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Abstract: Given the labor-consuming nature of model establishment, model transfer has become a
considerable topic in the study of near-infrared (NIR) spectroscopy. Recently, many new algorithms
have been proposed for the model transfer of spectra collected by the same types of instruments under
different situations. However, in a practical scenario, we need to deal with model transfer between
different types of instruments. To expand model applicability, we must develop a method that could
transfer spectra acquired from different types of NIR spectrometers with different wavenumbers or
absorbance. Therefore, in our study, we propose a new methodology based on improved principal
component analysis (IPCA) for calibration transfer between different types of spectrometers. We
adopted three datasets for method evaluation, including public pharmaceutical tablets (dataset 1),
corn data (dataset 2), and the spectra of eight batches of samples acquired from the plasma ethanol
precipitation process collected by FT-NIR and MicroNIR spectrometers (dataset 3). In the calibration
transfer for public datasets, IPCA displayed comparable results with the classical calibration transfer
method using piecewise direct standardization (PDS), indicating its obvious ability to transfer spectra
collected from the same types of instruments. However, in the calibration transfer for dataset 3,
our proposed IPCA method achieved a successful bi-transfer between the spectra acquired from
the benchtop and micro-instruments with/without wavelength region selection. Furthermore, our
proposed method enabled improvements in prediction ability rather than the degradation of the
models built with original micro spectra. Therefore, our proposed method has no limitations on
the spectrum for model transfer between different types of NIR instruments, thus allowing a wide
application range, which could provide a supporting technology for the practical application of
NIR spectroscopy.

Keywords: near-infrared spectroscopy; calibration transfer; piecewise direct standardization; im-
proved principal component analysis

1. Introduction

Based on its ability to quantify the physical properties and chemical constituents of
samples in one spectrum, near-infrared (NIR) spectroscopy has become a powerful tool for
the industrial implementation of process analytical technology (PAT) [1–4]. Furthermore,
establishing a calibration model is an indispensable, even decisive, part NIR spectroscopy’s
application; therefore, constructing a robust model always needs to invest a lot of manpower
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and time. It is much more challenging for manufacturers to guarantee absolute consistency
and stability when using two spectrometers. Unavoidable spectral deviation results in the
degradation of the calibration model’s prediction performance. Furthermore, in a practical
industry scenarios, different types of instruments are often used simultaneously, such
as benchtop NIR spectrometers and portable instrument devices [5,6]. Admittedly, the
miniaturization, portability, and low-cost characteristics of NIR devices are more conducive
to NIR spectroscopy technology’s widespread application. Therefore, developing methods
to transfer the existing model to new instruments with different signal-to-noise ratios,
spectral resolutions, and wavelengths is a matter of considerable concern [7].

However, calibration transfer offers the possibility of dealing with models adapted
to the new measurements by benefitting from the evolution of chemometrics algorithms,
minimizing the effects of spectral deviation. Calibration transfer establishes a functional
relationship between the source spectrometer and target instrument’s detection signals to
ensure the consistency of their prediction results. Many model transfer methods based
on different principles have been proposed in the literature. Slope/bias (S/B) correction
can correct the prediction value when the relationship between spectral difference and
prediction bias is linear [8]. In calculating piecewise direct standardization (PDS) [9], a
linear relationship in a small window region can be established with the spectra obtained
on two spectrometers. In addition, canonical correlation analysis (CCA) [10] could explore
the correlation of two spectra sets rather than the covariance [11]. Eliminating the spectral
differences through the conversion between two spectral spaces is the principle for spectral
space transformation (SST) [12]. In addition, multi-level simultaneous component analysis
(MSCA) [13] was developed to explore the underlying relationship of the multivariate
data involving different factors [14]. The recently proposed parameter-free framework for
calibration enhancement (PFCE) applies correlation constraints on the regression coeffi-
cients [15]. Alternatively, Tikhonov regularization [16,17] and domain-invariant partial
least squares regression (di-PLS) [18] are both based on the original model coefficients. In
summary, the commonly used calibration transfer methods can be roughly divided into
three strategies: (a) the correction of prediction values (i.e., S/B), (b) the standardization of
spectra (SST, PDS), and (c) the modification of model coefficients (Tikhonov regularization,
di-PLS, PFCE) [14]. Moreover, spectral pretreatment algorithms, such as orthogonal signal
correction (OSC) [19], multiplicative signal correction (MSC) [20,21] and finite impulse
response (FIR) [7], have been studied regarding calibration transfer.

