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Abstract: The hydration of camphene was carried out over SBA‑15 with sulfonic acid groups and
tungstophosphoric acid at 50 ◦C. The main product of camphene hydration was isoborneol, with
camphene hydrate and borneol as byproducts. The catalytic activity increased with the amount
of tungstophosforic acid (PW) immobilized on the silica support until a maximum, which was ob‑
tained with the PW4‑SBA‑15‑SO3H material (16.4 wt.%). When the amount of PW immobilized on
SBA‑15 increased (PW5‑SBA‑15‑SO3H, 21.2 wt.%), the catalytic activity decreased. The catalytic ac‑
tivity of PW4‑SBA‑15‑SO3H increased with the water content of the solvent, until a maximum was
reached with 50% water. With higher water concentrations, a decrease in the catalytic activity was
observed. The selectivity to isoborneol was 90% at 99% camphene conversion in the presence of the
PW4‑SBA‑15‑SO3H catalyst. The catalytic stability of the PW4‑SBA‑15‑SO3H material during cam‑
phene hydration was studied by performing consecutive batch runs with the same catalyst sample.
After the third run, a trend towards stabilized catalytic activity was observed. A kinetic model is
also proposed.
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1. Introduction
The hydration of terpenes is an important synthesis route to obtain valuable com‑

pounds with many applications in the perfumery and pharmaceutical industries [1–5].
Isoborneol and borneol obtained by camphene hydration have applications in the formu‑
lation of soaps, cosmetic perfumes, and medicines [1,2]. Figure 1 shows the scheme of
camphene hydration.
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Figure 1. Scheme of camphene hydration.

Isoborneol is also an intermediate in the synthesis of camphor [6]. Camphene hydra‑
tion is carried out using homogeneous catalysts, such as HClO4 [7], H4SiW12O40 [8], and
H3PW12O40 [8]. The homogenous catalysts have some environmental problems and eco‑
nomic inconveniences. For example, it is difficult to remove them from reaction mixtures
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and their reutilization becomes difficult. In order to overcome these problems, homoge‑
nous catalysts have been replaced by heterogeneous catalysts. The heterogeneous catalysts
are more easily separated from reaction mixtures and can be reused [9–12].

Camphene hydrationwas performed usingUSY zeolite [13]. Materials were prepared
with different extra‑framework aluminum species. Valente et al. [13] observed that the
parentHYorHYwith lowdealumination did not have catalytic activity, due to the surfaces
of HY zeolite or low dealuminated zeolite being very hydrophilic. The solvent inside the
porous system was richer in water content than the bulk solution. Camphene molecules
had some difficulty in accessing the active site due to the layers of water molecules. The
catalytic activity increased with increasing degree of dealumination, which was explained
by the increase in the hydrophobicity of USY zeolite [13]. The selectivity to the isoborneol
was approximately 90% at near complete camphene conversion.

In a previous work, SBA‑15 with sulfonic acid groups was used as a catalyst in the
conversion of pinene [14]. This mesostructured silica was used to immobilized PW [15–17].
n‑Decane hydroisomerization [15], the conversion of glycerol to acrolein [16], the ethoxy‑
lation of terpenes [17] and the esterification of fatty acids [17] have been performed using
PW immobilized on SBA‑15.

In this work, we report the hydration of camphene over PW‑SBA‑15‑SO3H. In order
to optimize the amount of PW immobilized on SBA‑15, different materials were prepared.
The effect of solvent composition, amount of catalyst, and initial camphene concentration
were studied. The catalytic stability of the PW4‑SBA‑15‑SO3H material was also studied.
A kinetic model was proposed.

2. Results and Discussion
2.1. Catalyst Characterization

N2 isotherms at 77 K of the catalysts are shown in Figure 2. All catalysts displayed
isotherms characteristic of the mesostructured SBA‑15 material. The surface area (ABET)
and porous volume (Vp) of the PW‑SBA‑15‑SO3H catalyst are shown in Table 1. The ABET
and VP diminished when the quantity of the PW immobilized on SBA‑15 increased, which
may be due to the reduction in the surface area to N2 adsorption. In previous studies,
the ABET and Vp decreased with the amount of PW immobilized on the mesostructured
silica [15–17]. According to Gagea et al. [15], the heteropolyacid anions (H2PW12O40

−)
were trapped inside the SBA‑15 particles. The PWmolecules stayed fixed on the porewalls.
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Figure 2. N2 isotherms of materials. (▲) SBA‑15; (∗) SBA‑15‑SO3H; (
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Table 1. Characterization of the materials.

