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Abstract: Chromeno[2,3-b]pyridines are substances demanded in medicinal and material chemistry.
PASE (pot, atom, and step economy) and in particular one-pot approaches are key green chemistry
techniques that are applied for the synthesis of heterocyclic compounds. In this case, the PASE
approach was extended with ‘component economy’, as solvent was used also as reactant (solvent-
involved reaction). This approach was adopted for the one-pot synthesis of previously unknown
O-substituted 5-alkoxy-5H-chromeno[2,3-b]pyridines via two-step transformation, namely the reaction
of salicylaldehydes and malononitrile dimer, with the subsequent addition of alcohol. The mechanistic
studies revealed the possibility of concurrent reaction. The studies aided in optimizing the reaction
conditions for the best yields (77–93%). Thus, the one-pot reaction proceeds efficient and quickly,
and the work-up procedure (only simple filtering) is very convenient. The structure of synthesized
chromeno[2,3-b]pyridines was confirmed by 2D NMR spectroscopy.

Keywords: one-pot reaction; chromeno[2,3-b]pyridine; salicylaldehyde; alcohol; malononitrile dimer

1. Introduction

Global ecological awareness has made green chemistry a broad, beneficial and promis-
ing area of organic chemistry [1,2]. Green chemistry is based on 12 principles [1] that lead
to the development of the simplest synthetic approach with the utilization of the least
number of components (the less toxic, the better); the result should carry the least number
of by-products and environmental threats.

The current level of chemistry does not allow all 12 principles to be applied to resolve
all drawbacks and limitations (for example, avoiding solvents or special precursors) in the
development of every new process. Thereby, in synthetic chemistry, the PASE approach
has become widespread [3–7] and it is currently a key green technique [4]. This approach
is focused on the economy (E) of pot (P), atom (A) and steps (S). Atomic economy states
that the majority of atoms in a reaction become a component of the final product. This
concept prevents waste; however, if the waste is inevitable, according to green chemistry,
water is the best by-product. Step economy is linked to the energy efficiency principle; it is
preferable to have the fewest stages (separate transformations, work-ups) [8] and to have
all transformations in one pot [8,9].

Another green principle is to utilize a less toxic solvent or completely reduce it [10].
Solvent-free reactions [11,12], solid-state reactions [13–15]—in case of solid aldehydes, on-
water (water-assisted), and reactions in emulsions [12,16–18] are examples of green methods
with varying solvent roles that were developed with that principle. These approaches
greatly reduce the amount of solvent, increase the reaction rate [19,20] and produce excellent
yields [15,16,20].

Among the approaches mentioned above, reactions in which solvents are involved
in the transformations [21] have never received special attention. However, it would be
a consistent extension of such approaches. More than that, the utilization of solvent as
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a reactant is applied in polymer [22] and organic syntheses (Friedel–Crafts acylation) as
they possess several advantages: they are simple, reduce waste, and are easy to work up.

Chromenopyridine derivatives have a wide spectrum of properties that are useful
for medicinal chemistry. Among them, glucocorticoid receptor activity [23], antiprolifera-
tive [24], anti-tumor [25] anti-rheumatic [26], anti-histaminic [26] and anti-asthmatic [27]
properties are shown. Pranoprofen is a nonsteroidal anti-inflammatory drug with analgesic
and antipyretic actions [28].

Chromenopyridine derivatives with an additional atom of oxygen at the 5-position are
a more specific class of compounds. Amlexanox (Figure 1) is an anti-allergic drug, clinically
effective for atopic diseases, especially allergic asthma and rhinitis [29]. Another practically
useful compound of this class is 5-phenoxy-5H-chromeno[2,3-b]pyridine (Figure 1) [30],
which, when placed on the surface of low-carbon steel, prevents its corrosion, even in
a 15% hydrochloric acid solution [30]. There are some other derivatives with similar
properties [31,32].
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Among these compounds, the structure of 5-phenoxy-5H-chromeno[2,3-b]pyridine
(Figure 1) provides the best potential for modification of the O-substitution. Furthermore,
5-phenoxy-5H-chromeno[2,3-b]pyridine is the only structure known to have an additional
oxygen substitution [30]. At the same time, phenol, which is used for the synthesis, is quite
a toxic component. It would be better to replace phenol fragments with less toxic and
more cheap alcohols. However, the synthesis of 5-phenoxy-5H-chromeno[2,3-b]pyridine is
carried out in ethanol [30], and no 5-ethoxy-5H-chromeno[2,3-b]pyridine products were
obtained in this procedure.

