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Abstract: Recent decades have witnessed the rapid progress of nanozymes and their high promising
applications in catalysis and bioclinics. However, the comprehensive synthetic procedures and
harsh synthetic conditions represent significant challenges for nanozymes. In this study, monodis-
perse, ultrasmall gold clusters with peroxidase-like activity were prepared via a simple and robust
one-pot method. The reaction of clusters with H2O2 and 3,3′,5,5′-tetramethylbenzidine (TMB) fol-
lowed the Michaelis-Menton kinetics. In addition, in vitro experiments showed that the prepared
clusters had good biocompatibility and cell imaging ability, indicating their future potential as
multi-functional materials.

Keywords: gold nanocluster; HRP-mimicking activity; water-soluble; cell imaging

1. Introduction

In recent years, biomimetic nano-enzymes have attracted increasing research inter-
est [1–3] because of their promising catalytic efficiency and capacity to overcome the
disadvantages of natural enzymes, such as high separation cost, low stability and storage
difficulties. To date, significant progress has been made with metal nanoparticles protected
by organic/biological ligands. Gold and its alloy nanoclusters represent one of the most
promising categories and have been successfully developed to exhibit peroxidase-like,
catalase-like and oxidase-like activities, demonstrating great potential for biosensing and
bio clinic applications [4,5]. In this context, horseradish peroxidase (HRP) mimetic repre-
sents one of the most attractive subjects because of the diversity of its applications. For
example, Li and co-workers recently developed a peroxidase-like nanozyme by organizing
gold nanoparticles with single stranded DNA scaffolds and regulating the catalytic activity
by changing the scaffold sequence [6]. In addition, peroxidase-like ultrafine gold aerogels
have been developed by Shang and co-workers, using D-penicillamine-stabilized gold
nanoclusters as the building blocks [7].

Despite the great progress made and highly promising applications, the synthetic
procedures for obtaining the current horseradish peroxidase mimetic nano-enzymes gen-
erally require relatively harsh conditions. For example, a frequently used strategy for the
formation of hybrid materials is to coat the active metal nanoclusters with carriers [8–10].
And the one-pot synthesis method always requires strong alkaline conditions, high temper-
atures (100–200 ◦C), comprehensive synthetic and separation procedures, or a long reaction
time [11–17]. Consequently, the development of a peroxidase-like nanozyme with easily
achievable and mild synthetic and separation procedures is of significant interest.

Compared to plasmonic metal nanoparticles or clusters protected by biological ligands
(such as BSA), ultrasmall gold nanoclusters with a sub nanometer (1–2 nm) size-regime have
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recently emerged as a novel material because of their excellent physicochemical properties
(such as ease of functionalization, strong luminescence, and enhanced permeability and
retention effects) [18,19]. Specifically, the combination of a cysteine-containing peptide
fragment with another biofunctional fragment has been successfully developed as an
efficient strategy in the ligand design of metal nanoclusters. In this study, using the
DGECGC oligopeptide (note: the DGEA fragment is able to target the overexpressed
α2β1-integrins on the surface of human prostate cancer cells [20–22], and the thiol group
in the GC fragment helps in size control), a monodispersed, ultrasmall gold nanocluster
(~1.3 nm) was prepared via a convenient one-pot synthesis under mild conditions (in water
solution, 70 ◦C, 2 h). The synthesis eliminated the necessity for pre-functionalization or
postseparation procedures, as shown in Scheme 1. The prepared clusters showed high
stability and were brightly emissive after being kept in the dark at 4 ◦C for over one
month. The peroxidase mimetic character was evidenced by the reaction of the as-prepared
clusters with H2O2 and 3.3′,5.5′-tetramethylbenzidine (TMB). Additionally, cytotoxicity
tests showed the high biocompatibility and cellular-imaging capacity of the prepared
clusters. Therefore, these clusters can be used as an easily achievable, low-toxicity and
highly sensitive fluorescence imaging material for future studies.
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Scheme 1. The synthesis and peroxidase-mimic activity of gold nanoclusters.