Materials Acidity a

(mmol H+/g) HPW Amount (wt%) ABET (m2/g) VT
b (cm3/g)

SBA‑15 ‑ ‑ 880 0.82
SBA‑15‑SO3H 0.40 ‑ 772 0.74

PW1‑SBA‑15‑SO3H 0.52 1.7 723 0.71
PW2‑SBA‑15‑SO3H 0.68 4.2 707 0.68
PW3‑SBA‑15‑SO3H 0.78 8.6 687 0.65
PW4‑SBA‑15‑SO3H 1.32 16.4 654 0.61
PW5‑SBA‑15‑SO3H 1.53 22.1 583 0.56

a The total acid density was measured by titration; b (p/p◦) = 0.98.

Table 1 shows the acidity of the materials. When the amount of PW on SBA‑15 in‑
creased, the acidity of the materials also increased, which may be due to the increased
amount of H+ with PW loading of the SBA‑15 material [15,16].

Figure 3 shows the ATR‑FTIR spectra of PW (A), SBA‑15‑SO3H (B), PW1‑SBA‑15‑
SO3H (C), PW2‑SBA‑15‑SO3H (D), PW3‑SBA‑15‑SO3H (E), PW4‑SBA‑15‑SO3H (F), and
PW5‑SBA‑15‑SO3H (G). The PW material exhibited principal IR bands at 1080, 985, 890,
and 839 cm−1, which were attributed to the νas P‑Oa, W = Ot, W‑Oc‑W, and W‑Oe‑W of
the Keggin structure of PW, respectively [16,18]. Additionally, the peaks from the ‑SO3H
groupwere at 530, 620, 1068, and 1190 cm−1 [19]. Themain bands of PWwere present in the
ATR‑FTIR spectrum of PW‑SBA‑15‑SO3H (Figure 3). However, some bands characteristic
of Keggin units were overlappedwith the bands of the SBA‑15. In a previous work [15–17],
when PWwas supported on SBA‑15, some major bands were also not observed. The peak
from the ‑SO3Hgroup at 1190 cm−1was present in the ATR‑FTIR spectrum of the PW‑SBA‑
15‑SO3Hmaterial (Figure 3). In addition, some peaks of the ‑SO3Hgroupwere overlapped
with the bands of mesostructured silica SBA‑15 [19].
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Figure 3. ATR‑FTIR spectra of the catalysts: (A) PW; (B) SBA‑15‑SO3H; (C) PW1‑SBA‑15‑SO3H,
(D) PW2‑SBA‑15‑SO3H, (E) PW3‑SBA‑15‑SO3H, (F) PW4‑SBA‑15‑SO3H, (G) PW5‑SBA‑15‑SO3H.

Figure 4A shows the XRD spectra of the catalysts. SBA‑15 shows three diffraction
peaks (100), (110), and (200), which corresponded to the two‑dimension hexagonal
mesostructure. All catalysts with PW immobilized on SBA‑15‑SO3H displayed the diffrac‑
tion peak at the 2θ region, which indicated that the structure of SBA‑15was preserved after
the immobilization of PW and the sulfonic acid groups onto silica [15,16].
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Figure 4B displays the XRD spectra of the catalysts at the 2θ region of 5◦ to 55◦. The
peaks characteristic of PW (Figure 3B‑(viii)) did not appear on the XRD spectrum of the
SBA‑15‑SO3Hmaterial, which suggested that the PWunitswere verywell dispersed [16,17].

