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Abstract: Entropy is a measure of a system’s molecular disorder or unpredictability since work is
produced by organized molecular motion. Shannon’s entropy metric is applied to represent a random
graph’s variability. Entropy is a thermodynamic function in physics that, based on the variety of
possible configurations for molecules to take, describes the randomness and disorder of molecules in
a given system or process. Numerous issues in the fields of mathematics, biology, chemical graph
theory, organic and inorganic chemistry, and other disciplines are resolved using distance-based
entropy. These applications cover quantifying molecules’ chemical and electrical structures, signal
processing, structural investigations on crystals, and molecular ensembles. In this paper, we look at
K-Banhatti entropies using K-Banhatti indices for C6H6 embedded in different chemical networks.
Our goal is to investigate the valency-based molecular invariants and K-Banhatti entropies for three
chemical networks: the circumnaphthalene (CNBn), the honeycomb (HBn), and the pyrene (PYn). In
order to reach conclusions, we apply the method of atom-bond partitioning based on valences, which
is an application of spectral graph theory. We obtain the precise values of the first K-Banhatti entropy,
the second K-Banhatti entropy, the first hyper K-Banhatti entropy, and the second hyper K-Banhatti
entropy for the three chemical networks in the main results and conclusion.

Keywords: C6H6 embedded in pyrene network; C6H6 embedded in circumnaphthalene network;
C6H6 embedded in honeycomb network; K-Banhatti entropies

1. Introduction

In the late 1990s, researchers began investigating the information content of complex
networks, [1] and graphs based on Shannon’s entropy work [2]. Numerous quantitative
measures for analyzing complex networks have been proposed [3,4] spanning a wide range
of issues in discrete mathematics, computer science, information theory, statistics, chemistry,
biology, and other fields [5,6]. Graph entropy measures, for example, have been widely
used to characterize the structure of graph-based systems [7,8] in mathematical chemistry,
biology, and computer science-related areas. The concept of graph entropy [9], developed
by Rashevsky [10] and Trucco [11] has been used to quantify the structural complexity of
graphs [12,13].
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Chemical indices are important tools for studying different physico-chemical proper-
ties of molecules without having to conduct several tests. In the investigation of medicines,
quantitative structure-activity relationships (QSAR) use mathematical computations to
decipher the chemical properties [14,15]. Some researchers have analyzed the topological
and K-Banhatti indices in [16,17]. Mowshowitz [18] introduced the entropy of a graph
as an information-theoretic quantity. The complexity is evident here. The well-known
Shannon’s entropy [2] is used to calculate the entropy of a graph. Importantly, Mowshowitz
interpreted his graph entropy measure as a graph’s structural information content and
demonstrated that this quantity satisfies important properties when used with product
graphs [18]. Inspired by Dehmer and Kraus [19], it was discovered that determining the
minimal values of graph entropies is difficult due to a lack of analytical methods to address
this specific problem.

The first-order valence-based K-Banhatti indices [17,20,21] are, respectively, as follows:

B1(G, x) = ∑
ai∼aj

x(Vai+Vaj ) and B1(G)
= ∑

ai∼aj

(Vai + Vaj). (1)

where ai and aj denote the atoms of a molecule, Vai and Vaj represent the valency of each
atom, and, if ai and aj are connected or have atom bonds, then we denote this by ai ∼ aj.
Accordingly, the second valence-based K-Banhatti index [22] and polynomial are as follows:

B2(G, x) = ∑
ai∼aj

x(Vai×Vaj ) and B2(G)
= ∑

ai∼aj

(Vai ×Vaj) (2)

The hyper K-Banhatti index and first and second polynomial types [21] are as follows:

HB1(G, x) = ∑
ai∼aj

x(Vai+Vaj )
2

and HB1(G)
= ∑

ai∼aj

(Vai + Vaj)
2 (3)

HB2(G, x) = ∑
ai∼aj

x(Vai×Vaj )
2

and HB2(G)
= ∑

ai∼aj

(Vai ×Vaj)
2 (4)

The Banhatti indices were proposed by the Indian mathematician Kulli as a result
of Milan Randic’s 1972 Zagreb indices. With various techniques, such as modified and
hyper-Banhatti indices, Kulli offered a number of studies on Banhatti indices. These indices
have excellent associations with several chemical and nonchemical graph properties. The
amount of thermal energy per unit temperature in a system that cannot be used for useful
work is known as entropy [23,24]. In this article, we investigate the graphs of different
molecules, namely the pyrene network, the circumnaphthalene series of benzenoid, and the
honeycomb benzenoid network, to determine the K-Banhatti entropies’ use of K-Banhatti
indices [21,25].