Almost all of the methods mentioned above could achieve transfer between spectra
with consistent data points, such as spectra acquired from two same-type spectrome-
ters. However, few studies explored processing spectra with different data points and
absorbance originating from different types of instruments [22–26], and PDS is still con-
sidered the most popular method. Therefore, a more practical approach to calibration
transfer without requiring the same spectral data points is highly desirable. Here, we report
a new algorithm inspired by principal component analysis (PCA) to map the responses
obtained from one spectrometer to another. This method, named improved principal com-
ponent analysis (IPCA), associates the source spectrometer’s spectrum data structure with
the target spectrometer, converting a lower-resolution spectrum into a higher-resolution
version (or vice versa), expanding the application of model transfer. Figure 1 shows our
application of the proposed method to the NIR spectra of dataset 1 (public pharmaceutical
tablets data), dataset 2 (public corn data), and dataset 3 (the spectra of eight batches of
samples acquired from the plasma ethanol precipitation process collected by FT-NIR and
MicroNIR spectrometers).
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Figure 1. Schematic diagram of study.

2. Results and Discussion
2.1. Calibration Transfer for Dataset 1

We utilized the spectra of the above-mentioned pharmaceutical tablet samples to
establish a quantitative model for API content using the PLS regression method. Addition-
ally, we adopted the leave-one-out cross-validation method to select the number of latent
variables (nLV). First, we established a source model using the PLS regression method
with the nLV set to 3, before constructing a transfer matrix with the samples in a transfer
set by either PDS or IPCA. In the calibration transfer process, we corrected spectra in the
target spectrometer’s validation set to fit for the source spectrometer with transfer matrix.
Then, we predicted raw and transferred spectra in the validation set of the source and
target spectrometer with the corresponding PLS model. Furthermore, we used the model’s
RMSEP value to evaluate the transfer effect.

The moving window width and nLV are vital parameters for PDS. Following a pre-
vious study [14], a moving window width set at 17 was optimal for PDS, while for IPCA,
both the PCs during PCA and nLV are pivotal. Figure 2 shows a visualization of the impact
of PC values on the model results, as well as the RMSEP values under different conditions
in the calibration transfer from target to source, and there was a considerable difference
in results under different LVs and PCs. When the number of PC was set to 1, 2, and 3,
the RMSEP value did not change significantly across the entire range of LV values, which
indicates that the spectral information’s structure cannot be comprehensively related at
low PCs. When PC = 5, the RMSEP value decreases gradually with the increase in LV and
stabilizes at about 8 after LV = 3. Additionally, when the PC is set from 6 to 15, the RMSEP
value drops sharply at LV = 1–3 and stabilizes after LV = 4, which implies that the PCs
play a considerable role during PCA and nLV; therefore, the appropriate choice of crucial
parameters can achieve significant improvements in the predictive accuracy of IPCA.
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Figure 2. RMSEP results under different PCs and LVs with IPCA for transfer from target to source
(different PCs in IPCA algorithm and different numbers of LVs in PLS regression).

To give more insights into the standardization effect, the spectra measured on the
source, target and transferred spectra by PDS and IPCA for an arbitrarily selected sample
are displayed in Figure 3. An obvious difference could be observed in the spectral regions
of 600–700 nm, 1700–1800 nm, and 1800–1900 nm, and as mentioned above, the spectral
ranges from 1800 to 1900 nm were cut off during model establishment owing to richness in
noise. After being transferred with PDS, the target spectrum moves closer to the source
spectrum with a difference in the range of 600–700 nm and 1700–1800 nm. The IPCA-
transferred spectrum seemingly has better overlapping interval regions than the PDS-
transferred spectrum. However, a slight difference could also be found in the wavelengths
of 600–700 nm and 1700–1800 nm. Therefore, we speculate from Figure 4 that the transfer
effect of IPCA is possibly better or comparable to that of PDS. We can infer that the
IPCA method can achieve a better approximation of the source instrument spectrum
by structurally associating the source instrument’s spectrum with the target instrument
spectrum compared with the PDS method.
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To give more insights into our proposed method’s evaluation effect, we utilized the
source, target, and transferred validation spectra with the PLS model built with the source
calibration spectra. The optimal nLV selected with the leave-one-out cross-validation
in building the PLS model for the calibration set was 3, which generated the lowest
RMSEP = 3.15 mg. This was in accordance with a common assumption that the source
model acquired on the source spectra could lead to the best prediction of samples using
their source spectra. The red points displayed in Figure 4a represent the relationship
between reference and predicted values, showing a significant difference with the black
points. That RMSEP = 5.49 mg (1.7 times larger than that from the source spectra) is further
evidence that it is challenging to obtain model accuracy when the spectra collected by the
target spectrometer are predicted by the model built with source spectra. Therefore, it
was not feasible for the calibration maintenance to directly use the target spectra in the
source model in a simple manner. Instrument difference is an important perturbation
factor that cannot be ignored; therefore, appropriate calibration transfer is essential for
improving accuracy. In our study, the 212 spectra in the validation set were transferred
by PDS (window size was set at 17, nLV = 5) and IPCA, (nLV = 8, nPC = 10), and then
predicted by the source model. In theory, the difference between the spectra of the target
and source instruments can be eliminated as much as possible by standardizing the spectra
with these two algorithms. Figure 4b shows that the RMSEP values decreased to 3.48 mg
and 3.39 mg after calibration transfer with PDS and IPCA, respectively, indicating an
improvement for the target spectra. The RMSEP value obtained with IPCA was slightly
lower than PDS. In addition, the reference and predicted values of the IPCA method also
had a higher overlap with the prediction results of the source spectrometer in Figure 4c.
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The clear deviation between the red and blue or green points was a visual representation of
the target spectrometer’s improved prediction performance.