2. Results and Discussion
2.1. Characterization of Materials

A reported synthetic method was used to protect the gold nanoclusters with DGEAGC
oligopeptide [23]. Briefly, the oligopeptide was mixed with HAuCl4 in ultrapure water,
followed by thermal reduction at 70 ◦C. The color of the solution changed from yellow
to colorless within 5 min. A pale yellow solution was obtained after ~2 h, indicating
the formation of peptide-protected gold nanoclusters (abbreviated as PGN). As shown
in Figure 1a, the absorption of the PGN exhibited a shoulder peak at ~400 nm. The ab-
sence of a surface plasmon resonance peak at ~520 nm excludes the formation of Au
NPs [24,25]. Strong orange-red fluorescence was observed under 365 nm UV light irradia-
tion (Figure 1a inset). The fluorescence spectra showed maximum excitation and emission
peaks at 400 nm and 600 nm, respectively. The consistency of optical absorption and the
excitation peak indicated that the fluorescence originated from intrinsic transitions (rather
than aggregation induced emission, etc.) (Figure S1 from Supplementary Materials) [26,27].
After purifying the prepared nanoclusters using native polyacrylamide gel electrophore-
sis (PAGE), only one band with orange-red luminescence was observed (under UV-light
irradiation, (Figure S2 from Supplementary Materials). The optical absorption and emis-
sion of the fluorescent band components were close to that of the prepared clusters
(Figure S3 from Supplementary Materials), evidencing their predominance in the
crude products.
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Figure 1. (a) UV-Vis absorption spectrum (black line), luminescence excitation (broken red line) and
emission spectra (solid red line) of the PGN (peptide protected gold nanoclusters); inset: digital
photo of PGN in aqueous solution under visible (left) and UV light (right). (b) HRTEM image of the
prepared PGN; inset histograms of core sizes. (c) High-resolution Au (4f) peaks of the PGN. (d) FTIR
spectrum of the PGN and the free oligopeptide.

Furthermore, HRTEM revealed the uniform size of the clusters with an average size
of 1.30 ± 0.01 nm via the Gaussian fitting curve (Figure 1b). In this context, both the
optical tests and the TEM analysis indicated the monodispersity of the prepared clusters. In
addition, the absolute quantum yields of the PGN were 9.77% and 0.52% in the solid state
and aqueous phases, respectively. The average fluorescence lifetime was 6.14 µs (Figure S4
from Supplementary Materials) [28–30]. According to X-ray photoelectron spectroscopy
analysis (XPS, Figure 1c), the binding energies of Au 4f5/2 and Au 4f7/2 in the PGN were 88.0
and 84.3 eV respectively, corresponding to an Au(I): Au(0) ratio of 67.2%, which indicated
the presence of a metallic core structure. The presence of O, C, N, Au, and S elements in the
PGN was also verified using XPS (Figure S5 from Supplementary Materials) [31,32].

The FTIR spectrum of the PGN was similar to that of free peptide ligands (Figure 1d).
The preserved carbonyl peak at 1590 cm−1, amide I peak at 1660 cm−1, and the carboxylic
O-H peaks in the range of 2930–3550 cm−1 implied the maintained structure of the peptide
ligands on the cluster surface [33,34].

Interestingly, the fluorescence intensity of the PGN was dependent on the temperature
and pH of the aqueous solution. As shown in Figure S6 (from Supplementary Materials),
the PGN fluorescence intensity showed a negative linear correlation with temperatures
ranging from 20 to 40 ◦C. With regarding to pH dependency, the solution fluorescence was
the strongest at pH = 5 (consistent with the isoelectric point of the C-terminus cysteine
amino acid in the oligopeptide ligand).

