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Abstract: Rice protein is a high-quality plant-based protein source that is gluten-free, with high
biological value and low allergenicity. However, the low solubility of rice protein not only affects its
functional properties such as emulsification, gelling, and water-holding capacity but also greatly limits
its applications in the food industry. Therefore, it is crucial to modify and improve the solubility of rice
protein. In summary, this article discusses the underlying causes of the low solubility of rice protein,
including the presence of high contents of hydrophobic amino acid residues, disulfide bonds, and
intermolecular hydrogen bonds. Additionally, it covers the shortcomings of traditional modification
methods and the latest compound improvement methods, compares various modification methods,
and puts forward the best sustainable, economical, and environmentally friendly method. Finally, this
article lists the uses of modified rice protein in dairy, meat, and baked goods, providing a reference
for the extensive application of rice protein in the food industry.
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1. Introduction

Rice protein is a high-quality, gluten-free plant-based protein derived from byprod-
ucts of rice processing. It contains a comprehensive range of amino acids (including all
20 essential and non-essential amino acids), a well-balanced ratio, and one of the highest
biological values of all cereal crops [1]. Additionally, rice protein is characterized by its
light color, mild odor, and low allergenicity [2]. Moreover, rice protein hydrolysates have
been reported to possess various biological activities, such as antihypertensive, antioxidant,
anticancer, and anti-obesity effects [3–6]. However, the poor water solubility of rice protein
significantly restricts its applications in the food industry and related fields.

Protein solubility typically refers to the concentration of protein in a saturated aqueous
solution in equilibrium with the solid phase (crystalline or amorphous) under external
conditions such as pH, temperature, and ionic strength [7]. Water solubility is one of the
important thermodynamic properties of proteins, and it is a prerequisite for other functional
properties of proteins, such as emulsification, foaming, gelation, and digestibility. It also
further determines the texture and stability of processed food products. However, rice
protein has a relatively low overall water solubility, and the high content of alkaline-soluble
glutelin makes it difficult to dissolve in slightly acidic or neutral solutions, resulting in
low utilization efficiency [8]. This greatly affects its applications in the food and related
fields. In order to improve the solubility and utilization of rice protein, various physical
(ultrasound, high-pressure, and microwave), chemical (glycosylation, phosphorylation,
and deamidation), and biological enzyme-based modification methods can be used, and
these techniques can also be combined to produce a simple, safe, and efficient modification
of rice protein. The modified rice protein thus obtained has great potential for application
in food processing [9].
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This article provides an overview of recent methods used for modifying and increasing
the solubility of rice protein and further explores the application of modified rice protein in
food production, such as dairy products, meat products, and baked goods.

2. Analysis of the Water Solubility Characteristics and Reasons for Rice Protein

According to the solubility of each constituent protein, rice protein can be divided into
four categories, of which the most abundant (about 80%) is alkali-soluble globulin, which
is mainly composed of 30–40 kDa α (acidic) subunit and 17–23 kDa β (basic) subunit. The
other categories include 1–5% alcohol-soluble protein, 2–10% salt-soluble globulin, and
2–5% water-soluble albumin. The main subunits are 11~24 kDa, 19–25 kDa, and 10~100 kDa,
respectively [9,10]. The properties of the predominant alkali-soluble glutelin determine the
overall properties of rice protein.

The low water solubility of rice glutelin is primarily due to the presence of many
hydrogen bonds between and within its molecules, which are formed by the amide groups
on the glutamine and asparagine residues interacting with the smaller-sized glycine and
alanine residues through steric hindrance [8]. Figure 1 shows the primary structure and
amino acid residues composition of rice glutelin from three rice sources (Oryza sativa,
Oryza sativa Japonica Group, and Oryza sativa Indica Group). It can be found that rice
glutelin contains 17.23–18.60% of glutamine and asparagine residues, and the hydrogen
bonds formed by these two amino acid residues replace a large number of hydrogen bonds
between amide groups and water molecules, thereby reducing the water solubility of rice
glutelin [11].
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Figure 1. Primary structures and amino acid residue compositions of rice glutelin from three
different sources.

Secondly, there are disulfide bonds between rice glutelin subunits, which are formed
by the coupling of thiol groups of two different cysteine residues. As shown in Figure 1,
rice glutelin contains a small number of cysteine residues (1.40~2.00%), which can interact
with each other to generate disulfide bonds within or between subunits, especially between
subunits, leading to the formation of large molecular complexes and a decrease in the water
solubility of rice glutelin [12].
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In addition, rice glutelin contains 37.27~39.60% hydrophobic amino acid residues (as
shown in Figure 1), which can cause hydrophobic interactions between amino acid residues
and result in the formation of a stable, tensile protein network structure between subunits,
which limits the entry of water molecules [13] and therefore reduces its water solubility.