To further investigate the IPCA method’s performance, we listed the calibration
transfer results with the interchanging the source and the target for dataset 1 in Table 1.
The RMSEP of the target spectra predicted by the model was 3.41 mg, while the prediction
of the source spectra was much worse (14.38 mg). The RMSEP value could be significantly
reduced to 3.63 mg and 4.22 mg by calibration transfer with PDS and IPCA, respectively,
where commonly used PDS produced a slightly better compared with the IPCA method.
All the above results showed that both PDS and IPCA methods can be used for calibration
transfer on the basis of meeting the following prerequisites: (1) Reasonable parameter
settings are necessary as the too high or low selection of the nPC, nLVs or involved window
sizes, caused a major performance hit. The parameter selection is also related to the
user’s experience to some extent. (2) The number of samples in the transfer set also needs
to be representative enough to ensure the transfer matrix’s reliability, and more than
30 representative samples are needed for this purpose.

Table 1. Calibration transfer results obtained by PDS and IPCA for dataset 1.

Calibration Spectra Validation Spectra Parameters RMSEP (mg)

Source Source nLV = 3 3.15
Target nLV = 3 5.49

Transferred target (PDS) W a = 17, nLV = 5 3.48
Transferred target (IPCA) nLV = 8, nPC b = 10 3.39

Target Target nLV = 4 3.41
Source nLV = 3 14.38

Transferred source (PDS) W a = 17, nLV = 4 3.63
Transferred source (IPCA) nLV = 4, nPC b = 10 4.22

a Window size selected in PDS. b Number of principal components selected in IPCA.

2.2. Calibration Transfer for Dataset 2

In a similar way, we utilized the spectra and oil content of corn samples in dataset 2
to establish the quantitative model. We adopted the source spectrometer’s 30 spectra in
the calibration set to build a source calibration model; then, we adopted the source and
target spectrometers’ 20 spectra (target 1 and target 2) in the validation set with/without
transfer for model evaluation. The raw and transferred spectra of an arbitrarily selected
sample from the source to target 1 are displayed in Figure 5. There are characteristic bands
around 1400 nm and 1900 nm in the representative spectra of the source and target, which
were likely assigned to the first overtones of O-H, N-H and C-H. In addition, the source
spectrometer’s spectral absorbance is about 0.1 higher than that of the target instrument
in the whole band. Because the source and target instruments’ representative spectra in
Figure 5 originated from the same sample, we speculated that the difference in absorbance
was mainly aroused by the instruments’ systematic errors. The spectrum absorbance was
significantly improved by about 0.05 along with the wavelength after correction with PDS or
IPCA. That means both methods could bring the spectrum closer to the source spectrometer
spectrum and narrow the spectrum gap with the source instrument. Furthermore, the
noise interference peak at 1150 nm was eliminated after correction. This indicated that the
spectra quality could benefit from the calibration maintenance to some extent, reducing
the spectral difference induced by the different instruments. It also means that the NIR
spectra are vulnerable to the stability of instrument performance, which is the instrument
manufacturer’s main responsibility.

The calibration transfer results obtained by both methods with interchanging the
source and targets for dataset 2 are shown in Table 2. The target spectra of 20 validation
samples were first corrected by the transformation matrix and then predicted with the
source model, or vice versa. We found that when the established model was utilized for
the prediction of the spectra in the validation set collected by the same spectrometer, the
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RMSEP values were at 0.1. However, an increase from 0.2 to 0.3 for RMSEP occurred when
the established model was used to predict spectra obtained with different spectrometers.
Therefore, we deduced that calibration transfer is crucial for model maintenance between
different spectrometers of the same type. In addition, calibration transfer with PDS and
IPCA could significantly reduce the RMSEP value by 0.1, whereby the IPCA method
produced comparable results with commonly used PDS. The transfer results of dataset 1
and 2 in our study provided evidence that IPCA is a practical algorithm for model transfer
between instruments of the same type, which could help reduce inter-instrument variance.
However, the calibration transfer effect highly depends on the calibration, transfer, and
validation of set samples. Public dataset 2 can be used for the preliminary verification of
PDS and IPCA, although we need a larger number of samples for verification to provide
more reliable results.
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Table 2. Calibration transfer results obtained by PDS and IPCA for dataset 2.