We have accomplished several syntheses of chromeno[2,3-b]pyridines [5,33] and some
green transformations with different roles of solvent, among them [12] on-solvent [12], on-
water [18], and solid-state ([15] procedures. In addition to these green methods, we would
like to present the first synthesis of O-substituted 5-alkoxy-5H-chromeno[2,3-b]pyridines,
in which solvent is used as a reactant (solvent-involved—[21]) and plays a role in the final
nucleophilic addition, becoming a fragment of the final structure. It delivers atom economy,
reduces the number of used components, and thereby makes the whole process greener.

2. Results and Discussion
2.1. Formation of 5-Alkoxy-5H-Chromeno[2,3-b]pyridine 4

Previously we synthesized various types of 5-C- and 5-P-chromeno[2,3-b]pyridines [5,33–38].
In general, the interaction of a carbonyl group with a CH acid and the subsequent addition
of another CH acid are easily feasible. Modifying CH acid to another nucleophilic agent, on
the other hand, is a more difficult task. We discovered this for the first time in the synthesis
of 5-P-chromeno[2,3-b]pyridines [5]. To complete the synthesis, we had to use an aprotic
solvent (CH3CN), which enhances the nucleophilic properties of reactants.

After C- and P-substituted products were synthesized, we concentrated on 5-O-
substituted chromeno[2,3-b]pyridines. It turns out that only a few examples are known, and
only a few of them have been synthesized with one-pot or multicomponent methods [39–41].

One such example is the multicomponent synthesis of 2,4-diamino-5-phenoxy-5H-
chromeno[2,3-b]pyridine-3-carbonitrile (Scheme 1) [30]. Among other things, it is difficult
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to assess the generality of the reaction, since the authors presented only one such compound.
The mechanism of the reaction was also not described thoroughly.
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carbonitrile.

We were encouraged to deeply investigate such processes in case of malononitrile
dimer. First of all, we synthesized chromene 5a for the mechanism investigation. However,
during the recrystallization of chromene 5a after the reaction (Scheme 2), some byproducts
were found.
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NMR analysis (see Section 2.4 for more detailed analysis) revealed that harsh re-
crystallization results in the formation of 5-alkoxy-5H-chromeno[2,3-b]pyridine (Figure 2,
Scheme 3 in Section 2.2).
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Thus, in this article, we present a mechanistic investigation of the formation of
5-alkoxy-5H-chromeno[2,3-b]pyridine with proven structure (2D NMR) as well as a conve-
nient approach to the new substituted 5-O-chromeno[2,3-b]pyridines.

2.2. Mechanism of Formation of 5-Methoxy-5H-Chromeno[2,3-b]pyridine 4a

In this case, the addition of MeOH to chromene 5a appears to allow the formation of
5-O-chromeno[2,3-b]pyridine. We have carried out several one-pot transformations to prove
this (Scheme 3).

A two-step transformation results in 5-O-chromeno[2,3-b]pyridine 4a after the complete
formation of intermediate 5a (it precipitates, then redissolves) (Scheme 3). The intermediate
5a was detected in the reaction mixture (NMR). The steps of the two-step transformation
were controlled by temperature. The final cyclization to 4a (step II, Scheme 3) demands
heating at reflux.

If the heating is provided immediately without complete formation (precipitation) of
intermediate 5a, the process affords a mixture of compounds 8 and 4a. Thus, in this case
5-O-chromeno[2,3-b]pyridine 4a is formed in a multicomponent reaction, but concurrent
cascade formation of chromeno[2,3-b]pyridine derivative 8 [42] also occurs (Scheme 3).
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and cascade formation of chromeno[2,3-b]pyridine derivative 8. For the conditions see Table 1 in
Section 2.3, Entry 1.

Based on these results, we decided to accomplish the process in the one-pot two-step
format (Scheme 3). In this case, stage I was completed in one hour without heating to avoid
the formation of unsubstituted chromeno[2,3-b]pyridine derivative 8 [42]. Stage II also took
half an hour, but with heating at reflux. At the end of the two-step transformation, only
5-O-chromeno[2,3-b]pyridine 4a was detected.