Figure 5 shows the TEM images of the SBA‑15 (Figure 5A) and PW4‑SBA‑15‑SO3H
materials (Figure 5B). The immobilization of PW and the introduction of the sulfonic acid
groups did not seem to affect the porous system of the SBA‑15 [15–17].
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2.2. Catalytic Experiments
Figure 6 shows the initial activity of SBA‑15, SBA‑15‑SO3H, PW1‑SBA‑15‑SO3H, PW2‑

SBA‑15‑SO3H, PW3‑SBA‑15‑SO3H, PW4‑SBA‑15‑SO3H, and PW5‑SBA‑15‑SO3H. The cat‑
alytic activity of the materials increased with the amount of PW immobilized on SBA‑15‑
SO3H until a maximum. This behavior can be explained by the increased acidity of the
mesostructured silica and the amount of W species [17,20]. The number of active sites
on SBA‑15 may have been increased (Table 1). However, at a high amount of PW immo‑
bilized on SBA‑15 (sample PW5‑SBA‑15‑SO3H catalyst), the catalytic activity decreased.
This behavior may be due to the existence of some internal diffusion limitations inside the
SBA‑15 material [16,17]. The total porous volume and surface area (ABET) decreased with
the amount of PW on SBA‑15 (Table 1). It is important to note that products were not ob‑
served on the surface of catalyst. Additionally, no oligomerization of camphene occurred
under these reaction conditions.
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Figure 6. Camphene hydration over PW‑SBA‑15‑SO3H catalysts. Initial activity of the materials.
Reaction conditions: T = 50 ◦C; mcat = 0.482 g; V = 114 mL of aqueous acetone (1:1, V/V); ncamphene =
7.5 mmol, t = 4 h.

Figure 7 shows the selectivity to isoborneol. All catalysts showed high selectivity to
the isoborneol compound. Apparently, the selectivity to isoborneol was not affected by
the change in the acidity of the materials. According to Valente et al. [13], the selectiv‑
ity to isoborneol increased slightly with the amount of acid sites. However, in this work,
a relationship was not observed between the selectivity to isoborneol and the acidity of
the materials.
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The effect of the solvent (aqueous acetone) on camphene hydration using the PW4‑
SBA‑15‑SO3H catalyst was studied. Figure 8 shows the catalytic activity of the PW4‑SBA‑
15‑SO3H material versus acetone (%). The results can be explained as follows:
‑ at low water content (high amount of acetone), the catalytic activity increased with

increasing water content. This behavior may be due to low amount of water inside
the PW4‑SBA‑15‑SO3H surface. When the amount of water increased, the catalytic
activity increased as well, until a maximum was reached at 50% of water.

‑ at high water content (low amount of acetone), it is expected that the solvent inside
the PW4‑SBA‑15‑SO3Hpore systemwas richer inwater content than the bulk solution.
The layer of water molecules surrounding the active sites form a barrier hindering the
diffusion of camphene. Consequently, the camphene sorption coefficient as well as
the activity, decreased.
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Figure 8. Hydration of camphene over PW4‑SBA‑15‑SO3H catalysts. The effect of the solvent. Re‑
action conditions: T = 50 ◦C; mcat = 0.482 g; V = 114 mL of aqueous acetone; ncamphene = 7.5 mmol,
t = 4 h.
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Figure 9A shows the effect of the solvent on the camphene profile. The selectivity of
the PW4‑SBA‑15‑SO3H catalyst to isoborneol increased with the amount of water in the
reaction mixture (Figure 9B). This behavior may be explained by the increased amount of
water molecules inside the pores of the catalyst. The maximum selectivity to isoborneol
(90%) was obtained with a 50:50 (V/V) mixture of acetone:water. When the amount of
water increased above the 50%, the selectivity to isoborneol decreased. This behavior may
be due to a higher amount of water inside the pores of the catalyst and, consequently, the
concentration of camphene near the active site was low.
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Figure 9. Hydration of camphene over PW4‑SBA‑15‑SO3H catalysts. The effect solvent. (A) [cam‑
phene]/ [Camphene]0 versus time (h): (•) 20% of acetone; (×) 35% of acetane; (▲) 50% of acetone;
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) 80% of acetone. Reaction conditions: T = 50 ◦C;
mcat = 0.482 g; V = 114 mL of aqueous acetone; ncamphene = 7.5 mmol.

