42]. Salem’s sudden polarization effect [43] close to orthogonal alkene
geometries, confirmed recently by more advanced calculations on the stilbenes [44–47],
provided theoretical support. Solvent effects on the lifetime of the tetraphenylethylene
excited transient [48] as well as solvent [49–53] and substituent [54] effects on cis/trans
photoisomerization, all support formation of twisted zwitterionic intermediates.
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The photoreactions of CTL or HOCTL with ethanol are consistent with protonation of
a zwitterionic excited state. The most relevant precedents for the addition and reduction
photoproducts that we observed (Scheme 2) are the toxisterols B and R that were obtained
from the over-irradiation of 7-dehydrocholesterol (Pro) in ethanol or methanol [55,56]. The
over-irradiation of ergosterol leads to similar results judging from the evolution of UV
spectra obtained in the course of the irradiation [57]. The B molecules are ethers that are
thought to arise by 1,6-addition of alcohol to the conjugated triene moieties of previtamin D,
Pre, and/or tachysterol, Tachy, and R, an unconjugated diene, is the product of a competing
photoreduction. Diallyl zwitterionic intermediates were envisioned that undergo proto-
nation at C9 followed by alkoxide addition or hydride transfer [56]. Two twisted diallyl
zwitterions should be accessible from s-cis,s-trans- and s-cis,s-cis-conformers of either Pre or
Tachy (Scheme 4). Protonation by methanol or ethanol at C6 of the zwitterions in Scheme 4
would give the planar pentadienyl cations shown in Figures 7 and 8 of [55] paired with
methoxide or ethoxide anions.
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The alkoxide counterion gives the observed ethers by coupling at C10 or the diene
reduction products by hydride transfer at C6. Starting from different conformers of Pre
and Tachy affords the desired pentadienyl cations [56] and avoids their proposed highly
unlikely equilibration [57]. Havinga’s NEER principle now applies and there should be an
excitation wavelength dependence on the composition of B and R toxisterols.

The alcohol photoreactions with CTL and HOCTL are simpler than those shown in
Scheme 4 because the structural rigidity of the conjugated triene chromophore eliminates s-
cis-/s-trans-conformer equilibration and cis-/trans-isomerization from consideration. Three
of the new photoproducts in ethanol, HOE1, HOE2 and HOD1 can form by protonation at
C5 to yield an ion pair that collapses to the ether products or, via hydride transfer, to the
diene, by reaction at C6 (Scheme 5). Scheme 5 shows the three resonance structures of the
pentadienyl cation and the resonance hybrid. It also shows Pauling bond order calculations
indicating that, if the ethoxide ion could freely move along the conjugated cation, the
principle of least nuclear motion would favor reactions at C8 [58,59]. Because all three major
photoproducts involve reaction of the ion pair at C6, it appears that the reaction is controlled
by the proximity of the nascent ethoxide anion to the positive site [60]. Protonation at C11
gives a pentadienyl cation that could form the minor reduction photoproducts, HOPro and
HOD2 (Scheme 6). The proximity of the nascent ion pair favors hydride transfer at C9 to
give HOPro, whereas the principle of least nuclear motion in the cation favors hydride
transfer at C7 to give HOD2. We tend to discard the idea that two molecules of ethanol react
with S1 of HOCTL in a concerted fashion, one to deliver a proton and the other to deliver
ethoxide or hydride, because ethoxide should be a much better hydride donor than ethanol.
Hydride transfer can give the endocyclic conjugated s-cis-1,3-diene, HOD3, shown on the
right at the bottom of Schemes 5 and 6. Although not isolated, there is strong evidence
that it is present. The vinyl protons of the known 1H NMR spectrum of this diene without
the 25-OH group [23] appear as a pair of doublets at δ 5.817 and 5.377. They are almost
coincident with the pair of doublets at δ 5.810 and 5.343 in the 1 H NMR spectrum of the
product mixture (circled in Figure 5). Based on the area of the vinyl proton signals this
product accounts for 8.2% of HOCTL loss.
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4.2. Photochemical Kinetics

Except for the photoreactions with ethanol, the reaction sequences that account for
the photochemistry of CTL or HOCTL in degassed or air-saturated ethanol are the same
as for THF [13]. In both solvents, Equations (1)–(6) apply under degassed conditions, and
Equations (7)–(10) are additional steps in the presence of O2. We do not show singlet
oxygen, 1O2*, formation in Equation (7) because it was shown not to form in THF [13].