Based on our earlier results [5,33,38] and data from the literature [43], we propose the
following one-pot two-step cascade transformation mechanism (Scheme 4). The first stage of
the one-pot process was a Knoevenagel condensation with the formation of intermediate
6 and the expulsion of a hydroxide anion [44]. This hydroxide anion catalyzed Pinner
cyclization of the adduct 6 into the unsaturated intermediate 5. At the second stage
of the one-pot process, the addition of alcohol to the double bond of the intermediate
compound 5 according to Markovnikov’s rule took place. The resulting intermediate 7
underwent deprotonation, tautomerization, and Pinner-type cyclization. After that, another
tautomerization and protonation occurred to yield 5-O-chromeno[2,3-b]pyridine 4.
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It should be noted that obtained 5-O-chromeno[2,3-b]pyridines 4 are unstable in
DMSO solution. In publication [45], the authors claimed to have synthesized 2,4-diamino-
5-ethoxy-9-methoxy-5H-chromeno[2,3-b]pyridine-3-carbonitrile. Those data, however, are
not available, neither in the text of the article nor in the Supplementary Materials [45]. The
authors claim that this is due to the fact that the compound 4a is unstable in DMSO-d6 and
in solid form. Indeed, we observed the decomposition of 5-O-substituted chromeno[2,3-
b]pyridines 4 upon standing in DMSO-d6 in a NMR tube at room temperature, while
recording NMR spectra. We solved this problem by preparing a fresh solution. In solid
form, these compounds 4 turned out to be stable.

In the case of 5-P and 5-C-substituted chromeno[2,3-b]pyridines, corresponding CH
acid or trialkyl phosphites acted similarly to alcohol, as described in our research (Scheme 3).
It should be noted that 5-P- and 5-C-chromeno[2,3-b]pyridines were synthesized under the
same conditions (in ethanol) without any quantity of 5-alkoxy-5H- chromeno[2,3-b]pyridine
formation. Moreover, 5-P and 5-C-substituted chromeno[2,3-b]pyridines [5,33–38] were
stable in DMSO. This affirms that 5-P- and 5-C-products are thermodynamically more
stable, and that 5-alkoxy derivatives are kinetic products.

2.3. One-Pot Synthesis of 5-Alkoxy-5H-Chromeno[2,3-b]pyridines 4a–i

As the mechanism of the reaction had been established, we were interested in optimiz-
ing the reaction conditions. Further, transformations of salicylaldehyde 1a, malononitrile
dimer 2 and alcohol 3a were done in the one-pot, two-step format (Scheme 3, Path A, two-step,
one-pot) to avoid the concurrent formation of byproduct 8 (Scheme 3, Path B). Namely,
salicylaldehyde 1a and malononitrile dimer 2 in alcohol were stirred until the intermediate
5 was precipitated (Stage I), and the reaction mixture was heated at reflux to produce
5-O-chromeno[2,3-b]pyridines 4 (Stage II). The list of conditions is presented in Table 1.

Table 1. Optimization of reaction conditions on the synthesis of 4a 1.

Entry Catalyst Cat. Amount
(mol%)

Solvent Amount
st. II (mL)

Time st. II
(h)

Temp.
(◦C) Yield (%) 2

1 Morpholine 10 20 1 65 80

2 Piperidine 10 20 1 65 82

3 Pyridine 10 20 1 65 71

4 Et3N 10 20 1 65 94

5 AcONa 10 20 1 65 48 3

6 NaOH 10 20 1 65 52 3

7 KF 10 20 1 65 29 3

8 Et3N 20 20 1 65 95

9 Et3N 10 15 1 65 90

10 Et3N 10 25 1 65 82

11 Et3N 10 20 0.5 65 93

12 Et3N 10 20 2 65 94

13 Et3N 10 20 0.5 23 (rt) 10 3

1 Reaction conditions: salicylaldehyde 1a (1 mmol), malononitrile dimer 2 (1 mmol), methanol 3a (1 mmol) were
stirred in 10 mL of corresponding alcohol at room temperature for 1 h, then another portion of alcohol was added,
and reaction mixture was heated at reflux for time indicated in Table 1. 2 Isolated yields. 3 NMR data.

The data from Table 1 indicate that amines (Entries 1–4, 8–13) tend to produce higher
yields of 4a than inorganic catalysts. Stage I can be accomplished with any type of catalyst
in high yields. It is possible that amines form a transitional intermediate that increases the
rate of the nucleophilic addition in Stage II.

The reaction in Stage I is easily catalyzed, and the product precipitates in one hour
process without heating. In Stage II, there should be a balance between reagent and product
solubility, and the amount of alcohol is important (Entries 8–10). Thus, 10 mL of methanol
were used in Stage I, and another 20 mL of methanol were used in Stage II to achieve the
best results. According to Entries 8, 11, 12, Stage II finishes in a half hour.
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Among the amines used (Entries 1–4), triethylamine (Entry 4) is the best catalyst. This is
probably due to its strong basicity. 10% of catalyst is enough for the reaction (Entries 4, 8).