2.2.1. Effect of the catalyst amount
The effect of the amount of PW4‑SBA‑15‑SO3H on camphene conversion was studied.

The initial concentration of camphene (C = 0.065 mol.dm−3) and the reaction temperature
(T = 50 ◦C) were kept constant. Figure 10A shows the effect of the amount of PW4‑SBA‑
15‑SO3H on camphene conversion and isoborneol selectivity. The camphene conversion
increasedwith the amount of catalyst due to the increased number of active sites present in
the reaction mixture [21]. The isoborneol selectivity increased with the amount of catalyst.
However, when the amount of catalyst used increased from 0.30 to 0.48 g, the selectivity to
isoborneol did not increase, whichmay be due to the existence of amass transfer limitation
when excess catalyst was used under the same reaction conditions [21]. Figure 10B shows
camphene conversion (%) represented by dark bars and selectivity (%) to isoborneol repre‑
sented by light bars after 70 h of reaction. The selectivity to isoborneol decreased when the
camphene conversion also decreased. This behavior may be explained by isoborneol being
a product obtained from camphene and camphene hydrate compounds (kineticmodel pro‑
posed).
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2.2.2. Effect of the Initial Concentration of Camphene
The initial concentration of camphene was also studied. The temperature (T = 50 ◦C)

and the amount of catalyst (m = 0.48 g) were kept constant. Figure 11A shows the effect
of the initial concentration of camphene on the conversion of this terpene. The initial re‑
action rate increased slightly when the initial camphene concentration decreased, which
may be explained by the low quantity of camphene molecules for the same amount cata‑
lyst. Figure 11B shows camphene conversion (%) represented by dark bars and selectivity
(%) to isoborneol represented by light bars after 70 h of reaction. After 70 h of reaction,
the camphene conversion was quite similar (Figure 11B). The selectivity to isoborneol de‑
creased slightly.
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Figure 11. Hydration of camphene over PW4‑SBA‑15‑SO3H catalyst. Effect of the initial concentra‑
tion of camphene. (A) conversion (%) versus time (h): (×) C = 0.032 mol.L−1; (▲) C = 0.065 mol.L−1;
(#) C = 0.12 mol.L−1. (B) Camphene conversion (%) and selectivity (%) to the isoborneol at 70 h
of reaction.

Figure 12 displays the catalytic activity of the PW4‑SBA‑15‑SO3H material. The cata‑
lyst showed good activity after five uses. After the reaction, the PW4‑SBA‑15‑SO3Hmate‑
rial was characterized by ICP. A 3% loss of PW occurred. Products were not observed on
the surface of the catalyst. Additionally, no oligomerization of camphene occurred under
these reaction conditions. The lost PWmay be due to some species being adsorbed on the
SBA‑15 surface. PW existed in the pore wall of SBA‑15 [15]. Selectivity to isoborneol was
similar (about 90%) after five utilizations of the PW4‑SBA‑15‑SO3H catalyst.
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Figure 12. Hydration of camphene over PW4‑SBA‑15‑SO3H. Catalytic stability (initial activity) and
isoborneol selectivity (%) after 70 h.

2.3. Kinetic Modeling
The Langmuir–Hinshelwood (LH) mechanism has been widely used in the kinetic

study of heterogeneous catalytic systems. Based on the surface reaction between two ad‑
sorbed species, the LH mechanism forecasted the kinetic data very well in the hydration
of cyclohexene over ion‑exchange resin and H‑ZSM‑5 [21], the hydrolysis of ethyl ben‑
zoate [22], the liquid‑phase dimerization of isoamylenes [23], the liquid‑phase hydrogena‑
tion of cinnamaldehyde [24], the esterification of lactic acid with ethanol [25], the esteri‑
fication of propanol with ethanoic acid [26], the synthesis of tert‑amyl methyl ether [27],
and the catalytic hydrogenation of d‑lactose to lactitol [28]. A kinetic model was proposed
assuming a Langmuir‑Hinshelwood mechanism, where the reaction is controlled by the
surface reaction step. Additionally, it was assumed that the camphene and camphene hy‑
drate adsorbed on the active sites, while the water, isoborneol, and other products did
not adsorb on the active sites. The proposed reaction scheme for camphene hydration is
shown in Figure 13. The variables of the model are: camphene concentration ([C]), cam‑
phene hydrate concentration ([HC]), isoborneol concentration ([I]), and the concentration
of the other compounds ([O]). KC and KHC are the adsorption equilibrium constant of the
camphene and camphene hydrate, respectively.
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The batch reactor was operated under isothermal and isobaric conditions.
The reaction rates are given by:

r1 =
k1 × [C]× KC

1 + KC × [C] + KHC × [HC]
(1)

r2 =
k2 × [HC]× KHC

1 + KC × [C] + KHC × [HC]
(2)

r3 =
k3 × [C]× KC

1 + KC × [C] + KHC × [HC]
(3)

r4 =
k4 × [C]× KC

1 + KC × [C] + KHC × [HC]
(4)

where k1, k2, k3 and k4 are kinetic reaction constants, C represents camphene, and HC rep‑
resents the camphene hydrate.