2. Definitions of Entropies via K-Banhatti Indices

Manzoor et al. in [26] and Ghani et al. in [27] recently offered another strategy that is
a little bit novel in the literature: applying the idea of Shannon’s entropy [28] in terms of
topological indices. The following formula represents the valency-based entropy:

ENTµ(G) = − ∑
ai∼aj

µ(Vai Vaj)

∑
ai∼aj

µ(Vai Vaj)
log
{ µ(Vai Vaj)

∑
ai∼aj

µ(Vai Vaj)

}
. (5)

where a1, a2 represents the atoms, EG represents the edge set, and µ(Vai Vaj) represents the
edge weight of edge (Vai Vaj).

• The first K-Banhatti entropy
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Let µ(Vai Vaj) = Vai + Vaj . The first-order K-Banhatti index (1) is thus provided as

B1(G)
= ∑

ai∼aj

{
Vai + Vaj

}
= ∑

ai∼aj

µ(Vai Vaj).

The use of (5), the first K-Banhatti entropy, is shown below:

ENTB1(G)
= log (B1(G)

)− 1
B1(G)

log
{

∏
ai∼aj

[Vai + Vaj ]
[Vai+Vaj ]

}
. (6)

• The Second K-Banhatti entropy

Let µ(Vai Vaj) = Vai ×Vaj . Then, the second K-Banhatti index (2) is given by

B2(G)
= ∑

ai∼aj

{
(Vai ×Vaj)

}
= ∑

ai∼aj

µ(Vai Vaj).

The use of (5), the second K-Banhatti entropy, is shown below:

ENTB2(G)
= log (B2(G)

)− 1
B2(G)

log
{

∏
ai∼aj

[Vai ×Vaj ]
[Vai×Vaj ]

}
. (7)

• Entropy related to the first K-hyper Banhatti index

Let µ(Vai Vaj) = (Vai + Vaj)
2. Then, the first K-hyper Banhatti index (3) is given by

HB1(G)
= ∑

ai∼aj

{
(Vai + Vaj)

2
}
= ∑

ai∼aj

µ(Vai Vaj).

The use of (5), the first K-hyper Banhatti entropy, is shown below:

ENTHB1(G)
= log (HB1(G)

)− 1
HB1(G)

log
{

∏
ai∼aj

[Vai + Vaj ]
2[Vai+Vaj ]

2}
. (8)

• Entropy related to the second K-hyper Banhatti index

Let µ(Vai Vaj) = (Vai ×Vaj)
2. Then, the second K-hyper Banhatti index (4) is given by

HB2(G)
= ∑

ai∼aj

{
(Vai ×Vaj)

2
}
= ∑

ai∼aj

µ(Vai Vaj).

The use of (5), the second K-hyper Banhatti entropy, is shown below:

ENTHB2(G)
= log (HB1(G)

)− 1
HB1(G)

log
{

∏
ai∼aj

[Vai ×Vaj ]
2[Vai×Vaj ]

2}
. (9)

3. The Pyrene Network

The precise arrangement of rings in the benzenoid system offers a transformation
within a sequence of benzenoid structures of the benzenoid graph, which changes the struc-
ture. The Pyrene network PYn is a collection of hexagons, and it is a simple, connected 2D
planner graph, where n represents the number of hexagons in any row of PYn (see Figure 1).
Accordingly, the Pyrene network is a series of benzenoid rings, and the total number of
benzenoid rings is n2 in PY(n). We sum up the Zagreb polynomial and topological indices
of PY(n) in this section.
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Row-1

Row-2

Row-3

Row-4

PY4

PY5

layer  2

layer  1

layer  3

layer  4

layer  5

Line  of  

symmetry

Figure 1. Pyrene network PYn.