3. Methods for Modifying Rice Protein to Increase Solubility

By taking corresponding measures to address the low water solubility of rice glutelin
mentioned above, it is possible to effectively improve the water solubility of rice glutelin and
thus enhance the overall solubility of rice protein. The commonly used methods include the
following: (1) utilizing the interaction of polysaccharides, polyphenols, composite proteins,
and phosphates with rice protein to increase the number of hydrophilic hydroxyl groups or
hydrogen bonds formed with water molecules. (2) Using deamidation reactions to break
the amide bonds in the side chains of rice protein and reduce the formation of hydrogen
bonds between protein subunits. (3) Enzymatically hydrolyzing rice protein to break down
the large protein molecules into small peptide molecules and promote their binding to
water molecules.

3.1. Modification and Solubility Enhancement of Rice Protein by Polysaccharides

The hydroxyl groups within polysaccharide molecules have strong hydrophilic prop-
erties [14]. It is possible to effectively increase the hydrophilic properties of the protein
and thus improve its water solubility through covalent or non-covalent interactions be-
tween polysaccharides and proteins [15]. For example, the Maillard reaction, in which the
carbonyl group of the polysaccharide reacts with the amino group of the protein to form
a condensed product [16], can create covalent bonds between protein and polysaccharide
molecules. However, the compact globular structure of rice protein makes it challenging to
complete the Maillard reaction with polysaccharides in a short period of time [17], thereby
reducing the rate and extent of the Maillard reaction and affecting the solubility properties
of the conjugated products formed by the traditional Maillard reaction [18]. In recent years,
various assisting methods including ultrasound, ultra-high pressure, and microwave have
been used to improve or promote the efficiency of the Maillard reaction. These techniques
can successfully bring rice protein into adequate contact with polysaccharides, enhancing
the reaction efficiency and water solubility. The reaction process is illustrated in Figure 2.
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Figure 2. Improvement of solubility of rice protein by using microwaved-, high pressure- or
ultrasound-assisted Maillard reaction.

Ultrasound can effectively promote the mixing of protein and polysaccharide molecules,
accelerate the penetration speed of solvents into proteins, and thereby increase the Maillard
reaction rate [19]. Chen et al. [20] found that after 22 min of ultrasound treatment with
a power of 600 W, the spatial conformation of rice protein molecules changed from
a globular or blocky structure to a more uniform and loose lamellar structure, which
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was conducive to the entry of solvents and accelerated the Maillard reaction rate. The
solubility of the modified rice protein produced by the process was significantly improved
to 90.6%.

Ultra-high-pressure assistance can prevent protein denaturation and aggregation
caused by long-term heating, which is more conducive to the effective entry of solvents into
protein molecules during the Maillard reaction. Therefore, it is possible to improve the effi-
ciency of the Maillard reaction at lower temperatures [21]. In addition, ultra-high pressure
can cause rice protein to expand into a loose spatial conformation, promote the exposure of
hydrophobic groups, increase the content of free sulfhydryl groups, and thereby enhance
the gel strength of the protein [14]. Xiao et al. [22] prepared rice protein-xylose copoly-
mers with a high grafting degree under ultra-high hydrostatic pressure assistance, which
improved the solubility of rice protein (increased from 12.8% to 35.3%) and reduced the
formation of harmful by-products such as acrylamide, furan, and hydroxymethyl furfural.

Proper microwave treatment can also shorten the Maillard reaction time and enhance
the solubility of rice protein [23]. Meng et al. [24] found that microwave-assisted heating-
assisted protein–polysaccharide binding could increase the solubility of rice bran protein
to 90.97%. This is because microwaves have the ability to produce strong mechanical
collisions and shearing between protein and polysaccharide molecules, which facilitated
their adequate interaction. Therefore, more branched glucan may be grafted onto the
protein molecules, enhancing the protein’s solubility [25].

3.2. Modification and Solubility Enhancement of Rice Protein by Polyphenols

Polyphenols are a group of naturally occurring compounds derived from plants
that contain numerous polar hydroxyl groups, including phenolic acids, flavonoids, and
tannins, among others [26]. Polyphenols can form non-covalent bonds with proteins, in
which the hydrophilic phenolic hydroxyl groups in polyphenols can undergo hydrogen
bonding with proteins, and the aromatic rings can interact with the hydrophobic groups of
proteins through hydrophobic interactions. Polyphenols can also undergo covalent binding
with amino acid residues on proteins, especially lysine residues, cysteine residues, and
tryptophan residues, under alkaline conditions, thereby altering the functional properties
of the protein [27].

