molecules

Article

Docking and Molecular Dynamic Investigations of
Phenylspirodrimanes as Cannabinoid Receptor-2 Agonists

Abdelsattar M. Omar 12-3*(, Anfal S. Aljahdali !, Martin K. Safo >, Gamal A. Mohamed °
and Sabrin R. M. Ibrahim 7-8*

check for
updates

Citation: Omar, A.M.; Aljahdali, A.S.;
Safo, M.K.; Mohamed, G.A.; Ibrahim,
S.R.M. Docking and Molecular
Dynamic Investigations of
Phenylspirodrimanes as Cannabinoid
Receptor-2 Agonists. Molecules 2023,
28,44. https://doi.org/10.3390/
molecules28010044

Academic Editors: Cristoforo
Silvestri, Alessia Ligresti and Fabio

Arturo lannotti

Received: 24 November 2022
Revised: 13 December 2022

Accepted: 17 December 2022
Published: 21 December 2022

Copyright: © 2022 by the authors.
Licensee MDPI, Basel, Switzerland.
This article is an open access article
distributed under the terms and
conditions of the Creative Commons
Attribution (CC BY) license (https://
creativecommons.org/licenses /by /
4.0/).

Department of Pharmaceutical Chemistry, Faculty of Pharmacy, King Abdulaziz University,

Jeddah 21589, Saudi Arabia

Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Al-Azhar University, Cairo 11884, Egypt
Center for Artificial Intelligence in Precision Medicines, King Abdulaziz University,

Jeddah 21589, Saudi Arabia

Department of Medicinal Chemistry, School of Pharmacy, Virginia Commonwealth University, 800 East Leigh
Street, Richmond, VA 23298, USA

Institute for Structural Biology, Drug Discovery and Development, Virginia Commonwealth University,

800 East Leigh Street, Richmond, VA 23298, USA

Department of Natural Products and Alternative Medicine, Faculty of Pharmacy, King Abdulaziz University,
Jeddah 21589, Saudi Arabia

Department of Chemistry, Preparatory Year Program, Batterjee Medical College, Jeddah 21442, Saudi Arabia
Department of Pharmacognosy, Faculty of Pharmacy, Assiut University, Assiut 71526, Egypt

*  Correspondence: asmansour@kau.edu.sa (A.M.O.); sabrin.ibrahim@bmc.edu.sa (SR M.L);

Tel.: +966-56-768-1466 (A.M.O.); +966-58-118-3034 (S.R.M.L)

Abstract: Cannabinoid receptor ligands are renowned as being therapeutically crucial for treating
diverse health disorders. Phenylspirodrimanes are meroterpenoids with unique and varied structural
scaffolds, which are mainly reported from the Stachybotrys genus and display an array of bioactivities.
In this work, 114 phenylspirodrimanes reported from Stachybotrys chartarum were screened for their
CB2 agonistic potential using docking and molecular dynamic simulation studies. Compound 56
revealed the highest docking score (—11.222 kcal/mol) compared to E3R_6KPF (native agonist,
gscore value —12.12 kcal/mol). The molecular docking and molecular simulation results suggest that
compound 56 binds to the putative binding site in the CB2 receptor with good affinity involving key
interacting amino acid residues similar to that of the native ligands, E3R. The molecular interactions
displayed m—m stacking with Phel83 and hydrogen bond interactions with Thr114, Leul82, and
Ser285. These findings identified the structural features of these metabolites that might lead to the
design of selective novel ligands for CB2 receptors. Additionally, phenylspirodrimanes should be
further investigated for their potential as a CB2 ligand.

Keywords: fungi; phenylspirodrimanes; Stachybotrys; cannabinoid receptors; industrial development;
molecular docking; life on land

1. Introduction

The endocannabinoid system (ECS) is a complex cell-signaling system involved in
many functional activities in the body. The ECS consists of cannabinoid receptor 1 (CB1)
and cannabinoid receptor 2 (CB2), which are both G-coupled receptors. CB1 is primarily
expressed in the central nervous system (CNS). CB2 is expressed in the peripheral im-
mune system. [1,2] ECS has attracted attention as a pharmacological target for several
pathological conditions, such as pain, neurodegenerative, and autoimmune disorders [3].
Selective targeting of CB2 is crucial for the development of peripheral system-acting
analgesics as it lacks the psychotropic adverse effects typically observed with CB1 ago-
nists. [4] Additionally, the CB2 receptor is a substantial target for discovering therapeutic
agents for various disorders such as atherosclerosis, cardiometabolic disorder, osteoporosis,
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neuro-inflammation, renal ischemia-reperfusion injury, and cardiac ischemia. [5] However,
difficulties in achieving target selectivity due to the high sequence identity between CB1
and CB2 have hindered the development of CB2-selective agonists [2,6]. Therefore, the
development of novel selective cannabimimetic agents represents a beneficial therapeutic
strategy for treating various pathological conditions.