Calibration Spectra Validation Spectra Parameters RMSEP

Source Source nLV = 4 0.09
Target 1 nLV = 4 0.24
Target 2 nLV = 4 0.32

Transferred target 1 (PDS) W a = 17, nLV = 4 0.10
Transferred target 1 (IPCA) nLV = 5, nPC b = 4 0.17
Transferred target 2 (PDS) W a = 17, nLV = 4 0.13

Transferred target 2 (IPCA) nLV = 5, nPC b = 4 0.16
Target 1 Target 1 nLV = 4 0.09

Source nLV = 5 0.28
Target 2 nLV = 5 0.14

Transferred source (PDS) W a = 17, nLV = 4 0.11
Transferred source (IPCA) nLV = 4, nPC b = 4 0.15
Transferred target 2 (PDS) W a = 17, nLV = 4 0.16

Transferred target 2 (IPCA) nLV = 4, nPC b = 4 0.16
Target 2 Target 2 nLV = 4 0.12

Source nLV = 4 0.27
Target 1 nLV = 5 0.23

Transferred source (PDS) W a = 17, nLV = 1 0.18
Transferred source (IPCA) nLV = 1, nPC b = 4 0.17
Transferred target 1 (PDS) W a = 17, nLV = 4 0.15

Transferred target 1 (IPCA) nLV = 4, nPC b = 4 0.16
a Window size selected in PDS. b Number of principal components selected in IPCA.
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2.3. Calibration Transfer for Dataset 3

We analyzed dataset 3 to demonstrate our proposed method’s calibration transfer
effect for spectra acquired from different types of spectrometers. Here, we take FT-NIR
and MicroNIR as the source and target spectrometers, respectively, and their technical
specifications are listed in Table 3. We observed that the two instruments have considerable
differences in their principles of spectrophotometry, spectrum ranges, and resolutions,
which also leads to distinctions between sample spectra.

Table 3. Technical specifications of two NIR spectrometers.

Spectrometer MicroNIR FT-NIR
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Spectrometer MicroNIR FT-NIR 
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Resolution 6.2 nm 4 cm−1 
Wavelength filter Linear variable filter Interferometer 

Light source 
Two integrated vacuum tung-

sten lamps Tungsten–halogen lamp 
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To obtain a further understanding of IPCA method, we investigated the calibration 
transfer between the two spectrometers in the whole spectral range in the following way: 
First, we converted the spectra collected by the target spectrometer with PDS and IPCA 
into the spectra of the source spectrometer in the range of 1000–2500 nm. In order to intu-
itively compare the transferred spectral differences between PDS and IPCA, we calculated 
the differences between the spectra by subtracting the transferred spectra from the source 
spectrometer’s original spectra. The source and transferred spectra, as well as their differ-
ences, are displayed in Figure 6. Figure 6a shows that after standardizing with IPCA from 
the target to the source instrument, the spectra are in excellent agreement with the corre-
sponding spectra collected by the source instrument, which are relatively smooth in the 
whole spectral range. However, among the two methods, the transferred spectra with PDS 
have several small fluctuations in the 1000–1100 nm interval, as well as obvious large fluc-
tuations in the 1400–1900 nm interval, especially at 1700–1800 nm, which may be caused 
by the large absorbance change intensity of the original spectra. This indicates that the 
quality of transferred spectra with PDS may be positively correlated with the original 
spectral fluctuation. 
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Spectral region 908–1676 nm 4000–10,000 cm−1 (1000–2500 nm)
Resolution 6.2 nm 4 cm−1

Wavelength filter Linear variable filter Interferometer

Light source Two integrated vacuum
tungsten lamps Tungsten–halogen lamp

Sampling mode Transmission Transmission

To obtain a further understanding of IPCA method, we investigated the calibration
transfer between the two spectrometers in the whole spectral range in the following way:
First, we converted the spectra collected by the target spectrometer with PDS and IPCA into
the spectra of the source spectrometer in the range of 1000–2500 nm. In order to intuitively
compare the transferred spectral differences between PDS and IPCA, we calculated the
differences between the spectra by subtracting the transferred spectra from the source
spectrometer’s original spectra. The source and transferred spectra, as well as their dif-
ferences, are displayed in Figure 6. Figure 6a shows that after standardizing with IPCA
from the target to the source instrument, the spectra are in excellent agreement with the
corresponding spectra collected by the source instrument, which are relatively smooth
in the whole spectral range. However, among the two methods, the transferred spectra
with PDS have several small fluctuations in the 1000–1100 nm interval, as well as obvious
large fluctuations in the 1400–1900 nm interval, especially at 1700–1800 nm, which may be
caused by the large absorbance change intensity of the original spectra. This indicates that
the quality of transferred spectra with PDS may be positively correlated with the original
spectral fluctuation.