To sum up, Entry 11 is the most optimal condition for this new transformation. To
isolate the synthesized compound, when the reaction was finished, the reaction mixture
was left at room temperature for 3 h to crystallize the final compound 4 in pure form.

Under the optimal conditions, multicomponent reactions of salicylaldehydes 1a–c,
malononitrile dimer 2 and alcohols 3a–c were carried out. 5-Alkoxy-5H-chromeno[2,3-
b]pyridines 4a–i were obtained in 77–93% yields (Table 2).

Table 2. One-pot reaction of salicylaldehydes 1a–c, malononitrile dimer 2 and alcohols 3a–c 1.
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1 Reaction conditions: salicylaldehyde 1a–c (1 mmol), malononitrile dimer 2 (1 mmol), and triethylamine
(0.1 mmol) were stirred in 10 mL of corresponding alcohol 3a–c for 1 h. Then, another portion of alcohol
3a–c (20 mL) was added, and reaction mixture was heated at reflux for 30 min. Isolated yields.

It should be noted that regardless of the type of alcohol, the highest yields of chromeno[2,3-
b]pyridine 4a–c were obtained in the reaction with salicylaldehyde 1a (Table 2). When
electron-donor or halogen substituted salicylaldehyde 1 is used, the yields decrease slightly
but remain comparable. This is preusmably due to the greater solubility of the intermediate
5 in alcohols in these cases. When alcohol was changed, the highest yields of chromeno[2,3-
b]pyridines 4 were obtained with methanol 3a (Table 2). Most likely, this can be explained
by steric factors.

2.4. 2D-NMR Study of the Structure of Compound 4d

The structure of the obtained compounds 4a–i was confirmed by 1H and 13C NMR
data, IR spectroscopy, and mass spectrometry. The structure of the compound 4d was
confirmed by various NMR correlation spectroscopy techniques (Figures 3 and 4).

The assignment of one-dimensional (1D) 1H and 13C-NMR spectra signals was per-
formed using two-dimensional (2D) NMR experiments such as 1H-13C HSQC and 1H-13C
HMBC (Figure 4). 1H-13C HSQC showed two NH2-groups which had no cross-peaks in
the spectrum. In the HMBC spectrum, the coupling between amino-protons and C3 was
found (Figures 3 and 4). Additionally, 5-OMe gave the only correlation with C5 through
three chemical bonds. This is confirmed by the spin interaction from the HMBC spectrum
of H5 with the carbons of the benzene and pyridine rings (Figures 3 and 4).
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Figure 4. 1H-13C HMBC NMR spectrum of 2,4-diamino-5,8-dimethoxy-5H-chromeno[2,3-b]pyridine-
3-carbonitrile 4d in DMSO-d6 (400 MHz, 298 K).

The full correlation of signals from one-dimensional 1H and 13C-NMR spectra with
the corresponding atoms of compound 4d is as follows:

1H-NMR (500 MHz, DMSO-d6) δ: 2.77 (s, 3H, 5-OCH3), 3.79 (s, 3H, 8-OCH3), 5.77 (s,
1H, C(H5)), 6.62 (s, 2H, 2-NH2), 6.67 (s, 2H, 4-NH2), 6.73 (d, 4J = 2.5 Hz, 1H, C(H9) Ar), 6.81
(dd, 3J = 8.5 Hz, 4J = 2.5 Hz, 1H, C(H7) Ar), 7.32 (d, 3J = 8.5 Hz, 1H, C(H6) Ar) ppm.

13C-NMR (126 MHz, DMSO-d6) δ: 49.7 (5-OCH3), 55.4 (8-OCH3), 65.9 (C5), 70.3 (C3),
86.5 (C4a), 100.7 (C9), 110.9 (C7), 111.2 (C5a), 116.3 (CN), 130.4 (C6), 152.3 (C9a), 158.4, 160.0
(C4, C1a), 160.23, 160.24 (C2, C8) ppm.

Detailed 1D 1H and 13C-NMR spectra and 2D NMR spectra of the compound 4d are
presented in the Supplementary Materials (Figures S19–S22).

3. Materials and Methods
3.1. General Information

The solvents and reagents were purchased from commercial sources and used as
received. 2-Aminoprop-1-ene-1,1,3-tricarbonitrile (malononitrile dimer) 2 was synthesized
from malononitrile according to the literature [46].