In silico study is a computational tool that enables the assessment of the therapeutic
capacity of various metabolites using bioinformatic techniques. This can be utilized to
discover new drug candidates and the possible mechanisms of their therapeutic efficacy
through predicting drug and protein interactions [7].

Recently, interesting insights have been directed at the naturally biosynthesized chem-
ical scaffolds as leads have been identified in the discovery of new ligands for cannabinoid
receptors. Many researchers address ‘Life on Land’ as one of the sustainable development
goals by focusing on fungal metabolites, including their regulation, biosynthesis, and bioac-
tivities aiming to find solutions for many health- and environment-related issues. Fungi
represent a huge gold mine for structurally diversified and bio-active metabolites that have
marked contributions in the fields of pharmaceutics, environmental protection, cosmetics,
biotechnology, food, and agriculture [8-15]. Studies about the isolation and bio-evaluation
of metabolites from fungal sources are occurring at a faster rate, with hundreds of them
reported yearly.

Currently, fungi-derived drug discovery has acquired new focus because of the im-
mense progress that has been observed in genomics, particularly bioinformatics and high-
throughput sequencing, in addition to the growing integration of synthetic biology in
natural products research [16-20]. Fungi-derived metabolites represent untapped and
unexplored domains for cannabinoid receptor-based drug discovery, as well as a pool of
leads for the pharmaceutical industry. Therefore, significant interest has been directed
to identifying new metabolites from fungi that act on cannabinoid receptors. Several re-
searchers have reported the investigation of the cannabinoid receptors’ modulation capacity
of different fungal metabolites (Figure 1).
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Figure 1. Examples of reported fungal metabolites with cannabinoid receptor modulating potential.
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From the marine-derived Dichotomomyces cejpii, emindole SB f-mannoside, and
emindole, SB were found to be CB2 antagonist and non-selective CB2/CB1 antagonist,
respectively [21]. A study with annullatins A, B, and D from Cordyceps annullata revealed
the potent agonistic potential of annullatin A on CB2 and CB1, in addition to the CB1
agonistic and CB2 antagonistic effectiveness of annullatins B and D [22]. The radioligand
binding investigation showed the high selectivity and affinity of amauromine separated
from Ircinia variabilis-associated Auxarthron reticulatum on the CB1 receptor as a CB1 an-
tagonist [23]. Fintiamin, a lipophilic dipeptide-terpenoid hybrid separated from Ircinia
variabilis-accompanied Eurotium sp, demonstrated marked affinity on the CB; receptor at
low micro-molar concentrations [24].

Phenylspirodrimanes are one of the most dominant Stachybotrys genus metabolites
that possess various structural scaffolds [25]. They are unusual meroterpenoids (terpenyl-
phenol) that are distinguished by incorporation through a spiro-furan ring among spiro-
cyclic drimane and phenyl moiety. They are biosynthesized via PKs (polyketide synthases)
and terpenoid pathways, as they originate from orsellinic acid and farnesyl diphosphate,
respectively. In addition, their dimers are produced from two monomers through C-N or
C-C linkage [26]. These metabolites demonstrate various biological potentials, including
antiviral, cytotoxic, anti-inflammatory, tyrosine kinase modulatory, and neuroprotective
capacities [25]. In our continual goal to explore bioactivities and shed light on these inter-
esting fungal metabolites, 114 phenylspirodrimane derivatives reported from Stachybotrys
chartarum have been investigated for their effects on ECS. The molecular modeling assess-
ment of these metabolites within the active sites of the CB receptors was performed to
study their mode of binding to the target receptor and gain insight into their mechanism
of action.

