
Citation: Pereira, A.M.; Cidade, H.;

Tiritan, M.E. Stereoselective Synthesis

of Flavonoids: A Brief Overview.

Molecules 2023, 28, 426. https://

doi.org/10.3390/molecules28010426

Academic Editor: Armando Zarrelli

Received: 20 November 2022

Revised: 23 December 2022

Accepted: 27 December 2022

Published: 3 January 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

molecules

Review

Stereoselective Synthesis of Flavonoids: A Brief Overview
Ana Margarida Pereira 1,2, Honorina Cidade 1,2 and Maria Elizabeth Tiritan 1,2,3,*

1 Laboratory of Organic and Pharmaceutical Chemistry, Department of Chemical Sciences, Faculty of Pharmacy,
University of Porto, Rua Jorge de Viterbo Ferreira 228, 4050-313 Porto, Portugal

2 CIIMAR—Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Terminal de
Cruzeiros do Porto de Leixões, Avenida General Norton de Matos, s/n, 4450-208 Matosinhos, Portugal

3 TOXRUN—Toxicology Research Unit, University Institute of Health Sciences, CESPU, CRL,
Rua Central de Gandra 1317, 4585-116 Gandra, Portugal

* Correspondence: beth@ff.up.pt

Abstract: Stereoselective synthesis has been emerging as a resourceful tool because it enables the
obtaining of compounds with biological interest and high enantiomeric purity. Flavonoids are
natural products with several biological activities. Owing to their biological potential and aiming
to achieve enantiomerically pure forms, several methodologies of stereoselective synthesis have
been implemented. Those approaches encompass stereoselective chalcone epoxidation, Sharpless
asymmetric dihydroxylation, Mitsunobu reaction, and the cycloaddition of 1,4-benzoquinone. Chiral
auxiliaries, organo-, organometallic, and biocatalysis, as well as the chiral pool approach were also
employed with the goal of obtaining chiral bioactive flavonoids with a high enantiomeric ratio.
Additionally, the employment of the Diels–Alder reaction based on the stereodivergent reaction on a
racemic mixture strategy or using catalyst complexes to synthesise pure enantiomers of flavonoids
was reported. Furthermore, biomimetic pathways displayed another approach as illustrated by the
asymmetric coupling of 2-hydroxychalcones driven by visible light. Recently, an asymmetric transfer
hydrogen-dynamic kinetic resolution was also applied to synthesise (R,R)-cis-alcohols which, in turn,
would be used as building blocks for the stereoselective synthesis of flavonoids.

Keywords: flavonoids; enantiomers; enantioselective synthesis; chiral

1. Introduction

Flavonoids constitute a major group of polyphenolic compounds found in plants,
fruits, vegetables, and nuts. They are associated with several roles in flora, namely, cell
growth modulation and defence against extreme environmental conditions and oxidative
stress. Moreover, they contribute to the perfume and colour in fruits and flowers, therefore
promoting pollination [1,2]. In addition to flavonoids commonly found in terrestrial plants,
some bioactive flavonoids can also be found in marine sources [3]. Structurally, flavonoids
are composed of a 15-carbon scaffold with two aromatic rings (A and B) attached through a
3-carbon chain, which could be a heterocyclic ring denominated as a C ring. According to
the degree of unsaturation and oxidation of the C ring and the position of the B ring, they
can be categorised into different classes (Figure 1). In nature, this wide array of moieties
is obtained through the combination of shikimate and acetate pathways under enzymatic
transformation, with chalcones being the intermediates for the biosynthesis of the other
classes of flavonoids [2,4].

Flavonoids are well-known to possess a variety of biological activities with therapeutic
interests such as antioxidant [5], antimalarial [6], anti-inflammatory [7,8], antiviral [9,10],
antibacterial [11], antidiabetic [8], antifungal [12], and anticancer [1,13–16] potential. It
is also reported that they protect the cardiovascular system from oxidative stress as a
consequence of their ROS scavenger ability [17]. Moreover, flavonoids can be employed in
the cosmetic field as protective agents against skin deterioration and hyperpigmentation
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attributable to UV irradiation [18]. They also contribute to improving elasticity and skin
strength as well as averting the occurrence of dark spots because of their inhibitory activity
towards elastases, collagenases, and tyrosinases [18].
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Figure 1. Main classes of flavonoids.

In addition to these diverse medicinal features, these polyphenolic compounds can
be used in the food industry as sweeteners and colouring agents in pastry products [19].
Furthermore, they can function as flavour enhancers and protect against lipid peroxidation
in seed oils and biscuits, owing to their antioxidant effect [19]. Flavonoids can also be em-
ployed in the textile area to produce biocompatible fibres and to ameliorate their quality [18].
Additionally, these natural compounds can be incorporated in the dyeing process of fibres
for the purpose of procuring more environmentally friendly manufacturing [18]. It has
also been reported that flavonoids possess the capacity to restrain metal corrosion, which
arouses interest from a metallurgical field perspective [20].

Considering the biological and industrial potential of natural flavonoids, several
chemical methodologies have been developed to obtain nature-inspired flavonoids, as
summarised in Table 1 [21–32].

As in nature, 2′-hydroxychalcones can be intermediates for the synthesis of other
classes of flavonoids, such as flavonols, flavones, and flavanones. Synthetically, they can
be obtained via Claisen–Schmidt [21], Friedel–Crafts, and Heck coupling pathways [21]
(Figure 2). Regarding the Claisen–Schmidt reaction, it comprises the reaction of an aromatic
aldehyde and a substituted acetophenone under basic catalysis (Scheme A, Figure 2). This
process can be improved with recourse to microwave and ultrasound [30,33], resulting
in the enhancement of the yields and a reduction in the reaction time [31]. With respect
to the Friedel–Crafts method, 2′-hydroxychalcones are originated from the condensation
of (E)-3-phenylprop-2-enoyl chloride and phenols through AlCl3 catalysis [21] (Scheme B,
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Figure 2). In addition, the Heck coupling pathway is based on the combination of aryl
α,β-unsaturated ketone and iodobenzene, culminating in the formation of the desired
chalcone [32] (Scheme C, Figure 2).
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The Algar–Flynn–Oyamada methodology comprises the transformation of
2′-hydroxychalcones into flavonols (route I, Figure 3) through oxidative cyclisation medi-
ated by hydrogen peroxide in alkaline medium [21,34,35]. The 2′-hydroxychalcones can
also be building blocks for the synthesis of flavanones (route II, Figure 3) and flavones
(route III, Figure 3). Considering the first class of flavonoids mentioned, they can be
obtained through intramolecular cyclisation under acidic [36] or basic conditions [37],
thermolysis [38], electrolysis [39], photolysis [40], microwave irradiation [41], a greener cat-
alytic process [42], and palladium(II) catalysis [43]. Regarding flavones, these compounds
can be synthesised through oxidative cyclisation under several reaction conditions such
as classic I2-DMSO methodology [44] or using NH4I in a solvent-free environment [45].
There has also been reported the use of phenyliodinium acetate (PIDA) [46], selenium
(IV) reagents under microwave irradiation [47], indium (III) halides in a gel-silica sup-
port system [48], CuI-mediated catalysis in the ionic liquid [bmim] [NTf2] as solvent [49],
diphenyl disulfide at high temperatures [50], and oxalic acid-mediated catalysis [51] to
obtain flavones via chalcones.