2.2. Peroxidase-like Activity of PGN

As shown in Figure 2a, mixing the aqueous solution of PGN with H2O2 and TMB
resulted in remarkably changed UV-Vis spectra [35], and an additional absorption peak at
~652 nm (characteristic peak of ox-TMB). The observation demonstrated the horseradish
peroxidase (HRP)-mimicking activity of the prepared clusters. By contrast, the characteristic
peak of ox-TMB was invisible when the free oligopeptide ligand was mixed with H2O2
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and TMB under otherwise identical conditions. Similarly, removing either TMB or H2O2
from the three-component system resulted in the absence of the ~652 nm peak. The results
indicated that the gold nanoclusters, rather than the free ligands, were responsible for the
HRP-mimicking activity [36]. It was notable that in addition to H2O2, the prepared PGN
was able to oxidize TMB in the presence of dioxygen, but the significantly lower intensity
of the ~652 nm peak indicated the inferior activity of dioxygen compared to that of H2O2
(Figure S7 from Supplementary Materials).
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Interestingly, the fluorescence of the PGN was quenched in the three-component
system. As shown in Figure 2b, the fluorescence of the PGN did not change after the
addition H2O2 but decreased significantly after TMB was added. Further studies showed
that the fluorescence intensity of the PGN-TMB system decreased regularly with the
addition of increased amounts of H2O2 (Figure S8 from Supplementary Materials). These
phenomena were mainly caused by fluorescence resonance energy transfer (FRET) between
the oxidized form of TMB (with optical absorption at 652 nm) and the PGN (with maximum
emission at 600 nm, Figure S9 from Supplementary Materials) [37,38]. Adding GSH into
the PGN + H2O2 + TMB system, the characteristic absorption of ox-TMB at 652 nm was
significantly diminished (Figure S10 from Supplementary Materials) and the fluorescence
intensity was restored and comparable to that of the PGN + H2O2 + TMB (Figure S11 from
Supplementary Materials). The results verified the reaction of GSH with ox-TMB. In view
of the GSH induced emission enhancement of PGN, we were not able to completely exclude
the possibility that the GSH binds with PGN to restore the fluorescence.

Like other Au NC-based peroxidase mimetics and the natural horseradish peroxidase,
the peroxidase activity of PGN was dependent on the solution characteristics, such as
the PGN concentration, pH, and temperature [39,40]. As shown in Figure 3a, the optical
absorption of the reaction system at 652 nm increased with cluster concentration, and
each system showed a linear correlation within 60 min. In addition, the catalytic activity
of the PGN was sensitive to the pH and temperature of the solution, similar to recently
reported nanomaterial-based peroxidases [41]. Based on the results in Figure 3b,c, pH = 3
and temperature 37 ◦C were selected for the subsequent tests.

Regarding the catalytic mechanism, it has frequently been suggested that the peroxidase-
mimic nanozymes undergo a two-step mechanism, i.e., decomposition of H2O2 to generate
hydroxyl radicals (•OH), and then oxidation of the colorless TMB to blue ox-TMB. To
examine whether our PGN followed the same mechanism, we used terephthalic acid (TA)
as a fluorescent probe for •OH, because the formed 2-hydroxyterephthalic acid (if present)
exhibits an intense, characteristic emission at ~430 nm [42,43]. As shown in Figure 3d, the
fluorescence intensity of the aqueous solution of the PGN-TA-H2O2 system at ~430 nm was
stronger than that of the other controls. The result indicated that PGN can generate •OH
from H2O2, thereby promoting the oxidation of TMB.
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and 5 mM TMB in the presence of different concentrations of the PGN (Au basis). (b) Temperature-
dependent peroxidase-like activity of the PGN. (c) pH-dependent peroxidase-like activity
of PGN. (d) Fluorescence spectroscopy monitoring of the oxidation of terephthalic acid to
2-hydroxyterephthalic acid in the presence of the PGN.