The non-covalent binding between polyphenols and proteins can be simulated by
computer docking. Therefore, in this study, AutoDock Vina docking software was used
to analyze the interactions between four polyphenols (namely, gallic acid, procyanidins,
resveratrol, and ferulic acid), and specific amino acid residues located at the active site of
rice glutelin (gene: GLUA2), using its three-dimensional structure as a model (as shown
in Figure 3). During the molecular docking process, the polyphenol is considered to be
a flexible structure, while the protein is viewed as a rigid structure. The best docking result
is chosen based on the principle of minimum docking energy, and Discovery Studio 2021
Client software is used for visualization display. The results showed that the four types of
polyphenols mainly formed hydrogen bonds with Thr381, Arg404, Gln110, Gln160, and
Gln382, and formed hydrophobic interactions with Val180, Val187, and Arg403. Among
them, rice glutelin had more interaction sites with gallic acid, including Asp322, Thr381,
Arg404, Gln160, and Gln386, mainly through hydrogen bonding, which was consistent
with the research results of Dai [28]. The interaction between rice glutelin and ferulic acid
is mainly through hydrophobic interactions, including the interaction with hydrophobic
amino acid residues such as Leu407, Ile109, Ile185, Val187, Tyr379, Thr387, Phe430, and
Ile428. The interaction between rice glutelin and ferulic acid can lead to a conformational
change of rice glutelin, decrease the surface hydrophobicity, and increase water solubility
and emulsifying properties [29].
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Alkaline treatment, enzymatic treatment, radical coupling, and ultrasound-assisted
methods can further improve the covalent binding efficiency between polyphenols and
proteins. According to the alkaline coupling approach, phenolic hydroxyl groups are
converted to quinones or semiquinones under alkaline conditions, which can further
bind to more amino acid residues and alter the physicochemical properties of the target
protein [30]. Wang et al. [29] found that under the condition of pH 9.0, the covalent complex
of rice bran protein hydrolysate (10 mg/mL) and ferulic acid (1.5 mg/mL) had strong
emulsifying (35.10%) and antioxidant properties (the DPPH clearance rate is 49.70% and the
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ABTS+ clearance rate is 89.04%). In addition, protein–polyphenol covalent complexes can
also be produced via enzymatic and radical coupling methods [31]. However, traditional
methods require long reaction times, which limits large-scale production. Ultrasound-
assisted methods can improve the reaction efficiency of enzymatic, alkaline, and radical
coupling methods. The underlying principle is that ultrasound treatment can cause protein
spatial structure to unfold through mechanical shear, cavitation effects, and thermal effects,
increasing the chance of contact reaction between protein and polyphenol molecules,
and thus improving covalent reaction efficiency [32]. For example, Xue et al. [33] used
ultrasound-assisted radical coupling to improve the grafting efficiency of glutelin and
polyphenols, shortened the reaction time, and increased the solubility of glutelin.

3.3. Modification and Solubility Enhancement of Rice Protein by Interaction with
Heterologous Proteins

The solubility of rice protein can also be improved by forming a complex with het-
erologous proteins (usually hydrophilic proteins) through pH cycling. Figure 4 depicts the
mechanism of the complex formation using whey protein as an example: first, rice protein
and whey protein are mixed at pH 7.0, and then the pH of the solution is adjusted to 12.0
to fully dissolve rice protein, at which point its tertiary structure is completely unfolded
and can fully contact with whey protein. The protein solution is then adjusted back to
pH 7.0 for protein refolding, and subsequently subjected to centrifugation, dialysis, and
freeze-drying to obtain the “rice protein–whey protein” complex [34]. When rice protein
and heterologous protein interact to generate a hydrophobic interior, the hydrophilic region
is exposed on the surface of the protein, increasing the proportion of surface charge or
hydrophilic groups, and ultimately improving the water solubility of rice protein [35].
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Wang et al. [36] prepared a composite of rice protein and whey protein in
a 1:1 ratio, which resulted in a composite with a solubility of over 50%. The microstructure
of the composite showed that the protein molecules were transformed into dispersed,
angular, granular structures. Li et al. [37] utilized pH cycling to prepare a composite of rice
protein and walnut protein, which increased the solubility of rice protein to over 80%. The
hydrophobic groups of the two proteins were buried and included internally, while the
charged groups were exposed externally. The resulting composite had an increased zeta
potential and reduced surface hydrophobicity. Manhee et al. [38] found that soy protein
isolate can also improve the water solubility of rice protein, increasing its solubility from
25.8% to 68.4%.

In addition, the acylation transfer reaction can also be assisted by transglutaminase to
cross-link rice glutelin and another heterologous protein [39]. For example, He et al. [40] pro-
moted the cross-linking reaction between rice glutelin and casein by using transglutaminase,
which improved the microstructure of rice glutelin and increased its solubility performance.

