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Abstract: The advent of graphene opens up the research into two‑dimensional (2D) materials, which
are considered revolutionary materials. Due to its unique geometric structure, graphene exhibits a
series of exotic physical and chemical properties. In addition, single‑element‑based 2D materials
(Xenes) have garnered tremendous interest. At present, 16 kinds of Xenes (silicene, borophene, ger‑
manene, phosphorene, tellurene, etc.) have been explored, mainly distributed in the third, fourth,
fifth, and sixth main groups. The current methods to prepare monolayers or few‑layer 2D mate‑
rials include epitaxy growth, mechanical exfoliation, and liquid phase exfoliation. Although two
Xenes (aluminene and indiene) have not been synthesized due to the limitations of synthetic meth‑
ods and the stability of Xenes, other Xenes have been successfully created via elaborate artificial de‑
sign and synthesis. Focusing on elemental 2D materials, this review mainly summarizes the recently
reported work about tuning the electronic, optical, mechanical, and chemical properties of Xenes via
surface modifications, achieved using controllable approaches (doping, adsorption, strain, intercala‑
tion, phase transition, etc.) to broaden their applications in various fields, including spintronics, elec‑
tronics, optoelectronics, superconducting, photovoltaics, sensors, catalysis, and biomedicines. These
advances in the surface modification of Xenes have laid a theoretical and experimental foundation
for the development of 2D materials and their practical applications in diverse fields.

Keywords: elemental two‑dimensional materials; allotropic structures; surface modifications;
properties; applications

1. Introduction
Graphene, initially isolated from graphite via mechanical exfoliation, possesses a lay‑

ered honeycomb structure and exhibits fascinating electrical and thermal properties [1].
Subsequently, two‑dimensional (2D) materials, including elemental monolayers (Xenes) [2],
transition metal chalcogenides (TMCs) [3,4], oxides [5], halides [6,7], and carbides (MX‑
enes) [8,9], have shown intriguing properties, such as high carrier mobility [10], layer‑
dependent band structures and magnetic properties [6,11,12], nontrivial topology [13–16],
valleytronics [17], etc. Therefore, 2D materials have become promising candidates for var‑
ious applications relating to next‑generation technology, including spintronics, supercon‑
ducting, nanoelectronics, nanosensing, etc.
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Over the past few years, many studies have focused on searching for other 2D Xenes
with distinctive and exciting properties beyond graphene (Figure 1a) [18,19]. The success‑
ful experimental realization of non‑graphene 2D analogs (silicene and phosphorene)
sparked a continuous expansion of the list of elements with atomically thin forms [20,21].
Sixteen elemental‑main‑group 2D Xenes have been predicted theoretically or created ex‑
perimentally to date (Figure 1b) [22–32]. To the best of our knowledge, except aluminene
and indiene, the other 13 non‑graphene Xenes have been experimentally obtained (Figure 1c).
Currently, monolayer or few‑layer Xenes can be created using mechanical exfoliation, liq‑
uid phase exfoliation, and epitaxial growth methods [1,12,22,33].
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Figure 1. Development of 2D Xenes. (a) Statistics diagram of the number of research articles on
non‑graphene 2D Xenes from 2010 to 2021. (b) Overview of 2D analogs of main‑group elements,
explored using either experimental or theoretical routes. The elements with no signs have not been
explored to date. (c) The timeline of the experimental creation of 2D Xenes.

Even though 2D Xenes have demonstrated great potential in numerous applications,
their intrinsic properties usually constrain the expansion of these applications. For instance,
despite the high mobility, the gapless band structure in graphene restricts its applications
in electronic devices. Therefore, finetuning the properties of 2D Xenes plays an essential
role in overcoming their intrinsic constraints [34–37]. Surface modifications can effectively
tailor the properties of 2D Xenes for practical applications. The common approaches for
surface modifications include heteroatom‑doping [38,39], adsorption [34,36,40], in‑plane
heterostructure formation [41–43], boundary formation [44], edge shape [32,45–48], phase
transition [49], strain [50,51], twisted structure [52,53], etc. Motivated by recent advances in
the surface modifications of 2D Xenes, herein, we review the reported work to date, connect
the surface modifications of various 2D Xenes to their measured/predicted properties, and
evaluate their advantages and disadvantages for various applications.