Although the transferred spectra are similar to that of the source instrument, there are
still differences between them. The difference spectrum is an effective method to display
the differences at each wavelength point. Figure 6b shows the spectra transferred by
PDS and IPCA displayed different extent differences in the whole spectra range, with the
largest difference in the 1400–1900 nm region. This suggests that the spectral variations
brought by spectrometer differences could be systematic differences that vary from sample
to sample [15]. The difference spectra also provide evidence that the IPCA may be more
effective than PDS, as the difference spectra of IPCA were more stable in the whole spectral
range, while the difference spectra of PDS varied along the wavelength. We deduced from
the transferred and difference spectra that IPCA may achieve a better calibration transfer
effect than PDS because the IPCA method’s dimensionality reduction procedure is able to
eliminate some noise. All these results comprehensively demonstrated the effectiveness of
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the calibration transfer strategy with IPCA, especially in transferring spectra from low to
high resolution.
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Similarly, the target spectra transferred by these two methods and the corresponding
difference spectra are also displayed in Figure 7. We observed strong absorbance peaks
around 1400 nm in both the spectra acquired from the source and the target spectrometers,
which might be attributed to the first overtone absorption of O-H and N-H in the plasma
ethanol precipitation process. Figure 7 shows that the spectra transferred with PDS were
not as smooth as the spectra collected with the target spectrometer, especially the serrated
bands that appeared between 1400 to 1700 nm, indicating a deteriorated spectral quality.
However, the spectra transferred with IPCA were smooth and consistent with the original
target spectra. The difference spectra obtained by IPCA were steady across the whole
spectral range of 900–1700 nm, while the difference spectra obtained by PDS showed a
relatively large value during 1400–1600 nm. Furthermore, there is a certain degree of
deviation around the two ends (900 nm and 1700 nm) for the two methods, which may be
due to the instability of both ends of the detector. Furthermore, compared with Figure 6b,
the spectral difference threshold after the calibration transfer from the target to the source
instrument is between −0.15 and 0.15, while the threshold for the opposite calibration
transfer process is between 0.06 and 0.06. This indicates that in the calibration maintenance
from the low- to the high-resolution spectra, the greater differences in the original spectra
will cause larger deviations, or vice versa.
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To further verify the IPCA method’s feasibility for calibration maintenance, we pre-
dicted the 42 spectra in the validation set after transferring with a PLS model built with
the original spectra in a calibration set using the source and target. The bi-transfer results
for dataset 3 are listed in Table 3 and displayed in Figure 8. Table 3 illustrates that the
RMSEP values generated by PDS and IPCA were 2.78 mg/mL and 2.08 mg/mL, a 12% and
33% increase compared with the prediction error (3.15 mg/mL) acquired from the target
spectrometer’s raw spectra, respectively. However, the RMSEP value generated by the
transferred target (IPCA) decreased by 9% compared with the RMSEP value (1.89 mg/mL)
predicted using the source spectrometer’s raw spectra, indicating a difference between
the spectra before and after transfer. Furthermore, there is no significant improvement for
spectra conversion in the whole spectral range with PDS, as the RMSEP value generated
by the transferred source (PDS) was 3.13 mg/mL, which is almost equal with the RMSEP
value (3.15 mg/mL) without transfer. Furthermore, the RMSEP value generated by the
transferred source (IPCA) reduced to 1.90 mg/mL, indicating considerable improvements
in the transfer from the source to the target spectrometer. We found that for different scenar-
ios, the lowest RMSEP was yielded by spectra in the source spectrometer’s validation set,
which was predicted with the PLS model built with the spectra in the calibration set. The
target error could be improved by increasing the similarity between the source and target
spectra, and IPCA generated better improvement. Furthermore, the scatter plot of reference
and predicted value by IPCA was closer to the regression line than PDS in Figure 8. The
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IPCA calibration maintenance model showed a comparable or even better performance
than the PDS models in accordance with the smallest RMSEP. Therefore, we speculated
that IPCA was than PDS in improving the low-resolution spectrometers without common
bands selection; therefore IPCA could be considered as an effective chemometrics means
to optimize the prediction abilities of micro-instruments in practical use. Our findings
demonstrated that the IPCA features better capture the signal that is related to the analyte
and thereby eliminate noise to improve the model prediction effect [18].
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Figure 8. (a) Relationship of reference and predicted value in validation set obtained by (a) source—
transferred target (PDS) or (IPCA), (b) target—transferred source (PDS) or (IPCA).

To further verify our proposed method’s reliability, we performed a paired t-test under
confidence intervals (CI) of 95% for the prediction results before and after the calibration
transfer. In the paired t-test for two datasets, when P1/4 is greater than 0.05, it means
no significant difference and belonging to the same normally distributed population [27].
The corresponding P1/4 results are also displayed in Table 4. In the comparison of the
transferred target with the source, the P1/4 of IPCA was far more than 0.05, which meant
that there were no significant differences between the transferred target (IPCA) and original
source prediction results. However, the P1/4 of the PDS showed the opposite results.
These results show that the IPCA method has superior performance in model transfer
between miniaturized and benchtop spectrometers, especially in a transferring process from
miniaturized (less data points) to benchtop spectrometers (more data points). However,
the P1/4 of both methods were greater than 0.05 in the comparison of the transferred source
with the target, indicating no significant differences between the transferred source with
original target prediction results. The results demonstrated that both methods could realize
the transfer from spectra with more data points to spectra with fewer; however, the IPCA
method generated fewer prediction errors than the PDS method.