3.4. Modification and Solubility Enhancement of Rice Protein by Phosphate

Phosphate modification is also a commonly used method to improve the solubility
of proteins, and its reaction mechanism is shown in Figure 5. The phosphate group
can form hydrogen bonds with the hydroxyl groups on serine, threonine, or tyrosine
residues, and increases the number of negative charges, thereby enhancing the electrostatic
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repulsion between protein molecules and reducing the surface tension of the emulsion,
ultimately improving the dispersion of proteins in the emulsion system [41,42]. However,
the phosphate modification is currently plagued by the issue of a lengthy reaction time,
which can easily cause irreversible aggregation and denaturation of proteins [43]. Therefore,
the wet-heat method or microwave method is often used to assist the phosphorylation
modification of rice protein to increase the efficiency of the phosphorylation reaction.
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Wet-heat-assisted phosphorylation modification involves mixing rice protein with
a phosphate solution and incubating it in a 55 ◦C water bath. This method is effective,
simple to operate, and has certain industrial prospects [44]. Hu et al. [45] conducted a wet-
heat-assisted phosphorylation reaction on 2% rice bran protein (reaction conditions were
0.1 mol/L sodium trimetaphosphate, pH 9.0, and 55 ◦C). The conformation of rice bran
protein changed, the maximum fluorescence emission wavelength (λmax) shifted to blue,
and the surface hydrophobicity and fluorescence intensity were significantly increased.
Meanwhile, sodium trimetaphosphate introduced more negative charges on the surface
of rice bran protein molecules, increasing their hydrophilicity and the repulsion between
protein molecules, thereby improving the solubility of rice bran protein.

Microwave-assisted heating can also improve the efficiency of a phosphorylation
reaction. Utilizing the enormous energy generated by electromagnetic waves accelerates
the unfolding of protein molecules and the exposure of phosphorylation sites, thereby
promoting the interaction between phosphate groups and protein side chains [46,47].
Hadidi et al. [48] used microwave-assisted phosphorylation (at a power of 590 W for 155 s)
to increase the degree of protein phosphorylation, shorten the reaction time, and improve
the solubility and other functional properties of the protein.

3.5. Modification and Solubility Enhancement of Rice Protein by Deamidation Method

The modification of proteins through deamidation is typically carried out under acidic
or alkaline conditions, or enzymatic catalysis, where the amide groups on the side chains
of basic amino acid residues (such as asparagine or glutamine residues) are cleaved to
form carboxylic acid groups (thus becoming aspartic acid residues and glutamic acid
residues), as shown in Figure 6. Deamidation of proteins can cause protein unfolding or
conformational rearrangement while reducing the formation of hydrogen bonds within
or between protein subunits caused by the amide groups, which in turn reduces the
aggregation between molecules or subunits and enhances the hydrogen bond or hydrophilic
interaction between proteins and water molecules [49]. Additionally, deamidation increases
the electrostatic repulsion between protein chains and decreases the surface hydrophobicity
of the subunits [50].
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Guan et al. [51] used the deamidation method under alkaline conditions to obtain
highly soluble rice bran protein, by conducting a 30 min deamidation reaction at pH 8.0
and 100 ◦C. Another approach for deamidation modification is acid-catalyzed deamidation,
which is often characterized by the mild properties of organic acids and can prevent
issues such as the breakdown of peptide bonds and the isomerization of amino acid
residues brought on by excessive deamidation [52]. Li et al. [53] adjusted the pH of glutelin
solutions to 4.0 using malic acid and citric acid, and then subjected them to deamidation
treatment, resulting in an increase in solubility of glutelin from 7.79% to 39.13% and
26.06%, respectively.

In addition, enzyme-assisted protein deamidation has high reaction specificity and
food safety. This method can increase the surface electrostatic charge of the protein, reduce
the hydrogen bonds within the molecule, form hydrophilic carboxyl groups, and promote
protein unfolding [54]. Liu et al. [49] found that deamidation of rice glutelin by glutamine
transamidase could increase its solubility in neutral or slightly acidic solutions (i.e., pH 5–7).
Chen et al. [55] discovered that glutamine transamidase could prevent excessive hydrolysis
caused by chemical or other protease treatments while increasing the water solubility
of glutelin.