2.3. Kinetic Assay of the Peroxidase-like Activity

Next, we evaluated the kinetics of the peroxidase-like activity of PGN using a typical
Michaelis–Menten approach. As shown in Figure 4, in a certain range of H2O2 and TMB
concentrations, a typical absorption intensity spectrum was obtained under the reaction
conditions of pH = 3 and 37 ◦C. The typical curves were obtained with both TMB and H2O2
as the substrate by monitoring their absorbance change at 652 nm (Figure 5a,c). Then, the
enzyme kinetic parameters, Michaelis–Menten constant (Km) and maximal reaction velocity
(Vmax), could be calculated from Lineweaver–Burk plots (Figure 5b,d). The Km value is a
measure of the binding affinity between enzymes and substrates: the higher the value of Km,
the weaker the affinity. The Kcat value measures the maximum number of colored products
generated per enzyme per second [44]. As summarized in Table 1, when using TMB as the
substrate, the Km and Kcat values of the PGN were 0.31 mM and 8 × 10−5 s−1, respectively.
When using H2O2 as the substrate, the Km and Kcat values of the PGN were 1069 mM and
5.35 × 10−4 s−1, respectively. The Km value of the PGN with TMB as the substrate was
almost identical to that of HRP, indicating that the affinity of PGN to TMB is like that of
HRP. Additionally, the Km value of PGN for H2O2 appeared much higher than that of HRP.
The results indicate that the affinity of PGN to H2O2 is lower than that of HRP. Therefore,
a higher concentration of H2O2 is required to obtain the maximum reaction rate of the
PGN. Then, we tested the potential peroxidase-mimicking activity of the GSH protected
gold nanoclusters. According to the detailed kinetic analysis (Figures S12 and S13 from
Supplementary Materials), the Vmax, Km and Kcat of the GSH protected clusters closed
to that of the oligopeptide protected ones (Table S1 from Supplementary Materials). The
result indicated that the incorporation of the bio-functional DGEA fragment did not affect
the biomimicking activity of the metal clusters.
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Table 1. Comparison of kinetic parameters of Km and Kcat of PGN, and HRP.

Catalyst Substrate Km (mM) Kcat (s−1) Reference

PGN
TMB 0.31 8 × 10−5

This work
H2O2 1069 5.35 × 10−4

Peptide-Au NPs TMB 0.277 3.57
[24]H2O2 929 14.6

HRP
TMB 0.301 5.18 × 103

[40]
H2O2 0.935 4.05 × 103

2.4. Cytotoxicity Study and In Vitro Imaging

To evaluate the biocompatibility of PGN, cell viability assays were carried out via an
MTT assay (MTT = 3-(4,5-dimethylthiazol-2-yl)-2,5 diphenyltetrazolium bromide) [45,46],
using NIH 3T3 and HeLa cells as the test candidates. As shown in Figure 6a, the presence
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of 0–100 µM PGN produced slight perturbation in the proliferation of the NIH 3T3 and
HeLa cells within 24 h, and 95% cell viability was maintained even up to a relatively high
dose of PGN of 100 µM after 24 h incubation. The low cytotoxicity to NIH 3T3 and HeLa
cells is fundamentally important for cell imaging applications. As shown in Figure 7, after
2 h incubation with the PGN, the NIH 3T3 and HeLa cells showed a bright fluorescent
signal in the cytoplasm (using confocal laser scanning microscopy), indicating that PGN
have cell uptake and biological imaging capabilities.
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3. Materials and Methods
3.1. Materials and Chemicals

All chemicals were commercially available and used without further purification.
Custom-made DGEAGC polypeptides were obtained from Bankpeptide Biological Tech-
nology Co., Ltd, (Hefei, China). Hydrogen tetrachloroaurate tetrahydrate (HAuCl4·4H2O,
≥99.99%, metals basis) was purchased from Sino-Platinum Metals Co., Ltd. (Shang-
hai, China). Hydrochloric acid (HCl, ≥98%); and sodium hydroxide (NaOH, ≥97%)
were purchased from Sinopharm Group Co., Ltd, (Beijing, China). Hydrogen peroxide
solution(H2O2, ≥30%) was purchased from Xilong Science Co., Ltd, (Shanghai, China).
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The 3,3’,5,5’-tetramethylbenzidine (TMB, ≥99%) was purchased from Shanghai Macklin
Biochemical Co., Ltd, (Shanghai, China). Terephthalic acid (TA, ≥98%) was purchased
from Shanghai Macklin Biochemical Co., Ltd. All glassware was thoroughly cleaned with
aqua regia (HCl/HNO3 3/1 v/v), rinsed with copious amounts of pure water, and then
dried in an oven prior to use.