Alternatively, flavones can be obtained by other methods. The Allan–Robinson ap-
proach is established as a synthetic route to produce flavones and isoflavones from the
condensation of o-hydroxyaryl ketones, aromatic acid anhydride, and the sodium salt of
correlated aryl carboxylic acid anhydride [21,52] (Figure 4) [53].

The Baker–Venkataraman is another methodology implemented to produce interme-
diaries for the flavones’ synthesis [21], in which an α-acyloxy ketone is converted into
β-diketones via basic catalysis and, subsequently, a cyclisation occurs to obtain the final
flavone [54] (Figure 5).



Molecules 2023, 28, 426 4 of 33Molecules 2023, 28, x FOR PEER REVIEW 4 of 34 
 

 

 
Figure 3. Synthesis of flavonols, flavanones, and flavones using 2’-hydroxychalcones as building 
blocks. 

Alternatively, flavones can be obtained by other methods. The Allan–Robinson 
approach is established as a synthetic route to produce flavones and isoflavones from the 
condensation of o-hydroxyaryl ketones, aromatic acid anhydride, and the sodium salt of 
correlated aryl carboxylic acid anhydride [21,52] (Figure 4) [53]. 

 
Figure 4. Synthesis of flavones and isoflavones by Allan–Robinson reaction. 

The Baker–Venkataraman is another methodology implemented to produce 
intermediaries for the flavones’ synthesis [21], in which an α-acyloxy ketone is converted 
into β-diketones via basic catalysis and, subsequently, a cyclisation occurs to obtain the 
final flavone [54] (Figure 5). 

 
Figure 5. Synthesis of flavones by Baker–Venkataraman reaction. 

Figure 3. Synthesis of flavonols, flavanones, and flavones using 2′-hydroxychalcones as building blocks.

Molecules 2023, 28, x FOR PEER REVIEW 4 of 34 
 

 

 
Figure 3. Synthesis of flavonols, flavanones, and flavones using 2’-hydroxychalcones as building 
blocks. 

Alternatively, flavones can be obtained by other methods. The Allan–Robinson 
approach is established as a synthetic route to produce flavones and isoflavones from the 
condensation of o-hydroxyaryl ketones, aromatic acid anhydride, and the sodium salt of 
correlated aryl carboxylic acid anhydride [21,52] (Figure 4) [53]. 

 
Figure 4. Synthesis of flavones and isoflavones by Allan–Robinson reaction. 

The Baker–Venkataraman is another methodology implemented to produce 
intermediaries for the flavones’ synthesis [21], in which an α-acyloxy ketone is converted 
into β-diketones via basic catalysis and, subsequently, a cyclisation occurs to obtain the 
final flavone [54] (Figure 5). 

 
Figure 5. Synthesis of flavones by Baker–Venkataraman reaction. 

Figure 4. Synthesis of flavones and isoflavones by Allan–Robinson reaction.

Molecules 2023, 28, x FOR PEER REVIEW 4 of 34 
 

 

 
Figure 3. Synthesis of flavonols, flavanones, and flavones using 2’-hydroxychalcones as building 
blocks. 

Alternatively, flavones can be obtained by other methods. The Allan–Robinson 
approach is established as a synthetic route to produce flavones and isoflavones from the 
condensation of o-hydroxyaryl ketones, aromatic acid anhydride, and the sodium salt of 
correlated aryl carboxylic acid anhydride [21,52] (Figure 4) [53]. 

 
Figure 4. Synthesis of flavones and isoflavones by Allan–Robinson reaction. 

The Baker–Venkataraman is another methodology implemented to produce 
intermediaries for the flavones’ synthesis [21], in which an α-acyloxy ketone is converted 
into β-diketones via basic catalysis and, subsequently, a cyclisation occurs to obtain the 
final flavone [54] (Figure 5). 

 
Figure 5. Synthesis of flavones by Baker–Venkataraman reaction. Figure 5. Synthesis of flavones by Baker–Venkataraman reaction.

The Kostanecki method is another well-known reaction pathway to obtain flavonoids,
namely flavones. It consists of the combination between a o-hydroxyaryl ketone, aromatic
acid anhydrides, and their related salt [55] (Figure 6). There are several reports of the
application of this process to synthesise flavonoids with biological activity, namely the
work developed by DeMeyer et al. [56].
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The Mentzer pyrone process encompasses the use of a phenol and a β-ketoester to
synthesise flavone derivatives [57] without solvent and at high temperatures during a
prolonged period of time or employing micro-wave irradiation [58] (Figure 7). A recent
application of this strategy was employed by Pereira et al. [59] in the synthesis of flavones
with antifouling activity [59].
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The Karl von Auwers method comprises a set of reactions which transforms aurones
into flavonols [60] (Figure 8). These molecules are essential in plants to ensure protection
against UV irradiation and metallic ions due to their chelating feature and free radical scav-
engers. As a result, flavonols could be employed as a vehicle of treatment for pathologies
associated with oxidative stress [61].
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The Suzuki–Miyaura approach has been latterly implemented in flavonoid moieties
synthesis [62]. It involves a cross-coupling reaction between an organohalide and boronic
acid/esters in the presence of a palladium complex [63]. Its application is generally as-
sociated with the formation of chalcones, flavones, isoflavones, and neoflavones because
palladium input occurs in an sp2-hybridised carbon–halide bond [62]. Hurtová et al. [64]
applied this methodology to synthesise derivatives of quercetin, luteolin, chrysin, and
flavonoid boronates.