3.6. Modification and Solubility Enhancement of Rice Protein by Enzymatic Hydrolysis Method

The enzymatic hydrolysis method can break down protein into short-chain peptides or
amino acids, and reduce intra- or inter-molecular cross-linking, particularly the formation
of inter-subunit disulfide bonds. The small molecules generated by hydrolysis not only
exhibit good water solubility, but also possess biological activities such as anti-cancer,
anti-hypertension, and immune regulation [56]. Table 1 shows commonly used enzymes,
reaction conditions, and modification effects for modified rice protein. Among these
proteases, alkaline protease has the highest degree of hydrolysis (DH), and the modification
and solubilization of rice protein are the most significant, with solubility as high as 94%.
This is due to the fact that alkaline protease has more enzyme hydrolysis sites, resulting
in a large number of hydrolysis of hydrophobic amino acid residues, thus improving the
solubility of rice protein [57].

The advantages of enzyme hydrolysis include mild reaction conditions, easy control,
and high specificity. However, traditional enzymatic hydrolysis can result in bitter pep-
tides (mainly composed of peptides containing Lys, Leu, and Val residues), reduce the
emulsifying ability of protein, and has a low hydrolysis efficiency and extended reaction
time [58,59]. Physical methods such as ultrasound, high pressure, or the construction
of a dual-enzyme system can be used to not only speed up the enzymatic reaction time
and increase the efficiency of enzymatic hydrolysis but also to reduce bitter peptides and
increase the emulsification and emulsifying stability of the protein.

Yang et al. [60] show that ultrasound-assisted enzymatic hydrolysis can significantly
improve the efficiency of rice protein processing. The cavitation effect generated by ul-
trasound can promote the stretching of enzymatic protein molecules, reduce disulfide
bond content and the hydrophobicity of the protein surface, increase the dissolution rate
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of soluble protein particles or protein molecules, and enhance the contact frequency be-
tween protein and enzyme [61], thus improving the enzymatic hydrolysis efficiency. Chang
et al. [62] found that ultrasound-assisted enzymatic hydrolysis can promote the exposure
of cleavage sites for papain, reduce the hydrolysis time for 1 h, and the enzyme dosage
amount by 1.4 times. At the same time, ultrasound-assisted enzymatic hydrolysis increased
the water solubility of rice bran protein by nearly 2 times, while the emulsifying stability
decreased by 38.25%. This is because the low molecular weight peptides formed by long-
time enzymatic hydrolysis (3 h) could not stabilize the oil–water interface, which in turn
has an adverse effect on protein emulsification.

High-pressure assistance can improve the solubility and emulsifying stability of rice
protein by enhancing enzymatic hydrolysis. Liu et al. [63] found that a pressure of 300 MPa
can increase the hydrolysis of rice protein by alkaline protease, improve the solubility of rice
protein by nearly 1.7 times, and increase the emulsifying property and emulsifying stability
by 2 times and 3 times, respectively. This is due to the changes in the tertiary and quaternary
structure of protein molecules caused by ultra-high pressure, which releases smaller soluble
proteins and promotes the modification of protease. At the same time, ultra-high pressure
shortens the enzymatic hydrolysis time to 15 min and avoids the decrease in protein
emulsifying ability. Zhang et al. [64] also found that high-pressure micro fluidization
can promote the exposure of hydrophobic groups within the rice bran separation protein,
increasing the surface hydrophobicity and molecular diffusion rate, which significantly
improves the hydrolysis of rice bran separation protein by neutral protease.

The hydrophobic amino acids in rice protein participate in peptide bond formation at
the -amino or carboxyl end during enzymatic hydrolysis, giving the hydrolysate an unfavor-
able bitter taste [65]. Yan et al. [66] constructed a dual-enzyme system of aminopeptidase
and pancreatin, which reduced the bitterness of rice protein hydrolysates. Pooja et al. [67]
found that the hydrolysate of rice bran protein pretreated with high hydrostatic pressure
can also effectively address issues such as prolonged hydrolysis time and bitter peptides.

Table 1. Common enzymes, reaction conditions, and modification effect of modified rice protein.

Enzyme Condition Targets DH Effect References

Papain Enzyme: substrate = 3:100;
4 h; pH = 7.0; 50 ◦C

Carboxyl terminus of
arginine, lysine, and
glycine residues

15–32% Increased the solubility
(about 45–94%) [68]

Trypsin

Enzyme:
substrate = 0.89:1000;
2.4 h;
pH = 7.6; 52.8 ◦C

Carboxyl terminal of
arginine and
lysine residues

8.96% Increased the solubility
(above 75%) [65]

Alkaline
protease

Enzyme: substrate = 1:100;
5 h; pH = 8.0; 65 ◦C

Carboxyl of
hydrophobic amino
acid–amide bond of
aromatic amino acids

23.8% Increased the solubility
(to 94.78%) [69,70]

Glutaminase
Enzyme: substrate = 1:250;
12 h; pH = 8.0;
50 ◦C

Acyl transfer reaction
between lysine residue
and glutamine residue

4–6% Increased the solubility
(to 78.14%) [49,71]

4. Applications of Modified Rice Protein in Food Processing

Modified rice protein exhibits desirable functional properties such as high solubility,
emulsifying ability, gelling ability, and antioxidant activity, which make it a promising
ingredient for a wide range of food applications. Modified rice protein can replace allergenic
bovine milk protein in dairy products, increasing the potential for developing plant-based
dairy products or infant formula [72]. In meat products, it can balance the nutritional
value, reduce economic costs, and improve product stability [73]. In baked goods, it can be
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used to develop gluten-free baked goods, providing more options for people with gluten
allergies [74].