3.2. Equipment

UV−vis absorption spectra were recorded using a UV-6000PC instrument, and the
solution samples were prepared using ultrapure water as the solvent. All fluorescence
spectra were obtained using a HORIBA FluoroMax-4P fluorescence spectrophotometer.
Transmission electron microscopy (TEM) and HRTEM images were obtained from a JEM-
F200 microscope. X-ray photoelectron spectroscopy (XPS) measurements were performed
on a ESCALAB 250 high-performance electron spectrometer with monochromated Al Kα

radiation as the excitation source. The binding energies were corrected by referencing the
binding energies of C(1s) arising from the added hydrocarbons as an internal standard.
Fourier transform infrared spectroscopy (FT-IR) was recorded using a Bruker Vertex80
+ Hyperion2000 apparatus. The gold content in the clusters was measured using Induc-
tively coupled plasma mass spectrometry (ICP-MS) on an Agilent 7800 instrument. The
fluorescence quantum yield was measured using an Edinburgh-Steady State/Transient
Fluorescence Spectrometer FLS1000. Photoluminescence lifetimes were measured by time-
correlated single-photon counting (TCSPC) on a Horiba Fluoro max plus spectrofluorometer
with a pulsed light-emitting diode (LED) (400 nm) as the excitation source.

3.3. Synthesis of the PGN

The fluorescent gold nanoclusters were synthesized using DGEAGC as the surface
ligand. Briefly, fresh aqueous solutions of HAuCl4 (0.2 g/mL, 68 µL) and the oligopeptide
(50 mg/mL, 1.0 mL) were added to 17.6 mL of deionized water. Next, the aqueous solution
was vigorously stirred at room temperature for 5 min, and then heated to 70 ◦C. After 2 h,
clusters with strong orange-red fluorescence were formed.

Native polyacrylamide gel electrophoresis (PAGE) was carried out using discontinu-
ous gels (1.5 mm × 80 mm × 70 mm). Resolving and stacking gels were prepared from
30 and 4 wt% acrylamide monomers. 200 µL of raw products was mixed with 20 µL of
5 vol% glycerol and then electrophoresis was run for 2 h at a constant voltage of 150 V at
4 ◦C. After electrophoresis, the band was cut from the gels and soaked in ultrapure water
overnight at 4 ◦C to obtain the sample solution.

3.4. Peroxidase-like Activity

Quantities of 135 µL of the prepared clusters, 300 µL of 5 mM TMB and 200 µL of
100 mM H2O2 were added into 1.365 mL water. The mixture solution was then incubated
in a water bath at 37 ◦C for 60 min before cooling to room temperature. The absorption
spectra were recorded using a UV-Vis spectrophotometer.

3.5. Fluorescence Quenching Experiments with Adding H2O2 into the Cluster-TMB System

Quantities of 135 µL of the prepared clusters, 300 µL of 5 mM TMB and 200 µL of
different concentrations of H2O2 were added to 1.365 mL water. The mixture solution was
then incubated in a water bath at 37 ◦C for 60 min before cooling to room temperature. The
emission spectra were recorded using a fluorescence analyzer.