Results and discussion
The number of atoms and the total number of atomic bonds for PYn are now deter-

mined. Let us consider the line of symmetry that divides PYn into two symmetric parts, as
shown in Figure 1. Let us denote the number of atoms in one symmetric portion of PYn by
x and the number of layers by l. In one symmetric part of PYn, there are l layers of carbon
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atoms for 1 ≤ l ≤ n, as indicated in Figure 1. Then, an lth layer contains 2l + 1 carbon
atoms. Accordingly, we have

x =
n

∑
l=1

(2l + 1) = 3 + 5 + 7 + . . . + (2n + 1)

=
n
2

{
2(3) + (n− 1)2

}
= n2 + 2n (the sum o f an arithmetic series)

The number of atoms in PYn is 2x = 2n2 + 4n because of the two symmetric parts in
PYn. Furthermore, a PYn corner atom and an atom other than a corner atom have valencies
two and three, respectively. Thus, out of 2n2 + 4n atoms, 4n + 2 atoms have valency two,
and 2(n2 − 1) atoms have valency three. So, by using Formula (1), the number of atomic
bonds in PYn is 3n2 + 4n− 1. According to the valencies (two and three) of the atoms, there
are three types of atomic bonds, which are (2,2), (2,3), and (3,3) in PYn. On the basis of
valency, Table 1 provides the partition of the set of atomic bonds.

The edge partition of PYn is:

V2∼2 =
{

e = Vi ∼ Vj, f or all Vi, Vj contained in E(PYn), whenever dVi = 2, dVj = 2
}

,

V2∼3 =
{

e = Vi ∼ Vj, f or all Vi, Vj contained in E(PYn), whenever dVi = 2, dVj = 3
}

,

V3∼3 =
{

e = Vi ∼ Vj, f or all Vi, Vj contained in E(PYn), whenever dVi = 3, dVj = 3
}

.

This partition provides:

Table 1. Atomic bond partition of PYn.

Atomic Bond Type V2∼2 V2∼3 V3∼3

Number of atom bonds 6 8(n− 1) 3n2 − 4n + 1

• Entropy related to the first K-Banhatti index of PYn

Let PYn be the Pyrene network of C6H6. The first K-Banhatti polynomial is calculated
using Equation (1) and Table 1.

B1(PYn, x) = ∑
V(2∼2)

x2+2 + ∑
V(2∼3)

x2+3 + ∑
V(3∼3)

x3+3

= 6x4 + 8(n− 1)x5 + (3n2 − 4n + 1)x6. (10)

Following the simplification of Equation (10), we obtain the first K-Banhatti index,
which is given at x = 1 via differentiation.

B1(PYn) = 2(9n2 + 8n− 5) (11)

Here, we calculate the first K-Banhatti entropy of PYn using Table 1 and Equation (11)
inside Equation (6) in the following manner:

ENTB1(PYn) = log (B1)−
1
B1

log
{

∏
V(2,2)

(Vai + Vaj)
(Vai+Vaj ) × ∏

V(3,3)

(Vai + Vaj)
(Vai+Vaj )

× ∏
V(3,3)

(Vai + Vaj)
(Vai+Vaj )

= log 2(9n2 + 8n− 5)− 1
29n2 + 8n− 5

log
{

16(4)4 × 8(n− 1)(5)5 × (3n2 − 4n + 1)(6)6.
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• The second K-Banhatti entropy of PYn

Let PYn be the Pyrene network of C6H6. Then, using Equation (2) and Table 1, the sec-
ond K-Banhatti polynomial is

B2(PYn) = ∑
V(2∼2)

x2×2 + ∑
V(2∼3)

x2×3 + ∑
V(3∼3)

x3×3

= 6x4 + 8(n− 1)x6 + (3n2 − 4n + 1)x9. (12)

To differentiate (34) at x = 1, we obtain the second K-Banhatti index:

B2(PYn) = 3(9n2 + 4n− 5). (13)

Here, we calculate the second K-Banhatti entropy of PYn using Table 1 and Equation (13)
in Equation (7) as described below:

ENTB2(PYn) = log (B2)−
1
B2

log
{

∏
V(2,2)

(Vai ×Vaj)
(Vai×Vaj ) × ∏

V(2,3)

(Vai ×Vaj)
(Vai×Vaj )

× ∏
V(3,3)