1CTL hn→ 1CTL∗ (1)

1CTL∗
kf→ 1CTL + hn (2)

1CTL∗
kp1→ 1P1 (3)
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1CTL∗
kis→ 3CTL∗ (4)

1CTL∗
kds→ 1CTL (5)

3CTL∗
kdt→ 1CTL (6)

1CTL∗ + 3O2
kox

s
→ 3CTL∗ + 3O2 (7)

3CTL∗ + 3O2
kox

t
→ 1CTL + 1O2

∗ (8)

1CTL + 1O2
∗ kper→ CTLP (9)

1O2
∗ kdox→ 3O2 (10)

Under all conditions, Pe designates the sum of all ether and reduction photoproducts in
ethanol (Equation (11)). Because their composition does not change as the reaction proceeds to
completion, the sum of the pseudo unimolecular rate constants involved in their formation
is designated ke.

1CTL∗ + CH3CH2OH
ke→ Pe (11)

4.3. Photophysics

The φf/τf ratios in Table 3 give kf = 1.72 × 108 s−1 at 20 ◦C (Equation (12)), where τs =
(kf + kp + kis + kd + ke)−1. The significant deviation of this value from 1.45 × 108 s−1, the
value we reported recently for HOCTL in THF at 20 ◦C [13] led us to re-examine the THF
data in [13]. We found that while the lifetimes we had reported were indeed measured at
20 ◦C, the fluorescence quantum yields were measured at 22.8 ◦C. Table 3 shows that there
is a significant increase in the φf of HOCTL on lowering the temperature from 25 to 20 ◦C.
By interpolation, we expect a 14% increase in φf on lowering the temperature from 22.8
to 20.0 ◦C in ethanol. Applying this increase to the φf we reported for THF at 20 ◦C [13]
under Ar-outgassed conditions gives kf = 1.70 × 108 s−1, in excellent agreement with the
values in ethanol in Table 3. It places our values in the middle of the wide kf range that we
calculated [13] from the data in Smutzer et al. in a variety of solvents [61] and well within
experimental error of the value reported by Hyslop et al. in ethanol at 37 ◦C [62].

ϕf = kfτf (12)

The effect of O2 on fluorescence quantum yields and lifetimes is given by Equations (13)
and (14), respectively, where φf

0 = kfτf
0 and τf

0 = (kf + kRP1 + kis + kd + ke)−1 are the
fluorescence quantum yield and lifetime in the absence of O2. Plots of the data in Table 3
according to Equations (13) and (14) are shown in Figure 7. The slope of the lifetime plot
in Figure 7a gives kS

ox = 4.9 × 1010 M−1s−1 and the slope of the Stern–Volmer plot in
Figure 7b gives kS

ox = 5.1× 1010 M−1s−1. These values are the same within experimental
error and indicate that oxygen quenching of 1HOCTL* in ethanol is diffusion controlled as
in THF [13].

ϕ0
f

ϕf
= 1 + kS

oxτ0
f [O2] (13)

1
τf

=
1
τ0

f
+ kS

ox[O2] (14)
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The lowest excited singlet and triplet lifetimes of HOCTL in ethanol, 0.206 ns and
73.5 µs, respectively, are about 10% smaller than in THF [13]. The smaller 1HOCTL* lifetime
in ethanol was expected due to the additional photoreactions with the solvent.

4.4. Photochemistry

Application of the steady-state approximation on all excited species in the above mech-
anism leads to the quantum yield expression in Equation (15) for rearrangement product
formation, where kp1 is the rearrangement rate constant in Equation (3). Our quantum
yield for HORP1 formation in degassed ethanol, 0.024, and τs = 0.206 ns from Table 3 give
kP1 = 1.17 × 108 s−1 for HOCTL, essentially identical to the value we obtained for the
rearrangement rate constant in THF [13]. Quantum yields for the additional photoproducts
in ethanol are given by Equation (16), where ke is the pseudo-unimolecular rate constant
for the trapping of 1HOCTL* by ethanol in Equation (11) and f n are the fractions of the
cations in Schemes 5 and 6 that give addition or reduction product Pn. Assuming that
ethanol trapping is exclusively by protonation and that cation formation is irreversible,
ke = 1.99 × 108 s−1. It is important to note that all identified ethanol photoproducts involve
protonation at C5 or C11 the two terminal positions of the triene moiety with a strong
preference for the C5 position. Those reactions give pentadienyl cations, confirming what
JS was once told by Donald R. Arnold: “When a conjugated system gives a zwitterion, it
does so by letting the positive charge occupy the biggest hole [63]”.