3.6. Concentration-Dependent Peroxidase-like Activity of the Prepared Clusters

The concentration-dependent peroxidase-like activity of the gold clusters assays was
measured at 37 ◦C with various concentrations of PGN (25, 50, 75, and 100 µM) in the
presence of 100 mM H2O2 and 5 mM TMB at pH 3.0. The reaction was performed in a
thermostatic mixer, and the absorbance of the samples at 652 nm was recorded via UV-Vis
at different time points.
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The pH of the solution containing 135 µL of clusters, 200 µL of 100 mM H2O2
and 300 µL of 5 mM TMB was adjusted from 2 to 7, and the absorbance of each sam-
ple at 652nm after retention in a thermomixer at 37 ◦C for 1h was recorded using a
UV-Vis spectrophotometer.

The pH of the solution containing 135 µL of cluster solution, 200 µL of 100 mM
H2O2 and 300 µL of 5 mM TMB was adjusted to 3, and the reaction was kept at different
temperatures from 25 to 50 ◦C for 1 h. Then the absorbance of each sample at 652 nm was
recorded using a UV-Vis spectrophotometer.

3.7. Determination of the Hydroxyl (·OH) Radical

Briefly, 135 µL of cluster solution was added to 2 mL water at pH 4. In this solution,
200 µL of 100 mM H2O2 and 800 µL of 6.25 mM terephthalic acid were mixed and incubated
at 37 ◦C for 30 min. Then, the fluorescence spectra of the resultant solutions were measured
with the excitation wavelength at 315 nm.

3.8. Steady-State Kinetic Assay of the Peroxidase-like Activity of the Clusters

Kinetic measurements of peroxidase-like properties were carried out by monitoring
the time-dependent absorbance of ox-TMB at 652 nm using a UV–Vis spectrophotometer.
The reaction kinetic data were measured according to the changing substrate concentration
of TMB and H2O2. For the kinetic data relating TMB, 135 µL of cluster solution was added
to a solution containing 200 µL of H2O2 (100mM); and 300 µL of different concentrations of
TMB. Similarly, for the kinetic data relating H2O2, 135 µL of cluster solution was added to a
solution containing 300 µL of TMB (1 mM); and 200 µL of different concentrations of H2O2.

The kinetic parameters (Vmax and Km) for peroxidase-like activity of PGN were de-
duced from Michaelis-Menten equation:

v =
Vmax × [S]
Km + [S]

(1)

where v, Vmax, [S] and Km are the initial velocity, the maximal reaction velocity, the
concentration of TMB and the Michaelis constant, respectively. Kcat was derived from
Kcat = Vmax/[E], where [E] represents the concentration of the clusters (Au based).

3.9. Cytotoxicity Experiment

MTT (5-dimethylthiazol-2-yl-2,5-diphenyltetrazolium bromide) assays were performed.
NIH 3T3 and HeLa cells were passed and plated to ca. 70% confluence in 96-well plates
24 h before treatment. Then, DMEM (Dulbecco’s Modified Eagle Medium) with 10% FBS
(fetal bovine serum) was removed and replaced with fresh DMEM, and the cluster solution
was then added to obtain final concentrations of 0, 20, 40, 60, 80 and 100 µM (Au-based).
The treated cells were incubated for 12/24 h at 37 ◦C under 5% CO2. Then, the cells were
treated with 5 mg/mL MTT (10 µL/well) and incubated for another 4 h (37 ◦C, 5% CO2).
The cells were then dissolved in DMSO (150 µL/well), and the absorbance at 570 nm was
recorded. Cell viability (%) was analyzed based on the following equation:

Cell viability % = OD570 (sample)/OD570 (control) × 100%

where OD570 (sample) is the optical density of the wells treated with various concentration
of clusters and OD570 (control) is that of the wells treated with DMEM containing 10%
FBS (fetal bovine serum). The percentage of cell survival values were relative to untreated
control cells. Each individual cytotoxicity experiment was repeated three times.