2. Results and Discussion
2.1. Al (Artificial Intelligence)-Based Target Prediction for Phenylspirodrimanes Derivatives

The in silico target prediction web server, SuperPred, was utilized to predict the
molecular target for the phenylspirodrimane derivatives (Figures 2—4) [27]. SuperPred
utilizes the machine learning algorithm for the anatomical therapeutic chemical (ATC)
code and target prediction based on a molecular similarity search. [27] In brief, SuperPred
suggests the target by translating the query compounds into structural fingerprints and
compares it to the compound data set with known bioactivities toward these targets. The
drug dataset includes WHO-approved drugs that are classified by a drug classification
system, in which each drug’s chemical property is linked to its therapeutic properties and
indications, and each classification has an anatomical therapeutic chemical (ATC) code.
As a result, if a drug has more than one therapeutic indication, it is assigned an ATC
code for each. The WHO has 6300 approved drugs that are linked to over 600,000 targets.
SuperPred compares the compound’s fingerprint to that of the WHO-approved drugs
based on the notion that compounds with similar physiochemical properties would have
similar biological effects. Therefore, if a structural similarity is detected, the ATC code, the
possible molecular target(s), and the putative therapeutic indication(s) for that compound
are predicted. The target of the most similar compounds in the data set is most likely the
target of the query compound. Therefore, for each compound query, a list of targets was
predicted. Each target was given a probability and model accuracy score, which represented
the likelihood of the compound structure binding with that target. Based on the results,
CB2 was selected as the target of choice for the phenylspirodrimane derivatives due to
its high probability and model accuracy (Table 1). A crystal structure of the human CB2
receptor in complex with an agonist (PDB ID: 6KPF) [2] was chosen for the subsequent
docking and molecular dynamic (MD) simulation studies.
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Figure 2. Chemical structures of phenylspirodrimane derivatives (1-50).
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Table 1. Prediction of target probability and model accuracy for phenylspirodrimane derivatives
against CB2 using SuperPred target prediction web server.

Compound Probability * Model Accuracy **
27 58% 97%
56 68% 97%
79 84% 97%
80 87% 97%
81 84% 97%
82 87% 97%
87 83% 97%
89 85% 97%
96 81% 97%
102 80% 97%
107 85% 97%
108 79% 97%
109 87% 97%
110 85% 97%
111 85% 97%
112 85% 97%
113 91% 97%
114 83% 97%

* The probability of the test compound binding to a specific target, as determined by the respective target machine
learning model. ** The accuracy of the performance of the prediction model displaying the 10-fold cross-validation
score of the respective logistic regression model, as the model performance varied between different targets.

2.2. Molecular Docking Studies

A total of 114 phenylspirodrimane derivatives in addition to the native agonist, 7-
[(6aR 9R,10aR)-1-hydroxy-9-(hydroxymethyl)-6,6-dimethyl-6a,7,8,9,10,10a-hexahydro-6H-
benzo[c]chromen-3-yl]- 7-methyloctanenitrile (AM12033; PDB ID: E3R), bound to human
CB2 (PDB ID: 6KPF) were prepared before the molecular docking experiment. The prepa-
ration included converting the 2D structures of the compounds to energy-minimized 3D
structures and generating all possible ionization and tautomeric states using Schrodinger’s
LigPrep tools [28]. The CB2 receptor was retrieved from the protein data bank (PDB) [29],
which was then prepared and energy minimized using Schrodinger’s Protein Prepara-
tion wizard [28,30]. For the docking experiment, a grid box around the binding site of
the co-crystallized native agonist was generated via a Receptor Grid Generation tool in
Maestro [31,32]. The defined grid box at the binding site located the pocket where the dock-
ing was taking place. The docking method was validated by redocking the co-crystalized
native agonist and calculating the root-mean-square deviation (RMSD) (Figure 5). The
result showed minimal deviation with an RMSD of 1.1789 A, indicating that the dock-
ing method was valid. After that, the docking of the prepared 3D molecular structures of
phenylspirodrimane derivatives was carried out using a standard precision scoring function
(SP) followed by the extra-precision (XP) scoring function for maximum accuracy [33].

The docking results included a list of compounds (Table 2), which were ranked based
on their docking scores and approximated free energy of the binding. Different docking
scores were generated for each ligand, including emodel, gscore, and XP gscore. The
emodel scoring was used to select the best pose for the docked compounds. The best poses
were then ranked based on their gscore, while the XP gscore ranked the poses generated
by the Glide XP mode. Generally, Glide ranks the docked compounds using the gscore
scoring function. Based on the result listed in Table 2, compound 56 exhibited the highest
docking score of —11.222 kcal/mol, which was close to the native agonist gscore value of
—12.12 kcal/mol.
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Figure 5. The 3D structure of the redocked E3R superimposed on the co-crystallized E3R.