Table 4. Results obtained by PDS and IPCA for dataset 3 in whole spectral range.

Calibration Spectra Validation Spectra Parameters RMSEP (mg/mL) Paired t-Test (CI = 95%)

Source (1000–2500 nm) Source nLV = 3 1.89
Transferred target (PDS) W a = 17, nLV = 3 2.78 0.0303

Transferred target (IPCA) nLV = 3, nPC b = 4 2.08 0.9625
Target (908–1676 nm) Target nLV = 3 3.15

Transferred source (PDS) W a = 17, nLV = 3 3.13 0.3241
Transferred source (IPCA) nLV = 3, nPC b = 5 1.90 0.3226

a Window size selected in PDS. b Number of principal components selected in IPCA.
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Overall, the techniques employed in our investigation provided an adequate cali-
bration transfer from primary to secondary instruments of the same and different types.
Specific considerations will be presented for the proposed method, similar to PDS, the IPCA
required approximately the same number of transfer samples from both spectrometers.
The results obtained with IPCA were slightly better and comparable to those obtained with
PDS in all cases (sharing the same spectral interval); however, they were better than PDS
for dataset 3 in the whole spectral region. In addition, IPCA may be more convenient for
subsequent use in routine analyses because it has no restrictions on data points. It is worth
noting that PDS requires the adjustment of window size and IPCA needs the optimization
of the number of PCs during PCA. In light of previous considerations, we deemed IPCA
more appropriate for the cases under study. Our study for dataset 3 evaluates the feasibility
of calibration models transferring between spectrometers with different types, especially
between benchtop and handheld instruments, and the calibration transfer results of the
handheld instrument are comparable to those of the benchtop instrument. The essence of
calibration transfer is to correlate the spectrum of the source spectrometer with that of the
target spectrometer, so that the model prediction ability after calibration transfer is greatly
affected by the performance of the source and target spectrometers. As mentioned above,
the number of spectral data points measured by the target and source spectrometers is 125
and 1557, respectively. Therefore, the calibration transfer process from target to source is
an operation that could increase data points, which is equivalent to improving the spectral
resolution. There is no doubt that this would considerably expand the application areas
of handheld or miniaturized instruments or even realize the sharing of models between
different instruments.

3. Materials and Methods
3.1. Theory and Algorithm
3.1.1. IPCA

The IPCA method is based on PCA, which can associate the spectral data of the source
spectrometer with the spectral data structure of the target spectrometer (or vice versa),
suppressing noise or redundant features. Additionally, the IPCA method is capable of con-
verting a lower-resolution spectrum to a higher resolution, solving the limitations caused
by different wavelength points between spectra. Therefore, IPCA can realize bidirectional
calibration transfer and forward (or backward)-IPCA transfer between the source spectrom-
eter and the target instrument with no restriction on instrument type or whether the NIR
spectra’s collected data points are consistent, thus considerably expanding the application
scope of calibration transfer. The IPCA transfer process is described as follows:

We collected the corresponding XM and XS spectra with the source spectrometer and
target instrument, respectively. We determined key parameters or reference values to be
predicted with NIR spectroscopy using notational or industry standards. We adopted the
same spectral preprocessing method, including but not limited to smoothing, derivative,
standardization, etc., to preprocess the spectra collected by the two spectrometers, with no
pretreatment considered as default.

Then, we selected a certain number of samples in the calibration set as transfer set
samples to perform the calibration transfer. The number of transfer set samples measured by
the target spectrometer was consistent with that of the source spectrometer. The number of
transfer sets should be more than 10 but less than or equal to the calibration set; furthermore,
our selection criteria was based on the minimum predicted root mean square error (RMSEP).

Then, we divided XM into calibration (XMc), transfer (XMt), and validation sets (XMv)
using an appropriate sample division method (K-S method).

Assume that the spectral matrices XMt and XSt are the corresponding spectra of
the standardization samples in the transfer sets measured on both the source and target
spectrometers, respectively.
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Then, in the IPCA transfer, the singular value decomposition of XSt can be displayed
as below:

XSt = [USt, Unt]

[
∑St 0

0 ∑nt

]
[VSt, Vnt]

T = TStPT
St + E (1)

where TSt = USt ∑St; PSt = VSt; E = Unt ∑nt VT
nt; and TSt and PSt represent the principal

component score and loading matrices of spectral data in the transfer set (XSt), respec-
tively. Subscripts ‘S’, ‘t’, and ‘n’ represent the target spectrometer, transfer set, and noise,
respectively. Superscript ‘T’ denotes the transpose operation.

In the IPCA method, the source spectra are not directly related to the target spectra;
however, the XMt of the source spectrometer was straightforwardly associated with TSt of
XSt of the target spectrometer under the condition that the number of principal components
was set (see Equation (2)).

TSt = XMtFMt (2)

In Equation (2), FMt refers to the transformation matrix, and the subscript “M” stands
for the source spectrometer. Because XMt is associated with TSt, there is no requirement that
the spectral data points of XMt and XSt be consistent, and TSt has the “best” explanation of
XSt based on PCA.