3.10. Cell Culture and Confocal Fluorescence Imaging

NIH 3T3 and HeLa cells were cultured in Dulbecco’s Modified Eagle Medium (DMEM)
supplemented with 10% FBS (fetal bovine serum), penicillin (100 µg/mL), and streptomycin
(100 µg/mL) at 37 ◦C in a humidified atmosphere of 5% CO2 and 95% air. Cytotoxicity
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assays showed that the clusters are biocompatible at low concentrations, so a concentration
of 60 µM was chosen for fluorescence imaging in cells. The cells were incubated with 60 µM
clusters for 2 h, then washed 3 times with PBS buffer. Then, cell imaging was recorded
using a confocal microscope (TCS SP8 DIVE).

4. Conclusions

Nano-enzymes have recently attracted increasing research interest for their high cat-
alytic activity and capacity to overcome the disadvantages of natural enzymes, whereas
comprehensive synthetic procedures and harsh reaction conditions (such as high temper-
ature, long reaction time,) significantly restrict the application of these materials. In this
study, gold nanoclusters protected by oligopeptides (DGEAGC) were prepared using a
mild one-pot synthesis method, i.e., via simply reacting the oligopeptide and HAuCl4 in
aqueous solution at 70 ◦C for only two hours. The UV-Vis, PAGE separation, HRTEM, XPS,
and FTIR analysis demonstrated the monodispersity of the prepared clusters. The prepared
clusters showed strong orange-red emission and excellent chemical stability. PGN can oxi-
dize TMB to produce blue ox-TMB in the presence of H2O2, indicating peroxidase activity,
which conforms to the steady-state kinetic equation of the enzyme. In particular, the good
biocompatibility and cell imaging properties indicate the potential of gold nanoclusters as
a multifunctional platform.

Supplementary Materials: The following supporting information can be downloaded at: https://
www.mdpi.com/article/10.3390/molecules28010070/s1. Figure S1: UV-vis absorption spectrum
(black line) and the luminescence excitation (red line) of PGN. Figure S2: Digital photo of the PAGE
bands upon UV light excitation. Figure S3: Comparison of (a) UV-Vis and (b) fluorescence intensity
of the crude products and the fluorescent band. Figure S4: Fluorescence lifetime decays of PGN.
Figure S5: The whole XPS spectra of PGN. Figure S6: (a) Fluorescence spectra of PGN at different
temperatures (from 20 to 40 ◦C). (b) Correlation of fluorescence intensity at 600 nm with temperature
ranging from 20 to 40 ◦C. (c) Fluorescence spectra of PGN at different pH (from 3 to 7). (d) Correlation
of fluorescence intensity at 600 nm with pH in the range of 3–7. Figure S7: Comparison of the
peroxidase-like (in presence of H2O2) and the oxidase-like (in presence of dioxygen) activity of
PGN. Figure S8: Fluorescence changes of the PGN-TMB system after adding H2O2 at different
concentrations (0, 5, 10, 20, 30, 40, 50, 60, 70, 80, 90 and 100 mM). Figure S9: Emission spectra of PGN
(black line) and UV-Vis absorption spectra of the PGN-TMB-H2O2 system (red line). Figure S10: The
UV-Vis spectrum of PGN + H2O2 + TMB before and after adding GSH. Figure S11: Fluorescence
spectrum of PGN; PGN + GSH; PGN + H2O2 + TMB and PGN + H2O2 + TMB + [GSH]. Figure S12:
(a) The absorption peak at 652 nm in the presence of different concentrations of TMB (0.2, 0.4, 0.6, 1.2,
1.6 mM). (b) The absorption peak at 652 nm in the presence of different concentrations of H2O2 (25, 50,
75, 100, 125 mM). The concentration of the GSH-Au NCs was fixed at 100 µM (Au basis). Figure S13:
Steady-state kinetic assay and catalytic mechanism of the synthesized GSH-Au NCs towards various
components: (a,b) 1 mM TMB and different concentrations of H2O2, (c,d) 100 mM H2O2 and different
concentrations of TMB. Table S1: Comparison of kinetic parameters of Km and Kcat of PGN, and
GSH-Au NCs.
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