Table 2. Docking results of phenylspirodrimane derivatives with human CB2 receptor (PDB: 6KPF).

Compound Docking Score Glide Gscore Glide Emodel XP GScore

E3R_6KPF —12.12 —12.12 —64.537 —12.12
56 —11.22 —11.222 31.932 —11.222
27 —11.106 —11.108 25.961 —11.108
23 —10.506 —10.507 37.205 —10.507
15 —10.193 —10.193 —1.513 —10.193
55 —-10.17 —-10.171 36.385 —-10.171
22 —9.957 —9.958 25.109 —9.958

The binding interactions were observed with the native agonist E3R (Figure 6) as it
interacted through hydrophobic interactions with Phe91, Phe94, and Phel83. In addition,
it interacted through hydrogen bond interactions with Ser90, His95, Ser285, and Thr114
and the backbone of Leu182. Similarly, Figure 7 represents the 3D and 2D view of the final
preferred docked pose of 56 and the native agonist, respectively. Compound 56 interacted
through hydrophobic interactions with Phe91, Phe94, and Phel83. Additionally, it was
involved in several hydrogen interactions with His95, Ser285, and Thr114 and the backbone
of Leul82 (Figure 7).
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Figure 6. Re-docking of the co-crystallized ligand to validate the docking method. (A) The 2D view
of the binding interactions of the reference ligand E3R complexed with CB2 after re-docking of ligand
E3R into the CB2 crystal structure. (B) The 3D representation for CB2 complexed with ligand E3R
(green color) after re-docking and interacting with side-chain residues (gray color).

RY
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TRP 194
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) Metal X Hydration site (displaced) e—e Pi-Pi stacking

Figure 7. CB2 in complex with 56. (A) The 2D view of the binding interactions of compound
56 complexed with the CB2 crystal structure. (B) The 3D representation for CB2 complexed with
compound 56 (green color) after re-docking and interacting with side-chain residues (gray color).

2.3. Molecular Dynamic (MD) Simulation

Once the molecular docking was performed, compound 56 and the native agonist were
subjected to MD simulation using Desmond software [34,35]. MD simulation simulates
the dynamic behavior of the molecular system under computer-generated physiological
conditions to assess the protein-ligand complex stability and binding affinity [36]. The
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protein-ligand complex stability is assessed by the RMSD plot, which measures the devia-
tion of the protein and ligand atoms inside the binding pocket at the end of the simulation
period (100 ns) compared to their initial positions before the simulation at 0 ns [37]. The
RMSD plot of the native agonist E3R and compound 56 in Figures 8 and 9, respectively,
show the RMSD of CB2 on the left Y-axis and the ligand RMSD profile aligned on a protein
backbone on the right X-axis. Compound 56’s RMSD (Figure 8) showed an observed
insignificant fluctuation with the value of 2.5 A similar to the one observed with the native
ligand (2.5 A) (Figure 8), which is within the acceptable range of 1-3 A, indicating a stable
binding at the binding pocket throughout the simulation period (Supplementary Materials).

A " Co RMSD for 6KPF when complexed with Compound 56, 27 & 23 Vs E3R
5
T
o
v
3
-}
o
2
——C_alpha_compound 56
1 ——C_alpha_Ref_E3R
——C_alpha_Compound 27
———C_alpha_Compound_23
0
0 10 20 30 40 50 60 70 80 90 100
Time (nsec)
Ligands RMSD
B
2.5
<
_~ 2
2 r Y L ]
s SR AR
3 I . ' )
-l.5 ! o RS 1
o |
=3 (Y
1
0.5
——~Compound 56 ——E3R ——Compound 27 ——Compound 23
0
0 10 20 30 40 50 60 70 80 90 100
Time (nsec)