All melting points were measured with a Gallenkamp melting-point apparatus (Gal-
lenkamp & Co., Ltd., London, UK) and were uncorrected. 1H and 13C-NMR spectra were



Molecules 2023, 28, 64 8 of 12

recorded in DMSO-d6 with Bruker AM300 and Bruker AV500 spectrometers (Bruker Corpo-
ration, Billerica, MA, USA) at ambient temperature. Chemical shift values are relative to
Me4Si. Some 1H-NMR spectra have underestimated NH2 signals integrals. These protons
were exchanged with D2O (it is present as an impurity in DMSO-d6). Two-dimensional
(2D) NMR spectra were registered with a Bruker AV400 spectrometer (Bruker Corporation,
Billerica, MA, USA) at ambient temperature. The IR spectrum was recorded with a Bruker
ALPHA-T FT-IR spectrometer (Bruker Corporation, Billerica, MA, USA) in a KBr pellet.
MS spectra (EI = 70 eV) were obtained directly with a Kratos MS-30 spectrometer (Kratos
Analytical Ltd., Manchester, UK). High-resolution mass spectra (HRMS) were measured
on a Bruker micrOTOF II (Bruker Corporation, Billerica, MA, USA) instrument using
electrospray ionization (ESI).

3.2. One-Pot Synthesis of 5-Alkoxy-5H-Chromeno[2,3-b]pyridines 4a–i

Salicylaldehyde 1a–c (1 mmol) and malononitrile dimer 2 (1 mmol, 132 mg) were
stirred in alcohol 3a–c (10 mL) for 1 h at room temperature. The formation of a thick
yellowish precipitate was observed. Another portion of alcohol 3a–c (20 mL) was added
to the precipitate with stirring, and the reaction mixture was refluxed for an additional
30 min. After the reaction was completed, the flask was left at room temperature for 3 h.
The solid was filtered, washed with well-chilled ethanol/water mixture (1:1, 2 × 2 mL),
and dried to isolate pure 5-alkoxy-5H-chromeno[2,3-b]pyridine 4a–i.

2,4-Diamino-5-methoxy-5H-chromeno[2,3-b]pyridine-3-carbonitrile 4a, (white pow-
der, 250 mg, 93%), mp. 297–298 ◦C (decomp.) (from MeOH), FTIR (KBr), cm−1: 3458, 3345,
3228, 2203, 1624, 1600, 1564, 1408, 1217, 1049. 1H-NMR (300 MHz, DMSO-d6) δ 2.82 (s,
3H, OCH3), 5.85 (s, 1H, CH), 6.64 (s, 2H, NH2), 6.72 (s, 2H, NH2), 7.15–7.29 (m, 2H, 2 CH
Ar), 7.38–7.50 (m, 2H, 2 CH Ar) ppm. 13C-NMR (126 MHz, DMSO-d6) δ 48.7, 66.2, 70.4,
88.5, 115.8, 116.6, 122.1, 124.7, 128.9 (2C), 151.3, 156.7, 159.2, 159.8 ppm. MS (EI, 70 eV) m/z
(%): 268 [M]+ (5), 237 (100), 209 (3), 171 (21), 145 (3), 118 (6), 92 (3), 66 (21), 63 (6), 29 (16).
HRMS-ESI: m/z [M + H]+, calcd for C14H13N4O2 269.1039, found 269.1043.

2,4-Diamino-5-ethoxy-5H-chromeno[2,3-b]pyridine-3-carbonitrile 4b, (white pow-
der, 246 mg, 87%), mp. 294–295 ◦C (decomp.) (from EtOH), FTIR (KBr), cm−1: 3461, 3367,
3226, 2205, 1625, 1601, 1564, 1407, 1216, 1057. 1H-NMR (300 MHz, DMSO-d6) δ 0.93 (t,
3J = 7.0 Hz, 3H, CH3), 2.96–3.13 (m, 2H, OCH2), 5.83 (s, 1H, CH), 6.60 (s, 2H, NH2), 6.69
(s, 2H, NH2), 7.12–7.27 (m, 2H, 2 CH Ar), 7.35–7.51 (m, 2H, 2 CH Ar) ppm. 13C-NMR (126
MHz, DMSO-d6) δ 15.3, 58.2, 65.6, 70.4, 87.1, 116.3, 119.9, 123.8, 128.8, 129.5, 129.7, 151.1,
158.4, 159.9, 160.3 ppm. MS (EI, 70 eV) m/z (%): 282 [M]+ (3), 237 (100), 209 (2), 180 (1), 171
(13), 145 (2), 118 (3), 77 (4), 66 (13), 29 (34). HRMS-ESI: m/z [M + H]+, calcd for C15H15N4O2
283.1195, found 283.1200.