ϕP1
= kP1 τf (15)

ϕPn
= fnkeτf (16)

When the irradiation is carried out in ethanol in the presence of O2, the formation of
peroxide is subject to the same considerations that we described in detail for the reaction
in THF [13]. Accordingly, the peroxide quantum yields in Table 2 were treated using
Equation (17), where τ∆ and φ∆ are the lifetime and formation quantum yield of 1O2*,
respectively.

The presence of 11% HOPro as a contaminant in the HOCTL used in this experiment
causes a variation in τ∆ as shown in Equation (18). HOPro competes for 1O2* but not for
the light.

1
φHOCTLP

= (1 +
1

kperτ∆[HOCTL]
)

1
φ∆

(17)

τ∆ =
1

kdox + kPro[HOPro]
(18)

A summary of the many measurements of the lifetime, τdox = 1/kdox, of 1O2* in pure
ethanol has been presented [64], and they are in reasonable agreement. We choose to use
the largest of these, 15.3 ± 0.7 µs [65], because reaction of singlet oxygen with the sensitizer
used to produce it may reduce its lifetime. The overall rate constant of the reactions of
1O2* with Pro or HOPro, kPro, has not been measured in ethanol. Rate constants for the
reactions of ergosterol [66] with 1O2* are 1.21 × 107 M−1s−1 and 2.1 × 107 M−1s−1 in
tert-butyl methyl ether [67] and benzene [68], respectively. As in the case of THF [13], we
estimated τ∆ values in ethanol by assuming that the reactivities of Pro and HOPro with
1O2* in ethanol are the same as the reactivity of ergosterol in tert-butyl methyl ether. Those
τ∆ values are given in the third column of Table 2 and the plot of the peroxide quantum
yields according to Equation (17) is given in Figure 8.

The intercept/slope ratio of the plot of the inverse of the peroxide quantum yield
against 1/(τ∆[HOCTL]) in Figure 8 gives kper = 2.9 × 107 M−1s−1 in ethanol. The uncer-
tainty in this value is large. It is larger than kper = 1.07 × 107 M−1s−1, the value we had
estimated in THF. Our THF value was based on the use of τ∆ = 30 µs [69] for the lifetime of
singlet oxygen in pure THF. With the use of τ∆ = 20 µs, the value supported by more recent
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publications [70,71], we obtain kper = 1.93 × 107 M−1s−1 in THF, in better agreement with
our value in ethanol. The inverse of the intercept gives φ∆ = φis = 0.16 in ethanol. With
the use of τf = 0.20 ns from Table 3 we obtain kis = 8.0 × 108 s−1 for HOCTL in ethanol, in
close agreement with our value in THF [13]. We estimate the uncertainty in these values to
be ±30%.

Our literature search for HOCTLP thermal rearrangement products was not fruitful. It
appears that HOCTLP is quite stable and that the rearrangement in Scheme 3 has not been
reported previously. A plausible multistep mechanism for the reaction is given in Scheme 7.
Although some of the steps are combined in the Scheme, we do not wish to imply that
they are necessarily concerted. The first intermediate shown in Scheme 7 is a hydroperoxy-
substituted carbocation. Although such species are common intermediates in reactions
of peroxides, they are, counterintuitively, less stable than their hydroxy analogs [72,73].
Consequently, their subsequent transformation into (a) tertiary allylic cation and (b) oxacar-
benium ion (i.e., the protonated ketone), is likely to be thermodynamically favorable. Note
that the hydride shift shown in the second intermediate in Scheme 7 would form an ox-
acarbenium ion. So the rearrangement proceeds from a less stable hydroperoxycarbocation
to a more stable hydroxycarbocation—i.e., downhill thermodynamically. A recent general
reference describing the stabilization of cations by oxygen is available [74].
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