Figure 8. (A) The comparison between the RMSD of C«x in the CB2 protein (PDB- ID: 6KPF) plot was
obtained when complexed with the reference E3R (red color), compound 56 (blue color), compound
27 (black color)_ and compound 23 (green color) during the simulation time (100 ns). (B) The
comparison of E3R (red color), compound 56 (blue color), compound 27 (black color), and compound
23 (green color) RMSD when complexed with CB2 protein (PDB- ID: 6KPF) during the simulation
time (100 ns).
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Figure 9. (A) CB2 interactions with reference E3R throughout the simulation. The interactions
between the ligand and protein were classified into ionic, water bonds, hydrophobic, and hydrogen
bonds, and each was classified into subtypes. The stacked bar charts were normalized over the course
of the trajectory; for example, a value of 0.8 suggested that the specific interaction was maintained
during 80% of the simulation time. Values over 1.0 indicated that some protein residue might
make multiple interactions of the same subtype with the ligand. (B) Schematic diagram exhibiting
the detailed 2D atomic interactions of E3R with CB2 that occurred > 30% of the simulation time
in the selected trajectory (0 through 100 ns). Interactions with >100% occurrence meant that the
residues could have multiple interactions of a single type with the same ligand atom. (C) A timeline
representation of CB2-E3R interactions is presented in (A). The top panel depicts the total number
of specific interactions of the protein with the ligand during its trajectory course. The bottom panel
shows the residues’ interactions with the ligand in each trajectory frame. The dark orange color
indicates the presence of more than one interaction between some residues and the ligand.

The residue contacts of the native agonist E3R with CB2 (Figure 9A) demonstrated
hydrophobic interactions with Phe87 and Phe183 that were maintained for over 90% and
80%, respectively. Other key interactions, including hydrogen bond interactions with
Ser285 and Leul82, were noticed, which lasted for over 90% of the simulation time. The
detailed interaction with the protein residues (Figure 9B) revealed 7t—m stacking interactions
with Phe87 (84%) and Phel83 (68%). Hydrogen bond interactions with Leu182 (93%) and
Ser285 (98%) were also observed. The top panel of Figure 10C demonstrates the total
specific interactions between the native ligand and the protein. The bottom panel shows
the protein residues that interacted with the ligand at each time point. The dark orange
color in the bottom panel was observed with several residues throughout the trajectory,
including Phe87, Leu182, Phel83, and Ser 285.
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Figure 10. (A) TK interactions with compound 56 throughout the simulation. The interactions
between the ligand and protein were classified into ionic, water bonds, hydrophobic, and hydrogen
bonds, and each was classified into subtypes. The stacked bar charts were normalized over the course
of the trajectory; for example, a value of 0.8 suggested that the specific interaction was maintained
during 80% of the simulation time. Values over 1.0 indicated that some protein residue might make
multiple interactions of the same subtype with the ligand. (B) Schematic diagram showing the
detailed 2D atomic interactions of 56 with CB2 that occurred for > 30% of the simulation time in the
selected trajectory (0 through 100 ns). Interactions with >100% occurrence meant that residues might
have multiple interactions of a single type with the same ligand atom. (C) A timeline representation
of CB2-E3R interactions is presented in (A). The top panel depicts the total number of specific
interactions of the protein with the ligand during its trajectory course. The bottom panel showed
the residue interactions with the ligand in each trajectory frame. The dark orange color indicates the
presence of more than one interaction between some residues and the ligand.

The residue contacts of the CB2 receptor with 56 (Figure 10A) is presented in the form
of stacked bar charts that are color-coded based on the interaction types, including hydrogen
bonds, hydrophobic, ionic, and water bridges. The stacked bar chart was normalized over
the course of a 100 ns trajectory; a value of 0.8 suggested that the specific interaction was
maintained during 80% of the simulation time, while values of over 1.0 indicated that the
specific interactions were maintained throughout the simulation time with the possibility
of some residues having multiple contacts of the same subtype with the ligand. Phel83 had
a -7t stacking interaction with compound 56 that occurred for over 80% of the simulation
time (Figure 10A,B). Additionally, other hydrophobic interactions were observed with
Phe87, Phe91, and Phe94 that were maintained between 50 and 60% of the simulation
period. Furthermore, hydrogen bond interactions with Thr114, Leul82, and Ser285 were
also noticed and lasted for 60-80% of the simulation time. The 2D schematic representation
of 56 interactions with the protein residue was only considered. The interactions occurred
for over 30% of the simulation time. The analysis of the binding interactions showed that
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compound 56 interacted through 7—7 stacking with Phel83 (87%) and hydrogen bond
interactions with Thr114 (56%), Leul82 (73%), and Ser285 (81%). Figure 10C (top plot)
displays the total specific interactions between the ligand and the protein, whereas the
bottom panel demonstrates the protein residues that interacted with the ligand at each time
point. As mentioned earlier, Leu182, Phe183, and Ser285 made over 70% of the interactions
with 56, which is indicated by the dark orange color in the plot throughout the trajectory
(Figure 10C).