2,4-Diamino-5-propoxy-5H-chromeno[2,3-b]pyridine-3-carbonitrile 4c, (white pow-
der, 264 mg, 89%), mp. 293–294 ◦C (decomp.) (from n-PrOH), FTIR (KBr), cm−1: 3464,
3357, 3235, 2198, 1627, 1602, 1564, 1408, 1220, 1069. 1H-NMR (300 MHz, DMSO-d6) δ 0.73 (t,
3J = 7.4 Hz, 3H, CH3), 1.42–1.25 (m, 2H, CH2), 2.84–3.02 (m, 2H, OCH2), 5.89 (s, 1H, CH),
6.62 (s, 2H, NH2), 6.69 (s, 2H, NH2), 7.13–7.28 (m, 2H, 2 CH Ar), 7.37–7.51 (m, 2H, 2 CH Ar)
ppm. 13C-NMR (75 MHz, DMSO-d6) δ 10.6, 22.6, 64.1, 65.6, 70.3, 86.9, 116.2, 119.7, 123.8,
128.8, 129.5, 129.7, 151.1, 158.4, 159.8, 160.3 ppm. MS (EI, 70 eV) m/z (%): 296 [M]+ (3),
253 (2), 237 (100), 209 (2), 171 (14), 145 (2), 118 (3), 77 (2), 66 (9), 29 (16). HRMS-ESI: m/z
[M + H]+, calcd for C16H17N4O2 297.1346, found 297.1352.

2,4-Diamino-5,8-dimethoxy-5H-chromeno[2,3-b]pyridine-3-carbonitrile 4d, (yellow-
ish powder, 239 mg, 80%), mp. 282–283 ◦C (decomp.) (from MeOH), FTIR (KBr), cm−1:
3464, 3354, 3234, 2197, 1629, 1600, 1559, 1403, 1173, 1048. 1H-NMR (300 MHz, DMSO-d6) δ
2.79 (s, 3H, OCH3), 3.81 (s, 3H, CH3O-Ar), 5.79 (s, 1H, CH), 6.62 (s, 2H, NH2), 6.67 (s, 2H,
NH2), 6.75 (s, 1H, 1 CH Ar), 6.83 (d, 3J = 8.3 Hz, 1H, 1 CH Ar), 7.34 (d, 3J = 8.3 Hz, 1H,
1 CH Ar) ppm. 13C-NMR (75 MHz, DMSO-d6) δ 49.6, 55.4, 65.9, 70.4, 86.5, 100.7, 110.9,
111.2, 116.2, 130.4, 152.3, 158.4, 160.0, 160.2 (2C) ppm. MS (EI, 70 eV) m/z (%): 298 [M]+ (2),
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267 (100), 224 (19), 195 (4), 170 (2), 133 (4), 114 (1), 77 (2), 66 (5), 15 (23). HRMS-ESI: m/z
[M + H]+, calcd for C15H15N4O3 299.1144, found 299.1148.

2,4-Diamino-5-ethoxy-8-methoxy-5H-chromeno[2,3-b]pyridine-3-carbonitrile 4e,
(yellowish powder, 244 mg, 78%,), mp. 280–281 ◦C (decomp.) (from EtOH), FTIR (KBr),
cm−1: 3472, 3309, 3201, 2200, 1629, 1600, 1566, 1407, 1205, 1050. 1H-NMR (300 MHz,
DMSO-d6) δ 0.95 (t, 3J = 6.9 Hz, 3H, CH3), 3.02 (q, 3J = 6.9 Hz, 2H, OCH2), 3.81 (s, 3H,
CH3O-Ar), 5.79 (s, 1H, CH), 6.60 (s, 2H, NH2), 6.66 (s, 2H, NH2), 6.74 (d, 4J = 2.1 Hz, 1H,
1 CH Ar), 6.82 (dd, 3J = 8.5 Hz, 4J = 2.1 Hz, 1H, 1 CH Ar), 7.35 (d, 3J = 8.5 Hz, 1H, 1 CH Ar)
ppm. 13C-NMR (75 MHz, DMSO-d6) δ 15.3, 55.4, 57.7, 65.3, 70.4, 87.2, 100.8, 110.8, 112.0,
116.3, 130.3, 152.0, 152.1, 158.3, 159.6, 160.2 ppm. MS (EI, 70 eV) m/z (%): 312 [M]+ (2),
267 (100), 224 (26), 195 (4), 170 (2), 141 (2), 133 (7), 77 (3), 66 (8), 29 (47). HRMS-ESI: m/z
[M + H]+, calcd for C16H17N4O3 313.1301, found 313.1307.