2. Classification of 2D Xenes
The material properties (electronic, optical, chemical, etc.) of 2D Xenes are not only

determined by their chemical compositions but are also strongly associated with the atom
arrangement in the lattice. Due to the preferred orbital hybridization of various elements
in the main group, 2D Xenes have been theoretically predicted or experimentally veri‑
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fied to possess allotropes with diverse crystal lattices (Figure 2). The reported 16 Xenes
are classified into main groups, including group III (borophene, aluminene, gallenene, in‑
diene, and thallene); group IV (graphene, silicene, germanene, stanene, and plumbene);
group V (phosphorene, arsenene, antimonene, and bismuthene); and group VI (selenene,
and tellurene).
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graphene/stanene [63–65], buckled silicene/germanene/stanene/plumbene [25,30,66,67], 
pha-/penta-graphene [68,69], MoS2-like stanene [57], and honeycomb dumbbell 
(HD)/large honeycomb dumbbell (LHD) silicene/germanene [57]. Different from group III 
and group IV, all the elements in group V prefer the sp3 hybridization state to create buck-
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Figure 2. Allotropes of various 2D Xenes in main groups predicted theoretically or created experi‑
mentally. The dotted boxes represent the unit cells. Allotropes of borophene: Reprinted with per‑
mission from Ref. [54]. Copyright 2017, Informa UK Limited, trading as Taylor & Francis Group.
Allotropes of aluminene: Reprinted with permission from Ref. [55]. Copyright 2017, Elsevier Ltd.
Allotropes of gallenene: Reprinted with permission from Ref. [29]. Copyright 2018, American Asso‑
ciation for the Advancement of Science. Buckled and puckered structures: Reprinted with permis‑
sion from Ref. [56]. Copyright 2016, American Physical Society. MoS2‑like, HD, and LHD structures:
Reprinted with permission from Ref. [57]. Copyright 2015, American Physical Society. α‑form, β‑
form, and γ‑form of tellurene: Reprinted with permission from Ref. [27]. Copyright 2017, American
Physical Society. Square‑, chain‑, and ring‑Se: Reprinted with permission from Ref. [58]. Copyright
2017, IOP Publishing.

In group III elements, theoretical calculations have predicted many allotropes of 2D
borophene (B1−ν �ν; ν represents the vacancy concentration) with various vacancy con‑
centrations and 2Daluminene with various forms [55,59–61]. However, only two allotropes
of 2D gallenene (buckled and planar structures) have been successfully exfoliated [29].
Similarly, 2D indiene has been predicted to possess buckled, planar, and puckered ge‑
ometry [62]. Among group IV elements, the favorable hybridization state is somewhere
between sp2 and sp3, leading to various 2D allotropic structures, such as planar honeycomb
graphene/stanene [63–65], buckled silicene/germanene/stanene/plumbene [25,30,66,67],
pha‑/penta‑graphene [68,69], MoS2‑like stanene [57], andhoneycomb dumbbell (HD)/large
honeycomb dumbbell (LHD) silicene/germanene [57]. Different from group III and group
IV, all the elements in group V prefer the sp3 hybridization state to create buckled (α‑form)
or puckered (β‑form) lattices [24,70–75]. Meanwhile, a γ‑form and a δ‑form of arsenene
have also been proposed [56]. In group VI, four different allotropic forms of tellurene
have been predicted [27,58], while Se can form a chain, a ring, or a square structure [58].
To verify the atomic structures of various elemental Xenes, epitaxial growth has been at‑
tempted on many substrates, analogous to the epitaxial growth of graphene. The suitable
substrates for the epitaxial growth of various non‑graphene Xenes (Figure 3) reveal that
the substrate choices affect whether the synthesis can succeed in addition to an allotropic
lattice structure.



Molecules 2023, 28, 200 4 of 23

Molecules 2023, 28, x FOR PEER REVIEW 4 of 22 
 

 

been attempted on many substrates, analogous to the epitaxial growth of graphene. The 
suitable substrates for the epitaxial growth of various non-graphene Xenes (Figure 3) re-
veal that the substrate choices affect whether the synthesis can succeed in addition to an 
allotropic lattice structure. 

 
Figure 3. Summary of the successful substrate choices for the epitaxial growth of various non-gra-
phene 2D Xenes. Each color represents one kind of Xenes. 

3. Surface Modifications of 2D Xenes in Various Main Groups 
3.1. Group III 

Borophene. Borophene, a monolayer of boron atoms, has been synthesized on many 
metal substrates under ultrahigh vacuum conditions [22,76–78]. Several phases of boro-
phenes, including 2-Pmmn, ν1/6 (β12), ν1/5 (χ3), ν1/12, and honeycomb, which are realized 
experimentally, exhibit metallic properties [22,76–78]. However, plenty of borophene al-
lotropes with various vacancy concentrations have been reported with theoretical calcu-
lations [59,60,79–81]. Moreover, the relationship between the formation energy and va-
cancy concentration shows a V-shaped function [82], demonstrating that the vacancy con-
centration is directly correlated with the stability of borophene. 