More information about the progress in the synthesis of flavonoids is reported in a
recent revision [65]. Despite the presence of the stereogenic centre in many scaffolds of
flavonoids, most of the synthetic strategies ignore the stereochemistry of their structures.
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Table 1. Summary of synthetic methods for flavonoid classes.

Flavonoids Synthetic Approaches References

Chalcones

Claisen–Schmidt reaction [21,30,31]

Friedel–Crafts reaction [21]

Heck coupling [32]

Suzuki–Miyaura reaction [62]

Flavonols

Algar–Flynn–Oyamada reaction [21,34]

Karl von Auwers reaction [60]

Kostanecki methodology [29]

Flavanones Intramolecular cyclisation of
2′-hydroxychalcones [36–43]

Flavones

Oxidative cyclisation of 2′-hydroxychalcones [44–51]

Allan–Robinson reaction [21,52]

Baker–Venkataraman reaction [21,54]

Kostanecki reaction [55]

Mentzer pyrone synthesis [57]

Suzuki–Miyaura reaction [62]

Isoflavones

Allan–Robinson reaction [21,52]

Suzuki–Miyaura reaction [62]

Deoxybenzoin route [22]

Reductive cleavage of isoxazoles
[23]Intramolecular ketene cycloaddition followed

by decarboxylation

Rearrangement and cyclisation of chalcone epoxides
[24]

Rearrangement of flavanones

Wacker–Cook tandem conversion of
α-methylene deoxybenzoins [25]

Cu(I)-mediated cyclisation of
3-(2-bromophenyl)-3-oxopropanol [26]

Neoflavones

Suzuki–Miyaura reaction [62]

Pechmann reaction

[27]
Perkin reaction

Wittig reaction of benzophenones

Metal-catalysed cross-coupling reactions such as
Stille type

Direct arylation by the palladium-catalysed
oxidative Heck coupling of arylboronic acids

to coumarins
[28]

2. Stereoselective Synthesis of Flavonoids

Due to their biological activities and current concernment in attaining enantiomerically
pure forms, chiral flavonoids are gaining attention in the scientific field [66]. The isolation
of these natural compounds can be time-consuming and associated with a low yield, which
accentuate even more the demand for the synthesis of enantiomerically pure forms of
them [67].
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A variety of methodologies to produce these bioactive compounds with high enan-
tiomeric excess and purity have been reported. These approaches include separation
processes, such as chiral chromatography [68–72], and stereoselective synthesis.

This revision complies with the research for synthetic routes of flavonoids with enan-
tiomeric purity. For the purpose of supplementing this requirement, several methodologies
have been developed.

2.1. Stereoselective Chalcone Epoxidation Approach

As previously mentioned, chalcones play a major role as intermediaries for the synthe-
sis of the various groups of flavonoids and, as a result, an asymmetric synthetic process was
developed considering chalcones as building blocks. This procedure consisted of the asym-
metric epoxidation of chalcones, giving rise to the respective epoxides and their later use
as chirons for the synthesis of other flavonoids [73]. In 1976, the use of quinine benzylchlo-
ride and quinidine benzylchloride as chiral phase-transfer catalysts in the epoxidation of
α,β-unsatured ketones was reported [74] (Figure 9), allowing the application of this method
in the synthesis of chalcone epoxides. However, the resulting enantiomeric excess was low,
therefore leading to investigations with the aim of improving enantioselectivity [74].
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The turning point in this synthetic process arose from the implementation of three reac-
tion components developed by Juliá et al. [75], comprising alkaline hydrogen peroxide, an
organic solvent (carbon tetrachloride or toluene), and polymeric L- or D-alanine [75]. This
synthetic process was later refined in a two-phase non-aqueous system in order to achieve
higher enantiomeric purity [76]. Taking this into account, Nel et al. [77] proceeded to syn-
thesise a series of enantiomeric (S)- and (R)-2′-methoxymethyl-β-hydroxydihydrochalcones
(Figure 10), presenting some of them as an enantiomeric excess value in a range between
84% and 91%. These compounds constitute a resourceful tool in the industry, namely as
sweeteners in candies and mouthwashes. Moreover, they assume a function of attracting
insects in order to promote pollination in flora [77].
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2.2. Sharpless Asymmetric Dihydroxylation, Mitsunobu Reaction, and Cycloaddition
of 1,4-Benzoquinone

In 2000, the combination of the Sharpless asymmetric dihydroxylation and Mitsunobu
reaction was applied to obtain pure enantiomeric 3-hydroxyflavanones, resulting in a novel
approach to synthesise this flavonoid class. The first reaction phase consisted of the forma-
tion of the (2R,3S)-diols (compound A, Figure 11) via Sharpless asymmetric dihydroxylation
using AD-mix with an outstanding enantiomeric excess of 99%. The synthesis of the enan-
tiomerically pure 3-hydroxyflavanones in the final phase was based on the intramolecular
Mitsunobu pathway as verified in the configuration of the stereogenic centre (Figure 11).
This methodology was also used to obtain (2R,3R)-3′,4′-O-dimethyltaxifolin, which is a
derivative of a 3-hydroxyflavanone with a protective role in the hepatic system [78].
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The applicability of Sharpless asymmetric dihydroxylation extends to the synthesis of
flavan-3-ols and isoflavonoid derivatives. Van Rensburg et al. [79] employed this method-
ology to synthesise polyoxygenated diarylpropan-1,2-diols from retro-chalcones, which
would be then used to obtain the chiral flavan-3-ol scaffold [79]. These chiral moieties
arouse interest in many fields, namely as building blocks of condensed tannins polymers
(Figure 12), which have been receiving attention for the development of eco-friendly food
packaging, owing to their chemical properties [80].
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This approach was also extended for the synthesis of (+)-afzelechin and (-)-epiafzelechin
by Wan et al. [81] with the aim of obtaining analogues of epigallocatechin-3-gallate with
a cancer-preventive effect. These flavan-3-ols were stereoselectivity synthesised through
the establishment of the stereogenic centres in the flavanol intermediate (compound C,
Figure 13) by Sharpless dihydroxylation [81]. Moreover, (+)-pisatin, a natural isoflavonoid
with a protective effect against microbial infections, was synthesised encompassing a
Sharpless asymmetric dihydroxylation in one of the mechanism steps, resulting in an
enantiomeric excess of 94% [82] (reaction phase 7, Figure 14).