(Vai ×Vaj)
(Vai×Vaj )

= log 3(9n2 + 4n− 5)− 1
3(9n2 + 4n− 5)

log
{

16(66)

× 8(n− 1)99 × (3n2 − 4n + 1)1212 × 2(2st− s− t)1616
}

. (14)

• Entropy related to the first K-hyper Banhatti index of PYn

Let PYn be the Pyrene network of C6H6. Then, using Equation (3) and Table 1, the first
K-hyper Banhatti polynomial is

HB1(PYn) = ∑
V(2∼2)

x(2+2)2
+ ∑

V(2∼3)

x(2+3)2
+ ∑

V(3∼3)

x(3+3)2

= 6x16 + 8(n− 1)x25 + (3n2 − 4n + 1)x36 (15)

To differentiate (15) at x = 1, we obtain the first K-hyper Banhatti index

HB1(PYn) = 2(54n2 + 28n− 34). (16)

Here, we calculate the first K-hyper Banhatti entropy of PYn using Table 1 and
Equation (16) in Equation (9) as described below:

ENTHB1(PYn) = log (HB1)−
1

HB1
log
{

∏
V(2,2)

(Vai + Vaj)
2(Vai+Vaj )

2
× ∏

V(2,3)

(Vai + Vaj)
2(Vai+Vaj )

2

× ∏
V(3,3)

(Vai + Vaj)
2(Vai+Vaj )

2

= log 2(54n2 + 28n− 34)− 1
2(54n2 + 28n− 34)

log
{

16(550)

× 8(n− 1)(672)× (3n2 − 4n + 1)(798)× 2(2st− s− t)(8128). (17)

• Entropy related to the second K-hyper Banhatti index PYn
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Let PYn be the Pyrene network of C6H6. Then, using Equation (4) and Table 1, the sec-
ond K-hyper Banhatti polynomial is

HB2(PYn) = ∑
V(2∼2)

x(2×2)2
+ ∑

V(2∼3)

x(2×3)2
+ ∑

V(3∼3)

x(3×3)2

= 6x16 + 8(n− 1)x36 + (3n2 − 4n + 1)x81. (18)

To differentiate (18) at x = 1, we obtain the second K-hyper Banhatti index

HB2(PYn) = 3(81n2 − 12n− 37). (19)

Here, we calculate the second K-hyper Banhatti entropy of PYn using Table 1 and
Equation (19) in Equation (9) as described below:

ENTHB1(PYn) = log (HB1)−
1

HB1
log
{

∏
V(2,2)

(Vai ×Vaj)
2(Vai×Vaj )

2
× ∏

V(2,3)

(Vai ×Vaj)
2(Vai×Vaj )

2

× ∏
V(3,3)

(Vai ×Vaj)
2(Vai×Vaj )

2

= log 3(81n2 − 12n− 37)− 1
3(81n2 − 12n− 37)

log
{

16(6)72

× 8(n− 1)981 × (3n2 − 4n + 1)12288 × 2(2st− s− t)16512 (20)

Characteristics of K-Banhatti Indices of PYn

Here, we contrast the K-Banhatti indices, namely B1, B2, HB1, and HB2 for PYn
quantitatively and visually in Table 2 and Figure 2, respectively.

Table 2. Numerical values of K-Banhatti indices of PYn.

Values of n 2 3 4 5 6 7 8 9 10 11 12

B1 94 200 342 520 734 984 1270 1592 1950 2344 2774
B2 117 264 465 720 1029 1392 1809 2280 2805 3384 4017

HB1 476 1072 1884 2912 4156 5616 7292 9184 11,292 13,616 16,156
HB2 789 1968 3633 5784 8421 11,544 15,153 19,248 23,829 28,896 34,449

2 4 6 8 10 12

0

5000

10000

15000

20000

25000

30000

35000

Values of n

 B1
 B2
 HB1
 HB2

Figure 2. Cont.
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Figure 2. Graphical representation of K-Banhatti indices of PYn.