4.1. Application of Modified Rice Protein in Dairy Product Processing

Modified rice protein retains its low allergenicity, and its emulsifying and encapsulat-
ing properties enable the inclusion of vitamins, minerals, probiotics, etc., making it useful in
developing infant formula, probiotic fermented milk, cheese, and other dairy products [75].

Modified rice protein can be used in fermented milk products, taking advantage of
its good emulsifying and encapsulating properties [76]. Vaniski et al. [77] found that the
encapsulation efficiency of thermophilic streptococci by rice bran protein–maltodextrin
covalent complexes can reach 90.26%, and the survival rate of thermophilic streptococci
in simulated gastric and intestinal fluids is relatively high. Zhang et al. [78] prepared rice
protein–pectin composite microcapsules, which exhibited excellent antibacterial activity
and could inhibit key enzymes in the tricarboxylic acid cycle and hexose monophosphate
pathway of Escherichia coli. After encapsulating probiotics with modified rice protein, it
can be directly added as an ingredient to fermented dairy products, and protect the activity
of probiotics during food processing and digestion in the human gastrointestinal tract.

Rice protein has low allergenicity and is often used as a substitute for cow’s milk pro-
tein in formula powders for lactose intolerant individuals, with certain digestive tolerance,
safety, acceptability, and palatability [79]. Amagliani et al. [80] added low-molecular-weight
surfactants to hydrolyzed rice protein, mixed it with oils, carbohydrates, and maltodextrins,
and developed a rice protein infant formula emulsion formula. The formula reduced the
size of fat globules and had high emulsion and thermal stability.

Modified rice protein can also be applied in cheese products, mainly as an active
filler embedded in the cheese protein matrix to produce high-quality low-fat cheese [81].
Paximada et al. [82] prepared a water-in-oil (W/O) emulsion of modified rice protein with
fat and then homogenized the emulsion with milk to form a water-in-oil-in-water (W/O/W)
double emulsion. The process flow diagram of preparing cheese using the W/O/W double
emulsion is shown in Figure 7. The double emulsion has a high protein encapsulation
efficiency, which can reduce the loss of fat in cheese products and decrease the hardness,
thus having a broad application prospect for developing low-fat dairy products. In addition
to forming stable water-in-oil emulsions with lipids, the improved functional properties of
modified rice protein also facilitate protein gel formation during fermentation, providing
possibilities for the development of fermented plant-based cheese [72].
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4.2. Application of Modified Rice Protein in Meat Products Processing

The processing of meat products is often accompanied by the loss of intracellular and
extracellular juice in muscle tissue, as well as a decrease in the water-holding capacity
of muscle proteins. Excessive intake of animal protein can also lead to cardiovascular
diseases [83] and kidney problems [84]. Modified rice protein has good water-holding
properties, which can reduce the loss of fluid in muscle tissue and balance the nutritional
value of animal protein, thereby reducing the negative effects of consuming excessive
saturated fatty acids on the body [85]. At present, modified rice protein is commonly used
in block meat, minced meat, and plant-based meat products.

In the processing of block meat products, modified rice protein can reduce the de-
hydration shrinkage of whole or large pieces of meat, maintain the integrity of the meat
muscle tissue, and improve the product yield. Aqsa et al. [86] mixed chicken chunks with
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modified rice protein isolate by kneading. The results showed that modified rice protein
isolate can increase the protein content of chicken chunks (from 34.99% to 48.49%) and
reduce cooking loss (from 12.44% to 3.85%). Zhou et al. [69] found that modified rice
protein has a strong antioxidant ability and can effectively reduce lipid oxidation in meat
during storage.

Modified rice protein can reduce the loss of fat and moisture in minced meat products
and improve sensory quality [87]. Li et al. [88] found that alkaline protease-modified rice
protein can form a dense covering film on the surface of the muscle fibers of the sausage.
Meanwhile, modified rice protein can form an elastic and hard gel network with meat
protein, which can lock fat and moisture in the three-dimensional network structure, reduce
the loss of juice, and increase the yield of sausage [89].