Equation (2) can be converted into FMt = X+
Mt TSt to calculate FMt, where “+” repre-

sents a generalized inverse operation and X+
Mt is the generalized inverse of XMt.

The spectra of the calibration set of the source spectrometer are transformed into
spectra data suitable for the target spectrometer with a transformation matrix (FMt) based
on Equation (3), which is obtained by substituting Equation (2) into Equation (1).

Xt−S = XMFMtPT
St (3)

where Xt−S represents the spectrum matrix suitable for the target spectrometer after con-
version. According to Equation (3), the spectra of the calibration set XMc of the source
spectrometer could be calibrated with Equation (4) into Xt−Sc, which is suitable for the
target spectrometer.

Xt−Sc = XMcFMtPT
St (4)

Finally, we adopted spectra in the validation set after transformation for model evalu-
ation. The RMSEP value is the main evaluation index.

We carried out calibration transfer from target spectrometer to the source spectrometer
in the reverse-direction transfer process, and then applied principal component decom-
position on XMt. Then, we directly associated the spectra matrix XSt in the transfer set of
the target spectrometer with TMt of XMt under the condition that the number of principal
components was set (see Equation (5)).

TMt = XStFSt (5)

In Equation (5), FSt refers to the transformation matrix. The subscript “S” stands for
the target spectrometer.

Equation (5) could be converted into FSt = X+
St TMt to calculate FSt, where “+” repre-

sents a generalized inverse operation and X+
St is the generalized inverse of XSt.

The spectra of the target spectrometer’s calibration set are transformed into spec-
tra data suitable for the source spectrometer with a transformation matrix based on
Equation (6).

Xt−M = XSFStPT
Mt (6)

where Xt−M represents the spectral matrix suitable for the source spectrometer after con-
version. According to Equation (6), the spectra of the calibration set XSc of the target
spectrometer can be calibrated with Equation (7) into Xt−Mc, which is suitable for the
source spectrometer.

Xt−Mc = XScFStPT
Mt (7)
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If XSc is a low-precision spectral matrix (such as the spectra scanned by a portable NIR
spectrometer), then the conversion from low-precision to high-precision spectra (Xt−Mc,
such as the spectra scanned by an analytical-level NIR spectrometer) can be successfully
realized through PT

Mt in Equation (7).

3.1.2. PDS

Variations in spectral data are often limited to small regions. Therefore, the source
instrument’s spectral data points should be more related to the target instrument’s adjacent
spectral points compared with the full spectrum. With spectral variation characteristics in
mind, the PDS algorithm aims to reconstruct each spectral point on the source instrument
with spectral data points in a small window.

In PDS, the response r of the standardization samples measured at wavelength/wave-
number j on the ‘source’ instrument is related to the wavelengths/wavenumbers located in
a small window around j measured on the ‘target’ instrument:

rj = Xjbj (8)

where Xj is the localized response matrix of the transfer samples and bj is the vector of
transformation coefficients for the jth wavelength/wavenumber calculated by PLS.

Then, we formed a banded diagonal transformation matrix F as Equation (9),

F = diag
(

bT
1 , bT

2 , . . . , bT
j , . . . , bT

m

)
(9)

where m is the number of spectral data points included in small windows. Then, the
spectrum can be standardized with transformation matrix F.

3.2. NIR Datasets

We adopted three NIR spectral datasets to verify the IPCA method. Dataset 1 com-
prised 1310 spectra of 655 pharmaceutical tablets, which can be downloaded from https:
//www.eigenvector.com/data/tablets/index.html (accessed on 5 April 2005). We collected
all spectra in the range of 600–1898 nm by two NIR spectrometers (Foss, Hillerød, Den-
mark) and assigned as the source and target spectra. We chose the active pharmaceutical
ingredients (API) values for the method validation. Additionally, we selected total of 597
variables from 600 to 1792 nm for data analysis [28]. According to a previous study [14],
we defined samples No. 19, 122, 126, and 127 in the calibration set and No. 11. 145, 267,
294, 295, 313, 341, 342, and 343 in the test set as outliers and eliminated them from our
study. Then, we adopted the Kennard-Stone (KS) algorithm to divide the remaining 642
samples into a calibration and prediction set with 400 and 242 samples, respectively. Then,
we randomly divided the 242 samples in prediction set into a transfer (30 samples) and
validation set (212 samples). Figure 9a shows the typical spectra from the source and
target spectrometers.