4. Circumnaphthalene Series of Benzenoid

Circumnaphthalene is similar to the benzenoid polycyclic aromatic hydrocarbons with
the formula C32H14 and the ten peri-fused six-member rings in figure CNB2. Ovalene is
a chemical that is reddish-orange in color. It is only slightly soluble in solvents, such as
benzenoid, toluene, and dichloromethane. The circumnaphthalene series of benzenoids is
designated by CNBn, where “n” is the number of benzenoid rings in the corner, as seen in
Figure 3.

1

2

1

1

2

1

CNB2

number of C6H6

1

2

3

2

1

3

2

1

2

1

CNB3

Figure 3. Circumnaphthalene series of benzenoid CNBn.
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Results and Discussion
In Figure 3, we have the following three partitions of the carbon atoms in CNBn:

V2∼2 =
{

Vi ∼ Vj = e, ∀ Vi, Vj ∈ E(CNBn)
∣∣∣dCNBn(u) = 2, dCNBn(v) = 2

}
,

V2∼3 =
{

Vi ∼ Vj = e, ∀ Vi, Vj ∈ E(CNBn)
∣∣∣dCNBn(u) = 2, dCNBn(v) = 3

}
,

V3∼3 =
{

Vi ∼ Vj = e, ∀ Vi, Vj ∈ E(CNBn)
∣∣∣dCNBn(u) = 3, dCNBn(v) = 3

}
.

These partitions provide us with the atomic bond partition of the CNBn network (see
Table 3).

Table 3. Atomic bond partition of CNBn network.

Types of Atomic Bond V2∼2 V2∼3 V3∼3

mVi∼Vj 6 4(3n− 5) 9n2 − 27n + 19

• Entropy related to the 1st K-Banhatti index of CNBn

Let CNBn be the circumnaphthalene series of benzenoid of C6H6. Then, using
Equation (1) and Table 3, the first K-Banhatti polynomial is

B1(CNBn, x) = ∑
V(2∼2)

x2+2 + ∑
V(2∼3)

x2+3 + ∑
V(3∼3)

x3+3

= 6x4 + 4(3n− 5)x5 + (9n2 − 27n + 19)x6. (21)

Following the simplification of Equation (21), we obtain the first K-Banhatti index,
which is given at x = 1 via differentiation.

B1(CNBn) = 2(27n2 − 51n + 19). (22)

Here, we calculate the first K-Banhatti entropy of CNBn using Table 1 and Equation (24)
in Equation (6) in the following manner:

ENTB1(CNBn) = log (B1)−
1
B1

log
{

∏
V(2,2)

(Vai + Vaj)
(Vai+Vaj ) × ∏

V(2,3)

(Vai + Vaj)
(Vai+Vaj )

× ∏
V(3,3)

(Vai + Vaj)
(Vai+Vaj )

= log 2(27n2 − 51n + 19)− 1
2(27n2 − 51n + 19)

log
{

16(4)4

× 4(3n− 5)(5)5 × (9n2 − 27n + 19)(6)6.

• The second K-Banhatti entropy of CNBn

Let CNBn be the circumnaphthalene series of benzenoid of C6H6. Then, using
Equation (2) and Table 1, the second K-Banhatti polynomial is

B2(CNBn) = ∑
V(2∼2)

x2×2 + ∑
V(2∼3)

x2×3 + ∑
V(3∼3)

x3×3

= 6x4 + 4(3n− 5)x6 + (9n2 − 27n + 19)x9. (23)

To differentiate (23) at x = 1, we obtain the second K-Banhatti index

B2(CNBn) = 3(27n2 − 57 + 25). (24)
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Here, we calculate the second K-Banhatti entropy of CNBn using Table 3 and Equation (24)
in Equation (7) as described below:

ENTB2(CNBn) = log (B2)−
1
B2

log
{

∏
V(2,2)

(Vai ×Vaj)
(Vai×Vaj ) × ∏

V(2,3)

(Vai ×Vaj)
(Vai×Vaj )

× ∏
V(3,3)

(Vai ×Vaj)
(Vai×Vaj )

= log 3(27n2 − 57 + 25)− 1
3(27n2 − 57 + 25)

log
{

6(44)

× 4(3n− 5)66 × (9n2 − 27n + 19)99
}

. (25)

• Entropy related to the first K-hyper Banhatti index of CNBn

Let CNBn be the circumnaphthalene series of benzenoid of C6H6. Then, using
Equation (3) and Table 3, the first K-hyper Banhatti polynomial is