The molar balance in the batch reactor is given by:

V
W

× d[C]
dt

= −r1 − r3 − r4 (5)

V
W

× d[HC]
dt

= +r1 − r2 (6)

V
W

× d[I]
dt

= +r2 + r3 (7)

V
W

× d[O]

dt
= +r4 (8)

where the C represents camphene, HC represents the camphene hydrate, I represents
isoborneol, and O represents “other molecules”.

The optimization was performed using the SOLVER routine in a Microsoft Excel
spreadsheet.

The model was fitted to the experimental results (Figures 14–19). The solid lines rep‑
resented the kinetic model fitted to the experimental data. The kinetic model fit the exper‑
imental concentration data quite well.
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Figure 14. Camphene hydration over SBA‑15‑SO3Hcatalyst. (#) Camphene; (□) Camphene hydrate;
(▲) Isoborneol; (×) Others. The lines represent the model fitted to the experimental points.
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Figure 15. Camphene hydration over PW1‑SBA‑15‑SO3H catalyst. (#) Camphene; (□) Camphene
hydrate; (▲) Isoborneol; (×) Others. The lines represent the model fitted to the experimental points.
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Figure 16. Camphene hydration over PW2‑SBA‑15‑SO3H catalyst. (#) Camphene; (□) Camphene
hydrate; (▲) Isoborneol; (×) Others. The lines represent the model fitted to the experimental points.
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Figure 17. Camphene hydration over PW3‑SBA‑15‑SO3H catalyst. (#) Camphene; (□) Camphene
hydrate; (▲) Isoborneol; (×) Others. The lines represent the model fitted to the experimental points.
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Figure 18. Camphene hydration over PW4‑SBA‑15‑SO3H catalyst. (#) Camphene; (□) Camphene
hydrate; (▲) Isoborneol; (×) Others. The lines represent the model fitted to the experimental points.
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Figure 19. Camphene hydration over PW5‑SBA‑15‑SO3H catalyst. (#) Camphene; (□) Camphene
hydrate; (▲) Isoborneol; (×) Others. The lines represent the model fitted to the experimental points.

Table 2 shows the model parameters obtained by application of the kinetic model to
the experimental data. The kinetic constants increased with the acidity and amount of PW
immobilized on SBA‑15‑SO3H (Table 1). The adsorption constant of camphene and the
camphene hydrate tended to decrease with the amount of PW on the material. There were
some changes in the hydrophobic/hydrophilic balance on the catalyst’s surface.
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Table 2. Model parameters obtained by fitting the model to experimental data.

Catalyst k1
(mol/g.h)

k2
(mol/g.h)

k3
(mol/g.h)

k4
(mol/g.h)

KC
(dm−3/mol)

KHC
(dm−3/mol)

SBA‑15‑SO3H 0.0003026 0.0000510 0.0000006 0.0000654 11.1937638 253.3123137

PW1‑SBA‑15‑SO3H 0.0062009 0.0000767 0.0000001 0.0006799 1.3138595 241.6666349

PW2‑SBA‑15‑SO3H 0.0084667 0.0000841 0.0000002 0.0008956 2.1688618 368.2589676

PW3‑SBA‑15‑SO3H 0.0150343 0.0003588 0.0010349 0.0022176 0.9024512 109.2452103

PW4‑SBA‑15‑SO3H 0.0414648 0.0008294 0.0034500 0.0043307 0.4439438 78.2818538

PW5‑SBA‑15‑SO3H 0,0284237 0.0003753 0.0050847 0.0034519 0.4343751 70.5933381

Table 3 shows the activity and selectivity to isoborneol of different materials used for
camphene hydration. The catalytic activity of PW4‑SBA‑15‑SO3H for camphene hydration
was found to be higher than the catalytic activity of USY zeolite.

Table 3. Camphene hydration over heterogenous catalysts. Comparison of the results with literature
data.