Dataset 2 comprised the NIR spectra of corn samples in the range of 1100–2498 nm
acquired by three instruments (m5, mp5, and mp6), and can be downloaded from http:
//software.eigenvector.com/Data/Corn/index.html (accessed on 1 June 2005). We took m5
as the source instrument, while assigning mp5 and mp6 as the target instruments. In our
study, we selected the oil content values for method evaluation. We divided the 80 samples
into calibration (30 samples), transfer (30 samples), and validation (20 samples) sets using
the above-mentioned methods. Figure 9b shows the typical spectra from the source and
target spectrometers.

https://www.eigenvector.com/data/tablets/index.html
https://www.eigenvector.com/data/tablets/index.html
http://software.eigenvector.com/Data/Corn/index.html
http://software.eigenvector.com/Data/Corn/index.html
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Dataset 3 comprised data acquired during the lab-simulated alcohol precipitation
process of raw plasma (offered by Taibang Biologic Group). We placed each batch of 100 mL
human plasma in a 250 mL container in a low-temperature reactor. We adjusted pH with
acetic acid buffer to 5.95 ± 0.05 and added 95% alcohol solution at a constant speed. Then,
we obtained 21 samples at every two minutes in one batch because the alcohol precipitation
process lasted about 40 min. Then, we obtained 168 samples from eight batches. Moreover,
we acquired the supernatant by centrifuging and filtrating all samples. We adopted the
AU5800 automatic biochemistry analyzer (Beckman Coulter, Brea, CA, USA) for TP con-
tent determination. We used the FT-NIR (Thermo Fisher Scientific, Waltham, MA, USA)
spectrometer as the source spectrometer. We collected the source spectra in the range of
10,000–4000 cm−1 (1000–2500 nm) of supernatant with the FT-NIR spectrometer (Thermo
Fisher Scientific, Waltham, MA, USA) with a 4 mm pathlength cuvette in transmittance
mode. Then, we assigned a miniaturized MicroNIR (Viavi, Scottsdale, AZ, USA) spec-
trometer with a spectral range of 950–1650 nm as the target spectrometer. We collected
the spectra in transmittance mode with an integral time of 30,000 µs and a 1 mm optical
path. We collected each sample three times at 26 °C and then averaged to reduce errors.
We defined samples No. 12, 59, 76, 83, 86, and 100 as outliers and removed them from the
experiment. We divided the 162 samples into 90, 30, and 42 as the calibration, transfer, and
validation sets, respectively. Figure 9c shows the typical source and target spectra.

In our study, we collected the spectra of dataset 1 and 2 by the same type of near-
infrared spectrometers. Figure 9a shows that changing the instrument resulted in obvious
spectral variations in several spectral intervals, especially in the range of 1600–1800 nm.
Figure 9b shows that the source spectrometer’s absorbance rate was higher than that of the
target spectrometers. However, differences between instruments are unavoidable, which is
why the calibration model is not suited for spectra collected by another instrument.

Figure 9c shows the spectra of dataset 3, which were acquired with different types
of spectrometers, and the two spectrometers’ spectra display considerable differences in
wavelength and absorbance. Based on the FT spectroscopic principle and high-sensitivity
InGaAs detector, the source spectrometer’s spectral wavelength range from 1000 to 2500 nm,
with absorbance between 0.5 and 3.5. Spectra collected by the target source with a linear
variable filter (LVF) as an optical splitter and a 128-line-element InGaAs detector ranges
from 908 to 1676 nm, with an absorbance level lower than 0.5. However, the overlapped
spectral wavenumbers’ absorbance trends are similar.

We adopted Matlab 2019a (Mathworks, Natick, MA, USA) for data processing. We
chose partial least squares (PLS) as the establishment method and selected the optimal PLS
calibration model to have the minimal RMSEP value.
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4. Conclusions

We proposed a novel calibration transfer algorithm for the transfer of NIR spectra
acquired with different NIR spectrometers. Based on PCA, the IPCA could associate the
source spectrometer’s spectral data with the spectral data structure of the target instru-
ment (or vice versa) and suppress noise or redundant features, which makes it a flexible
tool compatible with different model adaption situations. By adjusting the nPC in the
calculation, the spectra taken on different spectrometers could be transferred between
them. With public pharmaceutical tablets and corn datasets, we demonstrated that IPCA is
capable of transferring spectra collected from different instruments with the same types
of data points. Furthermore, the PLS model results provided evidence that IPCA is su-
perior or comparable to the classical calibration transfer method PDS. We collected the
spectra of eight batches of supernatant in dataset 3 by the benchtop FT-NIR and portable
MicroNIR spectrometers, demonstrating that our obtained IPCA performance results are
better than the PDS algorithm. Therefore, we believe IPCA can satisfactorily transfer NIR
spectra collected on spectrometers of the same type or one miniaturization spectrometer
to a benchtop spectrometer. Our model’s predictive capability after calibration transfer
with the IPCA algorithm is better than the original source models. The IPCA algorithm
can achieve model sharing between different instruments with the same and different
resolutions. This even makes it possible for maintaining calibration models under different
conditions, such as instrument, temperature, or other disturbances. To some extent, the
PLSR model’s predictive capability was improved after calibration transfer. Our study is
a useful resource for enterprises seeking use more cost-effective instruments for in-line
or on-line process control. Moreover, IPCA could deal with spectral inconsistency and be
applied to Raman, infrared, and other spectroscopy.
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