HB1(CNBn) = ∑
V(2∼2)

x(2+2)2
+ ∑

V(2∼3)

x(2+3)2
+ ∑

V(3∼3)

x(3+3)2

= 6x16 + 4(3n− 5)x25 + (9n2 − 27n + 19)x36 (26)

To differentiate (26) at x = 1, we obtain the first K-hyper Banhatti index

HB1(CNBn) = 4(81n2 − 168n + 70). (27)

Here, we calculate the first K-hyper Banhatti entropy of CNBn using Table 1 and
Equation (27) in Equation (9) as described below:

ENTHB1(CNBn) = log (HB1)−
1

HB1
log
{

∏
V(2,2)

(Vai + Vaj)
2(Vai+Vaj )

2
× ∏

V(2,3)

(Vai + Vaj)
2(Vai+Vaj )

2

× ∏
V(3,3)

(Vai + Vaj)
2(Vai+Vaj )

2

= log 4(81n2 − 168n + 70)− 1
4(81n2 − 168n + 70)

log
{

6(432)

× 4(3n− 5)550 × (9n2 − 27n + 19)(672) (28)

• Entropy related to the second K-hyper Banhatti index CNBn

Let CNBn be the circumnaphthalene series of benzenoid of C6H6. Then, using
Equation (4) and Table 3, the second K-hyper Banhatti polynomial is

HB2(CNBn) = ∑
V(2∼2)

x(2×2)2
+ ∑

V(2∼3)

x(2×3)2
+ ∑

V(3∼3)

x(3×3)2

= 6x16 + 4(3n− 5)x36 + (9n2 − 27n + 19)x81. (29)

To differentiate (29) at x = 1, we obtain the second K-hyper Banhatti index

HB2(CNBn) = 3(243n2 − 585n + 305). (30)

Here, we calculate the second K-hyper Banhatti entropy of CNBn using Table 3 and
Equation (30) in Equation (9) as described below:



Molecules 2023, 28, 452 11 of 17

ENTHB2(CNBn) = log (HB2)−
1

HB2
log
{

∏
V(2,2)

(Vai ×Vaj)
2(Vai×Vaj )

2
× ∏

V(2,3)

(Vai ×Vaj)
2(Vai×Vaj )

2

× ∏
V(3,3)

(Vai ×Vaj)
2(Vai×Vaj )

2

= log 3(243n2 − 585n + 305)− 1
3(243n2 − 585n + 305)

log
{

6(4)32

× 4(3n− 5)672 × (9n2 − 27n + 19)9162 (31)

Characteristics of K-Banhatti Indices of CNBn

Here, we contrast the K-Banhatti indices, namely B1, B2, HB1, and HB2 for CNBn
quantitatively and visually in Table 4 and Figure 4, respectively.

Table 4. Numerical comparison of topological indices of CNBn.

Values of n 2 3 4 5 6 7 8 9 10 11 12

B1 50 218 494 8787 1370 1970 2678 3494 4418 5450 6590
B2 75 57 291 678 1245 1965 2847 3891 5097 6465 7995

HB1 280 232 1180 2776 5020 7812 11,452 15,640 20,476 25,960 32,092
HB2 915 321 2211 5559 10,365 16,629 24,351 33,531 44,169 56,265 69,819

2 4 6 8 10 12
-10000

0

10000

20000

30000

40000

50000

60000

70000

80000

Values of n 

 B1
 B2
 HB1
 HB2

Figure 4. Graphical representation of K-Banhatti indices of CNBn.
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5. The Honeycomb Benzenoid Network

In this section, we introduce a chemical compound that has received more and more
attention in recent years, partly due to its applications in chemistry. Honeycomb networks
are formed when hexagonal tiling is used recursively in a specific pattern. HBn denotes an
n-dimensional honeycomb network, where n is the number of Benzene rings from center to
top, center to bottom, or center to each corner of HBn, as shown in Figure 5.

1

2

3

4

5

2

3

4

5

2

3

4

5

2

3

4

5

2

3

4

5

2

3

4

5

HB

Figure 5. The honeycomb benzenoid network.