2,4-Diamino-8-methoxy-5-propoxy-5H-chromeno[2,3-b]pyridine-3-carbonitrile 4f,
(yellowish powder, 258 mg, 79%), mp. 284–285 ◦C (decomp.) (from n-PrOH), FTIR (KBr),
cm−1: 3465, 3358, 3237, 2198, 1628, 1601, 1563, 1408, 1175, 1071. 1H-NMR (300 MHz, DMSO-
d6) δ 0.73 (t, 3J = 7.4 Hz, 3H, CH3), 1.25–1.41 (m, 2H, CH2), 2.80–2.96 (m, 2H, OCH2), 3.81 (s,
3H, CH3O-Ar), 5.83 (s, 1H, CH), 6.61 (s, 2H, NH2), 6.65 (s, 2H, NH2), 6.73 (d, 4J = 2.1 Hz,
1H, 1 CH Ar), 6.82 (dd, 3J = 8.5 Hz, 4J = 2.1 Hz, 1H, 1 CH Ar), 7.35 (d, 3J = 8.5 Hz, 1H, 1 CH
Ar) ppm. 13C-NMR (75 MHz, DMSO-d6) δ 10.6, 22.6, 55.4, 62.4, 65.3, 70.4, 100.7, 110.9, 111.8,
115.7, 116.3, 130.3, 152.1, 157.0, 157.6, 159.6, 160.2 ppm. MS (EI, 70 eV) m/z (%): 326 [M]+

(1), 267 (100), 252 (6), 224 (12), 195 (2), 170 (1), 134 (3), 104 (1), 66 (1), 31 (3). HRMS-ESI: m/z
[M + H]+, calcd for C17H19N4O3 327.1457, found 327.1461.

2,4-Diamino-7-chloro-5-methoxy-5H-chromeno[2,3-b]pyridine-3-carbonitrile 4g,
(white powder, 257 mg, 85%), mp. 306–307 ◦C (decomp.) (from MeOH), FTIR (KBr), cm−1:
3460, 3352, 3229, 2201, 1625, 1598, 1561, 1423, 1222, 1051. 1H-NMR (300 MHz, DMSO-d6) δ
2.80 (s, 3H, OCH3), 5.81 (s, 1H, CH), 6.66 (s, 2H, NH2 exch. with D2O), 6.72 (s, 2H, NH2
exch. with D2O), 7.23 (d, 3J = 8.6 Hz, 1H, 1 CH Ar), 7.40–7.50 (m, 2H, 2 CH Ar) ppm.
13C-NMR (75 MHz, DMSO-d6) δ 50.2, 66.0, 70.4, 85.7, 116.2, 118.5, 121.1, 127.5, 128.9, 129.9,
150.2, 158.4, 159.8, 160.4 ppm. MS (EI, 70 eV) m/z (%): 304 [M]+ (37Cl, 1), 302 [M]+ (35Cl, 4),
273 (37Cl, 32), 271 (35Cl, 100), 236 (3), 207 (37Cl, 4), 205 (35Cl, 12), 179 (2), 136 (5), 114 (3),
75 (4), 66 (23), 29 (17). HRMS-ESI: m/z [M + H]+, calcd for C14H12ClN4O2 305.0619 (37Cl),
303.0649 (35Cl), found 305.0622 (37Cl), 303.0653 (35Cl).