The comparative analysis of binding interactions with compounds 56 and the na-
tive ligand showed that 56 had more total contacts (Figure 10C) than the native agonist
(Figure 10C) and this might be due to the structural differences and 3D conformation of the
compound 56 inside the binding pocket.

2.4. In Silico ADME Properties of Selected Ligand

Compounds with the highest docking score and lowest free binding energy were
further analyzed for their drug-likeness and ADME (absorption, distribution, metabolism,
and excretion) properties via Maestro’s QikProp Schrodinger module [38]. This module
provides the quick and reliable prediction of many physiochemical properties along with
other descriptors, such as the number of possible metabolites and the number of reactive
functional groups, to evaluate the usefulness of the investigated compounds by describing
and determining their drug-likeness, physiochemical properties, and expected toxicity
profiles. Additionally, QikProp provides a range for comparing each property to 95% of
the known drugs’ properties. The ADMET prediction aids in filtering out the compounds
that might pose a problem during the clinical stage of drug discovery and development.
As a result, it minimizes the failure in the drug discovery process. The predicted ADMET
properties and descriptors for the compounds are presented in Table 3. The results show
that all the compounds’ descriptors were within the recommended range.

Table 3. Selected compounds were analyzed for their ADME (absorption, distribution, metabolism,
and excretion) properties using via QikProp.

Molecule Recommended Stachybochartin ~ Stachybotrane Stachybotrane Stachybotrane Chartarlactam Chartarlactam Reference
Range G (15) A(22) B (23) Cc@7 M (55) P (56)
#stars 0-5 0 0 0 0 0 0 0
#1tvFG 0-2 0 0 1 0 0 0 0
CNS 2 (inactive) 2 1 -1 2 2 2 -1
+2 (active)
mol_MW 130.0-725.0 388.503 386.487 428,524 402.486 385.502 401.502 421,581
SASA 300.0-1000.0 677.156 595.43 641.055 605.78 613.265 622.968 738.361
volume 500.0-2000.0 1269.411 1144.614 1260.485 1165.663 1166.122 1185.684 1374.214
donorHB 0.0-6.0 3 2 1 3 3 4 2
accptHB 2.0-20.0 6.35 6.2 6.5 79 5.7 74 52
QPlogPw 4.0-45.0 11.089 11.101 10.117 14.344 12.255 15.497 9.386
QPlogPo/w —2.0-65 3415 2.834 3.449 1.887 2.831 1.866 5.171
QPlogS —6.5-0.5 —4352 —4.597 —5.248 —4.125 —4933 —4.428 —6.376
QPlogHERG CO“CGTSbeIOW —4551 —3577 —3.704 —3.65 —3.817 —3.882 —534
QPPCaco <25 %222:500 442716 393.449 296.585 150.047 247.784 94.544 1603.15
QPlogBB —3.0-12 —1453 —0.804 —0.939 —1.254 ~1.032 —1.495 —0.767
#metab 1-8 8 4 3 5 4 5 2
QPlogKhsa ~15-15 0.287 0.467 0.709 0.187 0.537 0.244 0.939
Human Oral 1, 2, or 3 for low,
Absorption medium, or high 3 3 3 3 3 3 1
Percent Human >80% is high 94.3 89.983 91.385 76.944 86.374 73.229 100

Oral Absorption

<25% is poor
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3. Materials and Methods
3.1. Target Prediction

The Superped web server was used to determine the molecular targets for the phenyl-
spirodrimane derivatives [27]. SuperPred is a knowledge-based tool that employs machine
learning models that use logistic regression and Morgan fingerprints of length 2048 for the
ATC code and target prediction of query compounds. Following the target’s prediction, a
probability score and a model accuracy score are reported for each target. The probability
represents the likelihood that the query compound will bind to a specific predicted target.
On the other hand, the model accurately represents the performance accuracy of the used
machine-learning model when predicting the specific target for the compound since the
model performance differs between targets [27,39].