Results and Discussion
The honeycomb network HBn is created by adding a layer of hexagons around the

boundary of HB(n−1). In the honeycomb benzenoid network, a 6n amount of atoms has
valency two, and 6n2 − 6n atoms have valency three. According to the valency of each
atom in HBn, the atomic bonds are classified into three types: 2 ∼ 2, 2 ∼ 3, and 3 ∼ 3 (see
Figure 5).

EG2∼2 =
{

e = u ∼ v, ∀ u, v ∈ E(HBn)
∣∣∣du = 2, dv = 2

}
,

EG2∼3 =
{

e = u ∼ v, ∀ u, v ∈ E(HBn)
∣∣∣du = 2, dv = 3

}
,

EG3∼3 =
{

e = u ∼ v, ∀ u, v ∈ E(HBn)
∣∣∣du = 3, dv = 3

}
.

Thus, according to the above partition of the atomic bonds, there is 3n(3n− 1) total
number of atomic bonds used in the honeycomb benzenoid network. The atomic bond
partition of HBn is shown in Table 5.
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Table 5. Atomic bond partition of HBn.

Types of Atomic Bonds EG2∼2 EG2∼3 EG3∼3

Cardinality of atomic bonds 6 12(n− 1) (9n2 − 15n + 6)

• Entropy related to the first K-Banhatti index of HBn

Let HBn be the honeycomb benzenoid network of C6H6. Then, using Equation (1) and
Table 5, the first K-Banhatti polynomial is

B1(HBn, x) = ∑
V(2∼2)

x2+2 + ∑
V(2∼3)

x2+3 + ∑
V(3∼3)

x3+3

= 6x4 + 12(n− 1)x5 + (9n2 − 15n + 6)x6. (32)

Following the simplification of Equation (32), we obtain the first K-Banhatti index
given at x = 1 via differentiation.

B1(HBn) = 2(27n2 − 15n− 26). (33)

Here, we calculate the first K-Banhatti entropy of HBn using Table 5 and Equation (33)
in Equation (6) in the following manner:

ENTB1(HBn) = log (B1)−
1
B1

log
{

∏
V(2,2)

(Vai + Vaj)
(Vai+Vaj ) × ∏

V(2,3)

(Vai + Vaj)
(Vai+Vaj )

× ∏
V(3,3)

(Vai + Vaj)
(Vai+Vaj )

= log 2(27n2 − 15n− 26)− 1
2(27n2 − 15n− 26)

log
{

6(4)4

× 12(n− 1)(5)5 × (9n2 − 15n + 6)(6)6.

• The second K-Banhatti entropy of HBn

Let HBn be the honeycomb benzenoid network of C6H6. Then, using Equation (2) and
Table 5, the second K-Banhatti polynomial is

B2(HBn) = ∑
V(2∼2)

x2×2 + ∑
V(2∼3)

x2×3 + ∑
V(3∼3)

x3×3

= 6x4 + 12(n− 1)x6 + (9n2 − 15n + 6)x9. (34)

To differentiate (34) at x = 1, we obtain the second K-Banhatti index

B2(HBn) = 81n2 − 87n + 30. (35)

Here, we calculate the second K-Banhatti entropy of HBn using Table 5 and Equation (35)
in Equation (7) as described below

ENTB2 HBn = log (B2)−
1
B2

log
{

∏
V(2,2)

(Vai ×Vaj)
(Vai×Vaj ) × ∏

V(2,3)

(Vai ×Vaj)
(Vai×Vaj )

× ∏
V(3,3)

(Vai ×Vaj)
(Vai×Vaj )

= log (81n2 − 87n + 30)− 1
81n2 − 87n + 30

log
{

6(44)

× 12(n− 1)66 × (9n2 − 15n + 6)99
}

. (36)
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• Entropy related to the first K-hyper Banhatti index of HBn

Let HBn be the honeycomb benzenoid network of C6H6. Then, using Equation (3) and
Table 5, the first K-hyper Banhatti polynomial is

HB1(HBn) = ∑
V(2∼2)

x(2+2)2
+ ∑

V(2∼3)

x(2+3)2
+ ∑

V(3∼3)

x(3+3)2

= 6x16 + 12(n− 1)x25 + (9n2 − 15n + 6)x36 (37)

To differentiate (37) at x = 1, we obtain the first K-hyper Banhatti index

HB1(HBn) = 12(27n2 − 20n + 1). (38)