Modified rice protein can also be used in the production of plant-based meat products.
It has low allergenicity, no beany flavor, and a fatty mouthfeel, and can partially replace soy
protein in the production of plant-based meat products [90]. Lee et al. [91] mixed modified
rice protein and soy protein in a certain proportion, and used corn starch and wheat flour
as additives. They employed a low-moisture extrusion-cooking process with a twin-screw
extruder to promote the interaction between proteins, lipids, and carbohydrates, resulting in
the production of plant-based meat products with high nutritional value and unique flavor.

4.3. Application of Modified Rice Protein in Baked Food Processing

Baked food is typically made from wheat flour through processes such as kneading,
fermentation, and baking. However, wheat contains allergenic components such as gluten,
which makes it difficult for patients with celiac disease or wheat gluten protein allergies to
consume. Therefore, there is a need to develop gluten-free baked food to meet the needs of
these special populations. The modified rice protein is free of gluten, has low allergenicity,
and has a high water absorption and oil-holding capacity. It can successfully lower the loss
of water and oil in baked goods, keep the texture fresh and moist, and raise the amount of
protein in them [74].

When mixed with water, sugar, oil, salt, and other ingredients in a certain proportion,
modified rice protein can form a sticky and elastic network similar to gluten, which can
be baked at high temperatures to make bread, biscuits, or cakes. Sahagún et al. [92]
used a recipe containing rice flour, modified rice protein, sugar, milk, pasteurized egg
liquid, sunflower oil, and baking powder to make cakes, which improved the texture
characteristics of the cakes. Yadav et al. [93] used 5% rice bran concentrate protein instead
of refined wheat flour to prepare biscuits, and the results showed that as the concentration
of rice bran concentrate protein increased, the physical characteristics of the biscuits, such
as diameter, thickness, fracture strength, moisture content, protein content, and ash content,
all increased significantly. This may be because rice bran concentrate protein absorbed
more water and oil during the baking process, maintaining the moist texture of the biscuits
and giving them the best texture in terms of color, taste, and flavor. Honda et al. [94] found
that after protease modification, rice protein and gluten protein formed a three-dimensional
structure, which increased the volume of gluten-free bread by 22%. Scanning electron
microscopy revealed that both the size and quantity of pores in the bread increased, leading
to improvements in its rheological and sensory properties [95].

5. Conclusions

The modification and solubilization of rice protein are very significant; however,
the traditional modification of rice protein is often accompanied by some issues, such
as long reaction time, plenty of by-products, insufficient reaction, and so on, while the
improved modification method avoids these shortcomings. Modification and solubilization
of rice protein by polysaccharides, polyphenols, heterologous proteins, and phosphates are
assisted by ultrasound, ultra-high pressure, microwave, enzymes, water bath heating, or
alkaline conditions. The modification and solubilization of rice protein by deamidation are
assisted by mild organic acids or enzyme-assisted deamidation. However, the control of the



Molecules 2023, 28, 4078 12 of 16

degree of deamidation and the safety of protein are still the difficulties of current research.
Enzymatic hydrolysis for the modification and solubilization of rice protein is assisted
by ultrasound, ultra-high pressure, and dual-enzyme systems. However, it is difficult to
realize industrial applications due to the high cost of the experiment. To summarize, under
certain physical and chemical conditions, combining rice protein with a certain amount
of polysaccharides, polyphenols, heterologous protein, or phosphate anions is the most
simple, safe, effective, and low-cost modification method. Among these methods, the
polysaccharide reaction can be carried out spontaneously without other chemical reagents,
so it has more application potential in improving the water solubility of rice protein.

Modified rice protein has been widely used in the processing of dairy products, meat
products, and baked goods due to its good solubility, emulsifying properties, gelling
properties, water-holding capacity, and oil-holding capacity. It not only balances nutritional
value and meets the protein intake needs of allergic populations, but also improves the
deficiencies of animal and plant proteins, increases stability, and extends shelf life. With
the in-depth research on the functional properties of modified rice protein, its application
scope in food processing is constantly expanding, which can increasingly meet the needs of
the food industry and market sectors.
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87. Öztürk-Kerimoğlu, B. A promising strategy for designing reduced-fat model meat emulsions by utilization of pea protein-agar

agar gel complex. Food Struct. 2021, 29, 100205. [CrossRef]
88. Li, Q.; Wang, X. Study on functional properties of rice protein hydrolyzed by alkaline protease. Guangxi Light Ind. 2006, 6, 17–18.

[CrossRef]
89. Yang, Q.; Tang, S.; Wei, J. Effects of different calcium salt, plant protein and dietary fiber on texture properties of ground yak meat.