Catalyst Time (h) Conversion (%) Selectivity (%)
Isoborneol

Initial Activity
(mol/h.gcat)

Reference

USY 50 95 90 4.0 × 10−4 [5]
PW4‑SBA‑15‑SO3H 70 99 96 8.2 × 10−4 Present work

3. Materials and Methods
3.1. Materials

Template (Pluronic P‑123), 1‑butanol (99.8%), camphene (98%), nonane (99%), tetraethy‑
lorthosilicate (TEOS), HCl (37%), tungstophosphoric acid, (3‑mercaptopropyl) triethoxy‑
silane, hydrogen peroxide (30%), ethanol (96%), and acetone (99%) were acquired from
Sigma–Aldrich.

3.2. Preparation of Materials
The preparation of PW‑SBA‑15‑SO3H catalysts was carried out using a similar proce‑

dure as described by Yu et al. [29]. Pluronic P‑123 (4 g) were dispersed in 144 mL of dis‑
tilled H2O, and different amounts of tungstophosphoric acid and 7.9 g of 35% HCl were
added to the mixture under stirring at 40 ◦C for 1 h. After complete dissolution, 4 g of 1‑
butanol was added. The mixture was stirred for 1 h. After this period, a mixture of 8.6 g of
tetraethylorthosilicate (TEOS) with 0.4 g of (3‑mercaptopropyl)triethoxysilane was added.
The solution was maintained under stirring at 40 ◦C for 24 h. After this period, 1.6 g of
hydrogen peroxide (30%) was added to the mixture. The mixture was placed in a closed
autoclave and heated at 100 ◦C for 24 h. Thewhite solidwas filtered and dried at 100 ◦C for
24 h. Finally, the fine powder obtained was washed (ethanol and HCl mixture) to remove
the template.

3.3. Materials Characterization
AMicromeritics ASAP 2010 instrument was used to obtain the N2 isotherms at 77 K.
The amount of PW on SBA‑15 was evaluated by ICP.
The ATR‑FTIR spectra were obtained using a Perkin Elmer Spectrum 100 FTIR spec‑

trophotometer.
XRD patterns of PW, SBA‑15, and PW‑SBA‑15‑SO3Hmaterials were obtained using a

Rigaku Miniflex powder diffractometer.
TEM photos were executed on a Hitachi S‑2400 instrument.
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Acid‑base titration was used to obtain the total acid density (mmol H+.g−1) of the
materials. The acid‑base titrations were carried out according to previous work [29].

3.4. Catalytic Experiments
The camphene hydration reactions were carried out in a jacketed batch reactor (200 mL)

at 50 ◦C. In a typical hydration experiment, the reactor was loaded with 114 mL of aque‑
ous acetone (1:1, V/V) and 0.482 g of the catalyst. The reactions were initiated by adding
7.5 mmol of camphene.

The material PW4‑SBA‑15‑SO3H was reused several times.
Nonane was used as an internal standard.
The samples were removed from the reactor periodically. The samples were analyzed

by GC using a Hewlett Packard instrument equippedwith a 30m× 0.25 mmDB‑1 column.
The injector temperature was 180 ◦C and the detector temperature was 300 ◦C. The oven
temperature program was as follows: started at 80 ◦C (4 min), ramp at 6 ◦C min−1 to
126 ◦C, and ramp at 10 ◦Cmin−1 to 300 ◦C. The products were identified by GC‑MS using
a FISONS MD800 (Leicestershire, UK) with the same column and temperature conditions.

The initial activity was calculated by the expression:

Initial activity =

(dCcamphene

dt

)
0
× V

w

where V is the volume, W is the amount of catalyst, and
( dCcamphene

dt

)
0
is the scope of the

line obtained by the linear regression using the camphene concentration during the first
4 h of the reaction.

4. Conclusions
Camphene hydrationwas performed using SBA‑15with sulfonic acid groups and PW

as a catalyst. Different catalysts with the same amount of sulfonic acid groups but different
PW amounts (1.7 to 22.1 wt.%) in SBA‑15were produced. The PW4‑SBA‑15‑SO3Hmaterial
(16.4 wt.%) exhibited higher catalytic activity than other catalysts.

All the catalysts showed great selectivity to isoborneol.
The stability of the PW4‑SBA‑15‑SO3H catalyst was studied. After the second use, the

catalyst presented high activity. The selectivity to isoborneol was not affected.
A kinetic model was developed, which fit the experimental data relatively well.
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