Furthermore, it was reported that isoflavonoid derivatives could also be obtained in an
enantiomerically pure form via the cycloaddition of 1,4-benzoquinone and 2H-chromenes
catalysed by a Ti-TADDOLate complex, which was demonstrated by Engler et al. [83].
They applied this procedure to synthesise pterocarpans with 75% and 80% of enantiomeric
excess in light of their relevance as antifungal and antibacterial agents [83] (Figure 15).
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2.3. Chiral Auxliaries Approach

Isoflavans are a group of isoflavonoids with a variety of biological effects [84]. Since
these compounds belong to a series of molecules where stereogenic centres are confined
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in 2, 3, and 4 positions, the development of enantioselective pathways to achieve enan-
tiomeric pure moieties at position 3 could unfold stereoselective routes to other similar
structures. Regarding this, Versteeg et al. [85] attempted to obtain isoflavans through
a stereoselective α-benzylation of phenyl acetic acid derivatives, using (4S,5R)-(+)- and
(4R,5S)-(-)-imidazolidin-2-ones as chiral auxiliaries (Figure 16). The implementation of this
protocol brought an excellent outcome, with an array of enantiomeric excess between 94%
and 99% and a chiral synthetic route for the 3-phenylchroman moiety [85].
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Figure 16. Enantioselective synthesis of isoflavans using imidazolidin-2-ones as chiral auxiliaries.

In addition, imidazolidinones were also relevant as chiral auxiliaries in the total synthe-
sis of ent-fissistigmatin C. This molecule structure embodies a fragment of a flavonoid and
another of the sesquiterpenoid linked through carbon 4 and carbon 1”, which establishes
the generation of two stereogenic centres in the natural compound. Xu et al. [86] developed
a strategy to obtain fissistigmatin-C based on the reaction of a 2-hydroxychalcone and an
aliphatic aldehyde [86]. In this reaction step, the flavonoid formed from the coupling of the
two compounds previously mentioned was synthesised via a collaborative catalytic action
of a chiral imidazolidine, (R)-TRIP, and visible light (Figure 17). On the molecular level,
(R)-TRIP facilitated the attack of the enamine of the imidazolidinone in the si face by allevi-
ating the steric hindrance, culminating with the formation of the flavonoid intermediate
with 98% of the enantiomeric excess [86] (Figure 17).

Considering the bioactive potential of isoflavanones as antifungal and antibacterial agents,
in 2000, an enantioselective synthesis of isoflavanones was reported by Vicario et al. [87]. They
resorted an asymmetric aldol reaction between (S,S)-(+)-pseudoephedrine arylacetamides
and formaldehyde to introduce chirality in the intended compound. Subsequently, it was
given the synthesis of the B ring via aryl ether formation and the displacement of the chiral
auxiliary, culminating in the formation of the desired isoflavanones through Friedel, Crafts
acylation (Figure 18). The chiral analysis by liquid chromatography showed that only one
enantiomeric form was synthesised, boosting this methodology as an effective approach to
obtain isoflavanones with a high degree of enantiomeric purity [87].



Molecules 2023, 28, 426 13 of 33

Molecules 2023, 28, x FOR PEER REVIEW 13 of 34 
 

 

 
Figure 17. Stereoselective synthesis of flavonoid intermediate in ent-fissistigmatin-C synthesis 
(adapted from Xu et al.) [86]. 

Considering the bioactive potential of isoflavanones as antifungal and antibacterial 
agents, in 2000, an enantioselective synthesis of isoflavanones was reported by Vicario et 
al. [87]. They resorted an asymmetric aldol reaction between (S,S)-(+)-pseudoephedrine 
arylacetamides and formaldehyde to introduce chirality in the intended compound. 
Subsequently, it was given the synthesis of the B ring via aryl ether formation and the 
displacement of the chiral auxiliary, culminating in the formation of the desired 
isoflavanones through Friedel,Crafts acylation (Figure 18). The chiral analysis by liquid 
chromatography showed that only one enantiomeric form was synthesised, boosting this 
methodology as an effective approach to obtain isoflavanones with a high degree of 
enantiomeric purity [87]. 

 

Figure 17. Stereoselective synthesis of flavonoid intermediate in ent-fissistigmatin-C synthesis
(adapted from Xu et al.) [86].

Molecules 2023, 28, x FOR PEER REVIEW 13 of 34 
 

 

 
Figure 17. Stereoselective synthesis of flavonoid intermediate in ent-fissistigmatin-C synthesis 
(adapted from Xu et al.) [86]. 

Considering the bioactive potential of isoflavanones as antifungal and antibacterial 
agents, in 2000, an enantioselective synthesis of isoflavanones was reported by Vicario et 
al. [87]. They resorted an asymmetric aldol reaction between (S,S)-(+)-pseudoephedrine 
arylacetamides and formaldehyde to introduce chirality in the intended compound. 
Subsequently, it was given the synthesis of the B ring via aryl ether formation and the 
displacement of the chiral auxiliary, culminating in the formation of the desired 
isoflavanones through Friedel,Crafts acylation (Figure 18). The chiral analysis by liquid 
chromatography showed that only one enantiomeric form was synthesised, boosting this 
methodology as an effective approach to obtain isoflavanones with a high degree of 
enantiomeric purity [87]. 

 

Figure 18. Enantioselective synthesis of isoflavanones using (S,S)-(+)-pseudoephedrine as chiral auxiliary.

2.4. Organocatalysis

Flavonoids can also be obtained through organocatalytic asymmetric processes with
the aim of acquiring enantiomeric pure forms of these natural compounds. Biddle et al. [88]
proposed an asymmetric synthesis of flavanones based on the intramolecular conjugated
addition of α-substituted chalcones, using thiourea compounds as catalysts (Figure 19).
The application of this methodology culminated in the synthesis of the flavanone scaffold
with 94% of enantiomeric excess [88].
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Figure 19. Enantioselective flavanones synthesis via chiral quinine-thiourea catalysis.