2,4-Diamino-7-chloro-5-ethoxy-5H-chromeno[2,3-b]pyridine-3-carbonitrile 4h,
(yellowish powder, 244 mg, 77%), mp. 303–304 ◦C (decomp.) (from EtOH), FTIR (KBr),
cm−1: 3467, 3360, 3223, 2197, 1621, 1589, 1562, 1399, 1220, 1051. 1H-NMR (300 MHz,
DMSO-d6) δ 0.94 (t, 3J = 6.9 Hz, 3H, CH3), 2.95–3.12 (m, 2H, OCH2), 5.81 (s, 1H, CH), 6.65 (s,
2H, NH2 exch. with D2O), 6.71 (s, 2H, NH2 exch. with D2O), 7.22 (d, 3J = 9.0 Hz, 1H, 1 CH
Ar), 7.41–7.51 (m, 2H, 2 CH Ar) ppm. 13C-NMR (75 MHz, DMSO-d6) δ 15.3, 58.4, 65.5, 70.5,
86.5, 116.2, 118.5, 121.8, 127.5, 128.7, 129.7, 150.0, 158.4, 159.7, 160.3 ppm. MS (EI, 70 eV) m/z
(%): 318 [M]+ (37Cl, 1), 316 [M]+ (35Cl, 3), 273 (37Cl, 33), 271 (35Cl, 100), 236 (3), 207 (37Cl, 3),
205 (35Cl, 9), 179 (1), 152 (1), 136 (2), 77 (1), 66 (7), 29 (16). HRMS-ESI: m/z [M + H]+, calcd
for C15H14ClN4O2 319.0771 (37Cl), 317.0800 (35Cl), found 319.0773 (37Cl), 317.0802 (35Cl).

2,4-Diamino-7-chloro-5-propoxy-5H-chromeno[2,3-b]pyridine-3-carbonitrile 4i,
(yellowish powder, 265 mg, 80%), mp. 304–305 ◦C (decomp.) (from n-PrOH), IR spectrum
(ν, cm−1): 3470, 3361, 3227, 2198, 1621, 1598, 1562, 1399, 1222, 1068. 1H-NMR (300 MHz,
DMSO-d6) δ 0.71 (t, 3J = 7.4 Hz, 3H, CH3), 1.25–1.40 (m, 2H, CH2), 2.81–2.98 (m, 2H, OCH2),
5.85 (s, 1H, CH), 6.65 (s, 2H, NH2 exch. with D2O), 6.70 (s, 2H, NH2 exch. with D2O),
7.21 (d, 3J = 8.5 Hz, 1H, 1 CH Ar), 7.42–7.48 (m, 2H, 2 CH Ar) ppm. 13C-NMR (75 MHz,
DMSO-d6) δ 10.6, 22.6, 64.3, 65.5, 70.4, 86.3, 116.2, 118.5, 121.7, 127.5, 128.8, 129.8, 150.0,
158.4, 159.6, 160.3 ppm. MS (EI, 70 eV) m/z (%): 332 [M]+ (37Cl, 1), 330 [M]+ (35Cl, 3), 273
(37Cl, 33), 271 (35Cl, 100), 243 (1), 207 (37Cl, 4), 205 (35Cl, 11), 152 (2), 136 (5), 92 (1), 66 (14),
41 (11), 29 (33). HRMS-ESI: m/z [M + H]+, calcd for C16H16ClN4O2 333.0932 (37Cl), 331.0962
(35Cl), found 333.0935 (37Cl), 331.0964 (35Cl).
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4. Conclusions

To conclude, the synthesis of 5-O-substituted 5H-chromeno[2,3-b]pyridines differs
from that of 5-P- and 5-C-substituted derivatives. The nucleophile, which is supposed to
interact with the intermediate, determines the final structure.

In this case, the solvent (alcohol) acted as a nucleophile; it interacted with the inter-
mediate formed from salicylaldehyde and malononitrile dimer to form 5-O-substituted
5H-chromeno[2,3-b]pyridines. This two-step, one-pot transformation extends the PASE ap-
proach with ‘component economy’ as alcohol is used both as a solvent and a reactant
(solvent-involved reaction).

The mechanistic studies revealed the possibility of concurrent processes. These pro-
cesses tend to form more thermodynamically stable products. Alcohol, as a weak nucle-
ophile, forms the kinetic product, which is unstable in solution.

The mechanistic studies aided in optimizing reaction conditions. Thus, the one-pot,
two-step transformation of salicylaldehydes, malononitrile dimer and alcohol proceeds
efficiently and quickly with the formation of 5-O-substituted 5H-chromeno[2,3-b]pyridines
in high yields of 77–93%. It is easy to isolate the final compounds directly from the reaction
mixture.

2D NMR spectroscopy confirmed the proposed structure of synthesized 5H-chromeno[2,3-
b]pyridines.

Supplementary Materials: The following supporting information can be downloaded at: https://www.
mdpi.com/article/10.3390/molecules28010064/s1, Figures S1–S18: 1H and 13C Spectra of synthesized
compounds 4a–i, Figures S19 and S20: Detailed 1D-NMR Spectra of 4d, Figures S21 and S22: 2D-
NMR Spectra of 4d.
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