3.2. Ligand and Protein Preparation

Phenylspirodrimane derivatives were prepared for docking studies using Schrodinger’s
LigPrep tool [28]. The 2D structures of all the compounds were converted to energy-
minimized 3D structures using the OPLS3 force field. Hydrogens were added, and all
possible ionization states and tautomeric forms were created at a pH of 7.0 £ 0.2 by Epik; a
desalt option was also chosen. H-bonds were optimized by predicting the pKa of ionizable
groups using PROPKA. In addition, the X-ray crystal structure of the CB2 receptor (PDB:
6KPF) was retrieved from the protein data bank and prepared using the protein preparation
Wizard in Maestro Schrodinger. The missing hydrogens were added to the residues, the
metal ionization state was corrected, and the water molecules >5 A from protein residues
were deleted. Only the subunit bound to the ligand was kept from the multi-subunit pro-
teins. Then, the protein was refined by predicting the pKa of the ionizable residues using
PROPKA, and water molecules >3 A (not involved in the water bridge) were removed.
Finally, the restrained minimization of the protein was applied using the OPLS4 force field.

3.3. Grid Generation and Molecular Docking

A grid box was defined around the co-crystallized ligand binding site and using
Glide’s Receptor-Grid-Generation tool [31]. The phenylspirodrimanes’ docking was car-
ried out inside the assigned grid box using the Ligand Docking tool in the Schrédinger
suite [28,32]. The non-polar atoms were set for the VAW radii scaling factor by 1.0, and
the partial charge cut-off was 0.25. All docking settings were set to default except for the
docking protocol that was first selected as a standard precision (SP) before it was then
changed to an extra precession (XP) mode with flexible ligand sampling. The re-docking
of the co-crystallized ligand was performed to validate the docking method alongside the
investigated phenylspirodrimanes.

3.4. MD Simulation

MD simulations were performed using Desmond in the Schrodinger package [34,35].
First, the protein-ligand complexes were retrieved from the docking results. The selected
ligand—protein complexes were tuned through the “System-Builder” tool to generate the
solvated system for simulation. The solvent model was set as TIP3P, the selected box shape
was orthorhombic, and the box dimensions were 10 A.In addition, Na ions were added to
neutralize the system. The simulation parameters were set up in the Molecular Dynamic
tool, where the protein-ligand complexes were evaluated at pH 7.0 £ 0.2 over the 100 ns
simulation time, and the ensemble class was set as NPT to maintain the temperature and
pressure constant during the run at 300 K and 1.01325 bar, respectively. Simulations were
run with the OPLS4 force field. After running the MD simulation, the generated results
were analyzed.

3.5. ADMET Properties Prediction

The selected compounds were subjected to ADMET prediction using the QikProp-
module of the Schrodinger suite [38]. For each compound, a list of descriptors was
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predicted, including molecular weight (mol_MW), drug-likeness (#Stars), dipole mo-
ment (dipole), total solvent accessible surface area (SASA), number of hydrogen bond
donors and acceptors (donorHB and acceptHB), predicted octanol-water partitioning
(QPlogPo/w), predicted aqueous solubility (QPlogS), estimated binding to human serum
albumin (QPlogKhsa), number of the possible metabolites (# metab), predicted blood-brain
partitioning (QPlogBB), percentage of human oral absorption, predicted IC50 for inhibiting
HERG-K* channels (QPogHERG), central nervous system activity (CNS), and the number
of reactive functional groups present (#rtvFG). The predicted values were then compared
to the recommended range derived from values determined/observed for 95% of the
known drugs.

4. Conclusions

Cannabinoid receptors are G-protein-coupled receptors that comprise CB1 and CB2
receptors. CB receptors are implicated in many physiological and pathophysiological
processes in the body. Several drug discovery efforts have been directed towards selec-
tively targeting CB2 receptors with agonists, primarily due to their promising therapeutic
potential for treating pain and inflammation without the psychological side effects that
are present with the targeting CB1 receptor. In this paper, the in silico approach, including
molecular docking and MD simulation combined with the ADME prediction study, was
utilized to explore the binding interaction and affinity of phenylspirodrimanes compounds
to the CB2 receptor. The results showed compound 56 to be a potential candidate as it was
shown to have a high affinity to the receptor with binding interactions similar to that of
the native agonist. Additionally, compound 56 was found to be stable at the binding site
in the simulated aqueous physiological environment. The obtained results could have a
great contribution to the development, design, and discovery of potent and selective CB2
ligands. However, further in vitro, in vivo, and mechanistical investigations are warranted.

Supplementary Materials: The following supporting information can be downloaded at: https://
www.mdpi.com/article/10.3390/molecules28010044/s1, Details of molecular dynamics simulation
for E3R, compound 56, compound 27, and compound 23.
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