In 2010, a research team elaborated a deracemization methodology catalysed by alka-
loid derivatives to obtain α-substituted ketones [89]. This process encompassed hydrogen
fluoride as a proton supplier for the formation of the ammonium cation stemming from the
alkaloids’ derivatives. This one, in turn, was responsible for the protonation of the silyl
enolate intermediate previously synthesised, giving the desired products. Furthermore, it
was proposed that the anion generated as a consequence of the protonation of the amine
promoted the catalytic process, therefore enhancing the enantioselective transformation. In
order to demonstrate the postulate, and bearing in mind the extent of the biological proper-
ties of flavonoids, they employed this strategy in the deracemization of homoisoflavones,
resulting in the respective enantiomers with 78% and 81% of enantiomeric excess, and
turning this process into a viable route to obtain enantiomeric pure forms of this flavonoid
group [89] (Figure 20).
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2.5. Organometallic Catalysis

In addition to the enantiomeric pure flavonoids mediated by organocatalysis, organometal-
lic compounds were also employed to promote the stereoselective synthesis of this natural
compound. Due to their major interest in obtaining these compounds in the enantiomer-
ically pure form, Lestini et al. [90] focused on the conjugate addition of chromones and
arylboronic acids via palladium(II)-pyridinooxazoline catalysis to achieve their goal. For
the purpose of enhancing the efficiency of the methodology, they undertook the catalytic
process in palladium-nanoreactors with the aim of resulting in a catalytic stability incre-
ment. Then, they functionalised pyridinooxazoline with an acrylate monomer, which,
in turn, was linked to palladium(II) trifluoroacetate and, subsequently, integrated in the
nanoparticle, where the enantioselective synthesis of flavanones occurred. The final prod-
ucts were obtained within a range of from 79% to 84% of enantiomeric excess, highlighting
the scientific relevance of this method regarding the enantioselective synthesis of natural
bioactive compounds with antitumor, anti-inflammatory, and antimicrobial activities [90]
(Figure 21).
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Furthermore, a similar process previously developed by Stoltz et al. [91] was employed
by Timmerman et al. [92] in the stereoselective synthesis of (-)-caesalpinnone A and (-)-
caesalpinflavan: two natural flavonoids with cytotoxic activity against several cancer cell
lines [92]. Aiming to accomplish the aforementioned, they proceeded to use the palladium-
catalysed conjugation addition methodology to create the sterogenic centre in the flavan
portion of caesalpinnone A and caesalpinflavan B [92] (Figure 22). Subsequently, they
established the chirality of C4” in light of the work developed by Shenvi et al. [93], using a
hydrogen atom transfer method to reduce the C3”-C4” bond (Figure 22), resulting in the
synthesis of the chiral intermediates of flavan-chalcone hybrids with high enantiomeric
excess [92].

Moreover, in 2021, Yang et al. [94] focused on improving the palladium catalytic system
used in the conjugate addition of arylboronic acids and chromones mentioned above with
the goal of obtaining new chiral agrochemicals based on the flavanone scaffold. They suc-
cessfully unravelled a synthetic route using a palladium-carboline (Pd-CarOx) (Figure 23)
to obtain a library of chiral flavanones, in which some of them were synthesised with an
enantiomeric excess of 84% to 97%. Subsequently, they established a structure–activity
relationship pattern, culminating in the synthesis of (R)-pinostrobin through a mild reaction
pathway as well as the attainment of the enantiomer R of a novel antifungal flavanone-
derivative as a promising lead compound [94] (Figure 23).

Additionally, this enantioselective reaction can also be employed using rhodium
catalyst complexes. He et al. [95] applied this metallic element with a chiral diene to
catalyse the enantioselective synthesis of flavanones via the 1,4-addition of arylboronic
acids (Figure 24), resulting in products obtained with enantiomeric excess higher than
97% [95].
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2.6. Biocatalysis

Biocatalysis presents as a resourceful tool to obtain compounds with structural com-
plexity and several stereogenic centres. In contrast to the conventional chemical synthetic
pathway, it can be performed under non-hazardous conditions and foremost enantiomeric
excess [96], which makes this type of catalysis an appealing tool for the stereoselective
synthesis of natural compounds, including flavonoids. In 2014, Janeczko et al. [97] syn-
thesised chiral flavanones and cis/trans-flavan-4-ols, which were subject to different yeast
strains. This methodology enabled the obtaining of the (2R,4S)-trans-flavan-4-ol from the
reduction of (S)-flavanone by C. wiswanati KCh 120, R. rubra, and R. glutinis KCh 242 with
92%, 99%, and 98% of enantiomeric excess, respectively [97] (Figure 25). From the reduction
of the same chiral flavanone, they were also able to produce (2R,4R)-cis-flavan-4-ol with
an enantiomeric excess of 61%, using Z. bailii KCh 907, and (2S,4S)-cis-flavan-4-ol was
obtained through an (R)-flavanone reduction by C.pelliculosa ZP22 with an enantiomeric
excess of 75% [97] (Figure 25). On the other hand, (S)-flavanone and (R)-flavanone were
obtained through the oxidation of (2R,4R)-cis-flavan-4-ol and (2S,4R)-trans-flavan-4-ol by
C.parapsilosis KCh 909 and Y. lipolytica KCh 71 with enantiomeric excesses of 93% and 85%,
respectively [97] (Figure 25).
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Figure 25. Enantioselective synthesis of flavanones and cis/trans-flavan-4-ols through biocatalysis
using yeast strains.

In light of the therapeutic effect of isoflavones and their derivatives in menopausal
disorders and estrogenic-related osteoporosis, Kawada et al. [98] proceeded to evaluate
the enzymatic parameters of daidzein reductase, which is intervenient in the conversion
of daidzein in the human intestine. According to their results related to enantioselectivity,
a highly purified form of the enzyme from Eggerthella sp. YY7918 was able to synthesise
(R)-dihydrodaidzein (Figure 26), disclosing a methodology to obtain enantiomeric pure
forms of (R)-dihydroisoflavones [98]. Furthermore, they applied this process to another
substrate, genistein, enabling them to produce the corresponding (R)-dihydroisoflavone [98]
(Figure 26).
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Figure 26. Enantioselective synthesis of (R)-dihydrodaidzein and (R)-dihydrogenistein by daidzein
reductase from Eggerthella sp. YY7918.