Here, we calculate the first K-hyper Banhatti entropy of HBn using Table 5 and Equa-
tion (38) in Equation (9) as described below:

ENTHB1 HBn = log (HB1)−
1

HB1
log
{

∏
V(2,2)

(Vai + Vaj)
2(Vai+Vaj )

2
× ∏

V(2,3)

(Vai + Vaj)
2(Vai+Vaj )

2

× ∏
V(3,3)

(Vai + Vaj)
2(Vai+Vaj )

2

= log 12(27n2 − 20n + 1)− 1
12(27n2 − 20n + 1)

log
{

6(432)

× 12(n− 1)(550)× (9n2 − 15n + 6)(672)
}

. (39)

• Entropy related to the second K-hyper Banhatti index HBn

Let HBn be the honeycomb benzenoid network of C6H6. Then, using Equation (4) and
Table 5, the second K-hyper Banhatti polynomial is

HB2(HBn) = ∑
V(2∼2)

x(2×2)2
+ ∑

V(2∼3)

x(2×3)2
+ ∑

V(3∼3)

x(3×3)2

= 6x4 + 12(n− 1)x36 + (9n2 − 15n + 6)x81. (40)

To differentiate (40) at x = 1, we obtain the second K-hyper Banhatti index

HB2(HBn) = 3(243n2 − 261n + 26). (41)

Here, we calculate the second K-hyper Banhatti entropy of HBn using Table 5 and
Equation (41) in Equation (9), as described below:

ENTHB1 HBn = log (HB1)−
1

HB1
log
{

∏
V(2,2)

(Vai ×Vaj)
2(Vai×Vaj )

2
× ∏

V(2,3)

(Vai ×Vaj)
2(Vai×Vaj )

2

× ∏
V(3,3)

(Vai ×Vaj)
2(Vai×Vaj )

2

= log 3(243n2 − 261n + 26)− 1
3(243n2 − 261n + 26)

log
{

6(4)32

× 12(n− 1)672 × (9n2 − 15n + 6)9162. (42)

Characteristics of K-Banhatti Indices of HBn

Here, we contrast the K-Banhatti indices, namely B1, B2, HB1, and HB2 for HBn
quantitatively and visually in Table 6 and Figure 6, respectively.



Molecules 2023, 28, 452 15 of 17

Table 6. Numerical comparison of topological indices of HBn.

Values of n 2 3 4 5 6 7 8 9 10 11 12

B1 104 344 692 1148 1712 2384 3164 4052 5048 6152 7364
B2 180 498 978 1620 2424 3390 4518 5808 7260 8874 10650

HB1 828 2208 4236 6912 10,236 14,208 18,828 24,096 30,012 36,576 43,788
HB2 1428 4290 8610 14,388 21,624 30,318 40,470 52,080 65,148 79,674 95,658

2 4 6 8 10 12

0

20000

40000

60000

80000

100000

Values of n 

 B1
 B2
 HB1
 HB2

Figure 6. Graphical representation of K-Banhatti indices of HBn.

6. Conclusions

By using Shannon’s entropy and the entropy definitions of Chen et al., we looked into
the graph entropies connected to a novel information function and assessed the link be-
tween degree-based topological indices and degree-based entropies in this work. Industrial
chemistry has a strong foundation in the concept of distance-based entropy. The Pyrene
network, PYn; the circumnaphthalene series of benzenoid, CNBn; and the honeycomb
benzenoid network, HBn were studied, and their valency-based K-Banhatti indices were
estimated using four K-Banhatti polynomials with a set partition and an atom bonds ap-
proach. The acquired results are valuable for anticipating numerous molecular features of
chemical substances, such as boiling point, π electron energy, pharmaceutical configuration,
and many more concepts. Our results can be applied to determine the electronic structure,
signal processing, physicochemical reactions, and complexity of molecules and molecular
ensembles for PYn, CNBn, and HBn. Together with chemical structure, thermodynamic
entropy, energy, and computer sciences, the K-Banhatti entropy can be crucial to linking
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different fields and serving as the basis for future interdisciplinary research. We intend to
extend this idea to different chemical structures in the future, opening up new directions
for study in this area.
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