Food Sci. Technol. 2018, 43, 142–148. [CrossRef]

https://doi.org/10.27791/d.cnki.ghegy.2019.000024
https://doi.org/10.1016/j.ifset.2022.102975
https://doi.org/10.1016/j.foodchem.2021.129861
https://www.ncbi.nlm.nih.gov/pubmed/33932761
https://doi.org/10.1007/s13197-011-0303-6
https://doi.org/10.1016/j.lwt.2022.113110
https://doi.org/10.1007/s10989-017-9586-4
https://doi.org/10.1016/j.lwt.2020.110648
https://doi.org/10.1016/j.lwt.2012.05.002
https://doi.org/10.1016/j.heliyon.2020.e05403
https://doi.org/10.1111/ijfs.14161
https://doi.org/10.3390/foods11020178
https://doi.org/10.1016/j.afres.2022.100044
https://doi.org/10.1016/j.jfoodeng.2006.02.018
https://doi.org/10.12691/jfnr-7-1-5
https://doi.org/10.3390/molecules26154601
https://www.ncbi.nlm.nih.gov/pubmed/34361753
https://doi.org/10.1111/jfpp.15364
https://doi.org/10.1016/j.ijfoodmicro.2022.109963
https://doi.org/10.1016/j.arcped.2019.03.001
https://doi.org/10.1016/j.lwt.2021.112544
https://doi.org/10.1016/j.foodres.2018.02.019
https://www.ncbi.nlm.nih.gov/pubmed/29580468
https://doi.org/10.1016/j.jfoodeng.2020.110229
https://doi.org/10.1016/j.numecd.2020.03.008
https://www.ncbi.nlm.nih.gov/pubmed/32451273
https://doi.org/10.1093/advances/nmz011
https://www.ncbi.nlm.nih.gov/pubmed/31728497
https://doi.org/10.3390/foods10081967
https://doi.org/10.1111/jfpp.13763
https://doi.org/10.1016/j.foostr.2021.100205
https://doi.org/10.3969/j.issn.1003-2673.2006.06.008
https://doi.org/10.13684/j.cnki.spkj.2018.11.024


Molecules 2023, 28, 4078 16 of 16

90. Sasimaporn, S.; Gi, H.R. Physicochemical and functional characteristics of plant protein-based meat analogs. J. Food Process.
Preserv. 2019, 43, e14123. [CrossRef]

91. Lee, J.-S.; Oh, H.; Choi, I.; Yoon, C.S.; Han, J. Physico-chemical characteristics of rice protein-based novel textured vegetable
proteins as meat analogues produced by low-moisture extrusion cooking technology. LWT 2022, 157, 113056. [CrossRef]

92. Sahagún, M.; Bravo-Núñez, Á.; Báscones, G.; Gómez, M. Influence of protein source on the characteristics of gluten-free layer
cakes. LWT-Food Sci. Technol. 2018, 94, 50–56. [CrossRef]

93. Yadav, R.B.; Yadav, B.S.; Chaudhary, D. Extraction, characterization and utilization of rice bran protein concentrate for biscuit
making. Br. Food J. 2011, 113, 1173–1182. [CrossRef]

94. Honda, Y.; Inoue, N.; Kurita, M.; Okunishi, T. Alpha-glutelin degradation and its hydrolysate by protease enhance the specific
volume of gluten-free rice starch bread. J. Cereal Sci. 2021, 102, 103338. [CrossRef]

95. Pico, J.; Reguilón, M.P.; Bernal, J.; Gómez, M. Effect of rice, pea, egg white and whey proteins on crust quality of rice flour-corn
starch based gluten-free breads. J. Cereal Sci. 2019, 86, 92–101. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://doi.org/10.1111/jfpp.14123
https://doi.org/10.1016/j.lwt.2021.113056
https://doi.org/10.1016/j.lwt.2018.04.014
https://doi.org/10.1108/00070701111174596
https://doi.org/10.1016/j.jcs.2021.103338
https://doi.org/10.1016/j.jcs.2019.01.014

	Introduction 
	Analysis of the Water Solubility Characteristics and Reasons for Rice Protein 
	Methods for Modifying Rice Protein to Increase Solubility 
	Modification and Solubility Enhancement of Rice Protein by Polysaccharides 
	Modification and Solubility Enhancement of Rice Protein by Polyphenols 
	Modification and Solubility Enhancement of Rice Protein by Interaction withHeterologous Proteins 
	Modification and Solubility Enhancement of Rice Protein by Phosphate 
	Modification and Solubility Enhancement of Rice Protein by Deamidation Method 
	Modification and Solubility Enhancement of Rice Protein by Enzymatic Hydrolysis Method 

	Applications of Modified Rice Protein in Food Processing 
	Application of Modified Rice Protein in Dairy Product Processing 
	Application of Modified Rice Protein in Meat Products Processing 
	Application of Modified Rice Protein in Baked Food Processing 

	Conclusions 
	References