Another example of the application of biocatalysis to produce enantiomeric pure forms
of flavonoids was the employment of a Diels–Alderase to synthesise artonin I, a natural
flavonoid with positive effects on Staphylococcus aureus multidrug-resistant strains [99]. This
enzyme was responsible for the catalysis of the Diels–Alder reaction between morachalcone
and the dienes B1/B2 to give (+)-artonin I and (+)-dideoxyartonin I (Figure 27) with an
enantiomeric excess of 99% and higher than 99%, respectively [99].



Molecules 2023, 28, 426 19 of 33Molecules 2023, 28, x FOR PEER REVIEW 19 of 34 
 

 

 
Figure 27. Chemoenzymatic stereoselective synthesis of (+)-artonin I and (+)-dideoxyartonin I. 

In 2021, de Matos et al. [100] reported the utilisation of strains of marine-derived 
fungi in order to proceed to the stereoselective reduction of flavanones, culminating in the 
formation of chiral flavan-4-ols (Figure 28). Pursuant to preliminary results, Acremonium 
sp. CBMAI 1676 and Cladosporium sp. CBMAI 1237 were the strains which demonstrated 
promising results in terms of yield and enantioselectivity and, subsequently, were 
employed in further studies [100]. From the application of the aforementioned strains, the 
formation of the cis-enantiomers of flavan-4-ol (compound D, scheme A, Figure 28) with 
an enantiomeric excess of 64% from the activity of Cladosporium sp. CBMAI 1237 was 
highlighted [100]. Additionally, it is also relevant to denote that the synthesis of cis and 
trans-enantiomers of the products formed from all flavanones occurred with an 
enantiomeric excess in a range of 77% to 97% and superior to 95%, respectively, in 
Acremonium sp. CBMAI 1676 [100] (scheme B, Figure 28). As a result, the methodology 
developed by de Matos et al. [100] enabled the synthesising of halogenated flavanols, 
particularly brominated flavan-4-ols [100]. 

Figure 27. Chemoenzymatic stereoselective synthesis of (+)-artonin I and (+)-dideoxyartonin I.

In 2021, de Matos et al. [100] reported the utilisation of strains of marine-derived
fungi in order to proceed to the stereoselective reduction of flavanones, culminating in the
formation of chiral flavan-4-ols (Figure 28). Pursuant to preliminary results, Acremonium sp.
CBMAI 1676 and Cladosporium sp. CBMAI 1237 were the strains which demonstrated
promising results in terms of yield and enantioselectivity and, subsequently, were employed
in further studies [100]. From the application of the aforementioned strains, the formation of
the cis-enantiomers of flavan-4-ol (compound D, scheme A, Figure 28) with an enantiomeric
excess of 64% from the activity of Cladosporium sp. CBMAI 1237 was highlighted [100].
Additionally, it is also relevant to denote that the synthesis of cis and trans-enantiomers of
the products formed from all flavanones occurred with an enantiomeric excess in a range of
77% to 97% and superior to 95%, respectively, in Acremonium sp. CBMAI 1676 [100] (scheme
B, Figure 28). As a result, the methodology developed by de Matos et al. [100] enabled the
synthesising of halogenated flavanols, particularly brominated flavan-4-ols [100].
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Figure 28. Synthesis of cis/trans-enantiomers of flavan-4-ols using marine-derived fungi. (A) Compound D
synthesis by Cladosporium sp. CBMAI 1237; (B) Cis and trans-enantiomers of flavan-4-ol synthesis by
Acremonium sp. CBMAI 1676.

As a consequence of the medicinal relevance of chiral flavanones, Zhu et al. [101]
were inspired by a biomimetic asymmetric reduction in NAD(P)H-dependent to synthesise
the enantiomeric forms of these flavonoids. They proceeded to elaborate on the chiral
[2.2]paracyclophane-based NAD(P)H models (CYNAMs), in which, after reaction condi-
tions’ optimisation, one of the models was applied to obtain enantiomeric tetrasubstituted
alkene flavanones (Figure 29), culminating in the formation of most chiral forms in an
enantiomeric excess array between 90% and 99% [101]. With this methodology, they were
able to reinforce the importance of biocatalysis and the respective cofactors to enable the
stereoselective synthesis of flavonoids with higher enantiomeric purity.
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2.7. Chiral Pool Methodology

Another approach to achieve highly enantiomerically pure forms of chiral derivatives
of flavonoids is through the chiral pool strategy. This method was employed with the
aim of synthesising flavonoids with antitumor activity [66]. Chrysin is a natural flavone
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well-known for its chemopreventive and apoptosis inducer role in several cancer malign
forms [102]. Based on the therapeutic relevance of this flavonoid as well as the increas-
ing effect of amino acids in selectivity, Song et al. [102] proceeded to introduce alanine,
leucine, isoleucine, and phenylalanine to synthesise the corresponding chrysin amino
acid derivatives (Figure 30). As a result of that, an enhancement in the anticancer effect
displayed by the obtained products was verified [102], highlighting the importance of
chirality in the therapeutic effect of this flavonoid. Moreover, it was also reported that
N-[4-(5-hydroxy-4-oxo-2-phenyl-4H-chromen-7-yloxy)butyryl]-L-isoleucine methyl ester
demonstrated the most potent inhibitory effect on human gastric carcinoma MGC-803 cells
among the synthetic-obtained derivatives and positive control cisplatin, with an IC50 value
of 3.78 µmol/L [102].
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Another illustration of the employment of amino acids in obtaining the flavonoid-related
compounds with anticancer activity is the methodology developed by Parveen et al. [103].
They synthesised chiral complexes composed of quercetin, L/D-valine, and organotin (IV),
aiming to achieve a synergetic effect from these three components (Figure 31). From further
cytotoxic studies carried out in HeLa (cervix), MCF7 (breast cancer), Hep-G2 (liver cancer),
and MIA-Pa-Ca-2 (pancreatic cancer), it was possible to verify that the majority of the
L-enantiomers of the complexes showed values of GI50 lower than 10 µg/mL, outlining
their potential in chemotherapy [103]. Additionally, molecular docking studies revealed
that the configuration was a preponderant factor in the interaction between the target
and L-valine-quercetin diorganotin (IV) complexes and, as a consequence, it corroborated
the role of chirality on the pharmacological effect demonstrated by these synthesised
compounds [103].

Moreover, the work of Pajtás et al. [104] constituted another contribution to the employ-
ment of amino acids and peptide moieties in flavonoids. As reported by them, the insertion
of these chiral molecules via the Buchwald–Hartwig amination of bromoflavones in the
presence of BINAP and palladium as a catalyst complex averted the racemisation of the
resulting products, culminating in the enantiomeric pure forms of flavone derivatives [104]
(Figure 32). Furthermore, these compounds were, subsequently, tested in vitro for cyto-
toxic activity, in which a compound revealed significant cytotoxic activity (95.43% in a
concentration of 50 µM) in the U87 glioblastoma cell line [104].
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More recently, Hou et al. [105] synthesised enantiomeric forms of baicalin derivatives,
combining this natural flavonoid with phenylalanine methyl esters in order to improve
antitumor activity (Figure 33). As predicted, the introduction of this chiral amino acid ester
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increased the inhibitory effect on cancer cell growth, particularly in A549 cells, exhibiting
an inhibition rate of 88.95% at 48 h in a concentration of 50 µg/mol for baicalin with
L-phenylalanine methyl ester (BAD), and an inhibition rate of 94.13% for baicalin with
D-phenylalanine methyl ester (BAL) [105]. Furthermore, immunohistochemistry data
showed that these baicalin derivatives suppressed tumor angiogenesis, with BAL being
more potent than BAD [105]. These results confirm that the molecular modification of
flavonoids with different enantiomeric forms of natural chiral molecules, such as amino
acids, could result in bioactive compounds with different potency.
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The chiral pool method was also used for other building blocks, namely epichloro-
hydrin. Shiraishi et al. [106] synthesised enantiomeric forms of trans-flavan-3-ol gal-
lates, using (S) and (R)-epichlorohydrine (Figure 34) as an integrant part of 1,3-diaryl-
2-propanols, which are intermediates in this reaction pathway. The final products were,
subsequently, obtained by regioselective oxidation etherification with 2,3-dichloro-5,6-
dicyano-1,4-benzoquinone, and were screened after for anticancer activity [106]. From
the experiments in the U266 cell line (multiple myeloma), it was possible to observe that
both enantiomers displayed similar IC50 values, suggesting that chirality might not be a
detrimental feature for the antitumor effect of the obtained trans-flavan-3-ol gallates [106].
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2.8. Other Synthetic Methologies

There are also reports of other synthetic processes with the goal of obtaining enan-
tiomeric pure forms of flavonoids, namely the Diels–Alder reaction. As promising an-
ticancer, anti-inflammatory, and antiviral agents, prenylflavonoids have been arousing
interest from researchers. In 2014, Han et al. [107] reported a stereoselective biomimetic total
synthesis of (-)-brosimone A (Figure 35), (-)-kuwanon I (scheme A, Figure 36), (+)-kuwanon
J (scheme A, Figure 36), and (-)-brosimone B (scheme B, Figure 36). In order to establish the
stereogenic centres of these Diels–Alder natural products, they resorted to an asymmetric
Diels–Alder cycloaddition of a 2′-hydroxychalcone derivative, using a chiral boron-VANOL
complex as the catalyst. Lately, they have employed this methodology to obtain chal-
conoids (-)-nicolaioidesin C and (-)-panduratine A, with 96% and 87% of enantiomeric
excess, respectively [108].
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Another method to synthesise Diels–Alder natural products was demonstrated by
Qi et al. [109]. They embarked on a strategic stereodivergent reaction of a racemic mixture
(RRM) to obtain (+)-sanggenon C and (-)-sanggenon O, involving an asymmetric [4+2]
cycloaddition catalysed by a boron-BINOL complex (Figure 37). Using this reaction process,
these flavonoid derivatives were obtained with an enantiomeric excess of 98% and 93%,
respectively [109].

As prior demonstrated, enantioselective biomimetic reactions enable synthesising chiral
flavonoids with diverse biological activities. Taking into consideration the anticancer, anti-
inflammatory, antioxidant, and antibacterial potential of hybrid flavonoids, Gao et al. [110]
developed a methodology based on the asymmetric coupling of 2-hydroxychalcone using an
appropriate Brønsted acid as the catalyst, an adequate nucleophile, and a visible light as
the reaction promotor [110]. Subsequently, this photochemical bio-inspired reaction was
applied to obtain enantiomeric forms of hybrid flavonoids with indole, cyclohexa-1,3-dione,
or phloroglucinol, highlighting the formation of the 2-hydroxychalcone phloroglucinol
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hybrid (compound E, Figure 38) as a result of the counter-anion-directed enantioselective
addition of 2-hydroxychalcone and phloroglucinol with an enantiomeric excess of 70% [110].
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Another example of the implementation of a biomimetic reactional approach is the syn-
thetic methodology developed by Yang et al. [111]. This approach was based on the applica-
tion of a chiral anion phase in order to promote the addition of nucleophilic phenols to benzopy-
rylium salts (Figure 39), synthesising 2,4-diarylbenzopyran and 2,8-dioxabicyclo [3.3.1]nonane
with enantiomeric excesses of 91% and 94%, respectively [111]. These scaffolds have crucial
importance from a synthetic point of view due to the fact that they integrate flavonoid-
related compounds [111]; therefore, a reaction pathway was unfolded to access natural
products with a diversified array of biological activities.
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anion phase-transfer.

More recently, in this thematic field of stereoselective synthesis, and inspired by
Metz et al. [112,113] and their previous works [114], Gaspar et al. [115] were able to en-
large the scope of ATH-DKR to obtain cis-3-phenylchroman-4-ols and, subsequently,
use them as intermediates for the synthesis of chiral isoflavanones, which possess cru-
cial biological activities [116]. With the aim of accomplishing their goal, they applied a
Noyori–Ikariya ruthenium complex as the catalyst and sodium formate as the hydrogen
source to the reaction (first reaction step, Figure 40), culminating in the formation of (R,R)-
cis-alcohols in a range between 92% and 99% of the enantiomeric ratio [115]. Thereafter, they
used a Dess–Martin periodinane (DMP) oxidation to synthesise two chiral natural isofla-
vanones (second reaction step, Figure 40), maintaining the enantiomeric ratios previously
acquired [115].



Molecules 2023, 28, 426 28 of 33Molecules 2023, 28, x FOR PEER REVIEW 28 of 34 
 

 

 
Figure 40. Enantioselective synthesis of isoflavanones via asymmetric ATH-DKR and DMP 
oxidation. 

3. Conclusions 
Flavonoids are natural polyphenolic compounds mainly found in plants and 

associated with a wide range of biological activities, including antiviral, antimicrobial, 
antitumor, and antioxidant activities. They can be also employed in the cosmetic, food, 
textile, and metallurgic fields. 

Owing to their biological relevance, flavonoids have been arousing interest and, as a 
result, synthetic methodologies have been employed in order to obtain these natural 
compounds, namely the following: Algar–Flynn–Oyamada, Allan–Robinson, Baker–
Venkataraman, Claisen–Schmidt, Karl von Auwers, Kostanecki, Mentzer Pyrone, Suzuki–
Miyaura, deoxybenzoin route, reductive cleavage of isoxazoles, intramolecular ketene 
cycloaddition followed by decarboxylation, rearrangement and cyclisation of chalcone 
epoxides, rearrangement of flavanones, Wacker–Cook tandem conversion of α-methylene 
deoxybenzoins, Cu(I)-mediated cyclisation of 3-(2-bromophenyl)-3-oxopropanol, 
Pechmann reaction, Perkin reaction, Wittig reaction of benzophenones, metal-catalysed 
cross-coupling reactions, and direct arylation of arylboronic acids to coumarins through 
palladium-catalysed oxidative Heck coupling. 

Regarding stereoselective synthesis, many strategies were explored such as chalcone 
epoxidation, Sharpless asymmetric dihydroxylation, the Mitsunobu reaction, and the 
cycloaddition of 1,4-benzoquinones with 2H-chromenes via Ti-TADDOLate catalysis. 
Chiral auxiliaries were also applied in the synthesis of flavonoids enantiomers, 
highlighting imidazolidinone in the α-benzylation reaction of phenyl acetic acid 
derivatives and (S,S)-(+)-pseudoephedrine in an asymmetric aldol reaction. Moreover, 
organocatalytic processes were used with the aim of attaining enantiomeric pure forms of 
these natural compounds, enhancing the employment of thiourea and alkaloid moieties 
in the intramolecular conjugate addition of α-substituted chalcones and deracemization 
of homoisoflavones, respectively. Furthermore, organometallic complexes were also used 
with the aim of synthesising chiral flavonoids, namely palladium-
pyridinooxazoline/carboline and rhodium in the reaction of the addition of chromones to 

Figure 40. Enantioselective synthesis of isoflavanones via asymmetric ATH-DKR and DMP oxidation.

3. Conclusions

Flavonoids are natural polyphenolic compounds mainly found in plants and associ-
ated with a wide range of biological activities, including antiviral, antimicrobial, antitumor,
and antioxidant activities. They can be also employed in the cosmetic, food, textile, and
metallurgic fields.

Owing to their biological relevance, flavonoids have been arousing interest and, as a re-
sult, synthetic methodologies have been employed in order to obtain these natural compounds,
namely the following: Algar–Flynn–Oyamada, Allan–Robinson, Baker–Venkataraman,
Claisen–Schmidt, Karl von Auwers, Kostanecki, Mentzer Pyrone, Suzuki–Miyaura, de-
oxybenzoin route, reductive cleavage of isoxazoles, intramolecular ketene cycloaddition
followed by decarboxylation, rearrangement and cyclisation of chalcone epoxides, rear-
rangement of flavanones, Wacker–Cook tandem conversion of α-methylene deoxyben-
zoins, Cu(I)-mediated cyclisation of 3-(2-bromophenyl)-3-oxopropanol, Pechmann reaction,
Perkin reaction, Wittig reaction of benzophenones, metal-catalysed cross-coupling reac-
tions, and direct arylation of arylboronic acids to coumarins through palladium-catalysed
oxidative Heck coupling.

Regarding stereoselective synthesis, many strategies were explored such as chal-
cone epoxidation, Sharpless asymmetric dihydroxylation, the Mitsunobu reaction, and
the cycloaddition of 1,4-benzoquinones with 2H-chromenes via Ti-TADDOLate catalysis.
Chiral auxiliaries were also applied in the synthesis of flavonoids enantiomers, high-
lighting imidazolidinone in the α-benzylation reaction of phenyl acetic acid derivatives
and (S,S)-(+)-pseudoephedrine in an asymmetric aldol reaction. Moreover, organocat-
alytic processes were used with the aim of attaining enantiomeric pure forms of these
natural compounds, enhancing the employment of thiourea and alkaloid moieties in the
intramolecular conjugate addition of α-substituted chalcones and deracemization of ho-
moisoflavones, respectively. Furthermore, organometallic complexes were also used with
the aim of synthesising chiral flavonoids, namely palladium-pyridinooxazoline/carboline
and rhodium in the reaction of the addition of chromones to arylboronic acids. Biocatalysis
is an environmentally sustainable tool to proceed with the synthesis of enantiomeric forms
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of these polyphenolic compounds, highlighting the production of chiral flavanones and
cis/trans-flavan-4-ols by yeast strains, (R)-dihydroisoflavone synthesis by daidzein reduc-
tase from Eggerthella sp. YY7918, Diels–Alderase application, the stereoselective reduction
in flavanones by marine-derived fungi to obtain chiral flavan-4-ols, and the development
of chiral NAD(P)H models such as CYNAMs. The chiral pool was also reported as a
synthetic route to acquire flavonoid derivatives, mainly by the employment of amino acids
and epichlorohydrin. Although the employment of the methodologies mentioned above
enabled the obtaining of the enantiomeric pure forms of flavonoids with high enantiomeric
excess, the development of novel approaches in order to encompass the synthesis of other
flavonoids classes is still required. Henceforward, the study of the biological properties of
the chiral flavonoids obtained by the methods mentioned above is of crucial importance
from a scientific perspective, and to further explore their pharmacological potential as well
as to perform enantioselectivity studies.
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