Borophene possesses some unique physical and chemical properties. Due to the 
strong B-B bonds and distinctive atomic structure, borophene exhibits an ultrahigh me-
chanical modulus [83,84]. Young’s modulus of the Pmmm and 2-Pmmn phases of boro-
phene along the armchair direction can reach 574.61 and 398 N m−1, respectively, larger 
than that of graphene. In fact, several factors, including the vacancy concentration, chem-
ical modification, layer numbers, and temperature, can affect the mechanical properties 
of borophene. Young’s modulus of borophene was found to decrease with an increasing 
vacancy concentration, layer numbers, and temperature, as well as hydrogenation or 
fluorination [83–89]. Because of its outstanding flexibility and excellent electronic conduc-
tivity, borophene has a wide range of intriguing applications in flexible electronic devices 
[79]. In addition, the thermal conductivity of the 2-Pmmn phase of borophene is different 
along the zigzag and armchair directions due to its highly anisotropic atomic structure 
[90,91]. The electronic band structures of borophene show 1D, nearly free electron states 

Figure 3. Summary of the successful substrate choices for the epitaxial growth of various non‑
graphene 2D Xenes. Each color represents one kind of Xenes.

3. Surface Modifications of 2D Xenes in Various Main Groups
3.1. Group III

Borophene. Borophene, a monolayer of boron atoms, has been synthesized on many
metal substrates underultrahighvacuumconditions [22,76–78]. Several phases of borophenes,
including 2‑Pmmn, ν1/6 (β12), ν1/5 (χ3), ν1/12, and honeycomb, which are realized experimen‑
tally, exhibit metallic properties [22,76–78]. However, plenty of borophene allotropes with
various vacancy concentrations have been reported with theoretical calculations [59,60,79–81].
Moreover, the relationship between the formation energy andvacancy concentration shows
a V‑shaped function [82], demonstrating that the vacancy concentration is directly corre‑
lated with the stability of borophene.

Borophenepossesses some uniquephysical and chemical properties. Due to the strong
B‑B bonds and distinctive atomic structure, borophene exhibits an ultrahigh mechanical
modulus [83,84]. Young’s modulus of the Pmmm and 2‑Pmmn phases of borophene along
the armchair direction can reach 574.61 and 398 N m−1, respectively, larger than that of
graphene. In fact, several factors, including the vacancy concentration, chemical modifica‑
tion, layer numbers, and temperature, can affect the mechanical properties of borophene.
Young’s modulus of borophene was found to decrease with an increasing vacancy concen‑
tration, layer numbers, and temperature, as well as hydrogenation or fluorination [83–89].
Because of its outstanding flexibility and excellent electronic conductivity, borophene has
a wide range of intriguing applications in flexible electronic devices [79]. In addition,
the thermal conductivity of the 2‑Pmmn phase of borophene is different along the zigzag
and armchair directions due to its highly anisotropic atomic structure [90,91]. The elec‑
tronic band structures of borophene show 1D, nearly free electron states and metallic Dirac
fermions [92–95]. However, the metallic‑to‑semiconducting transition can be achieved via
fluorination and a uniaxial or biaxial strain [85,96,97]. Last but not least, the supercon‑
ductivity of borophene is the most notable characteristic, sparking plenty of research in‑
terest [80,98–106]. The superconducting transition temperatures (Tc) can be tuned with
vacancy concentration, doping, strain, and Mg intercalation. Tc exhibits a V‑shaped func‑
tion as the hexagon hole density [99], illustrating that Tc gradually decreases with a rising
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boron vacancy concentration of up to ν = 1/9; thereafter, Tc steadily increases with the va‑
cancy concentration. Furthermore, tensile strain or hole‑doping can increase Tc; in contrast,
a compressive strain or electron‑doping decreases Tc [106]. The suppression induced by
electron‑doping makes it difficult to experimentally probe superconductivity in substrate‑
supported borophene.

The physical and chemical properties of borophene can be tuned using surface mod‑
ifications, such as hydrogenation, fluorination, doping, intercalation, strain, etc. Young’s
modulus of borophene decreases after hydrogenation or fluorination. Furthermore, hydro‑
genation can lead to Dirac cones with massless Dirac fermions in C2/m, Pbcm, and Pmmn
structures, while Cmmm structures exhibit Dirac ring features (Figure 4a–d) [107]. Inter‑
estingly, BH sheets have been successfully prepared from MgB2 by using the cation ex‑
change method (Figure 4e,f) [108]. For Mg intercalation, the intercalated bilayer borophene
(B2MgB2) can exhibit good phonon‑mediated superconductivity with a high Tc of 23.2 K
(Figure 4g,h) [102]. Moreover, tensile strain in borophene is beneficial for superconduct‑
ing [106]. Li‑doped borophene–graphene heterostructure shows gas‑sensitive properties,
and this is promising for borophene‑based gas sensors [109].
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not been reported before, as studies on them are still in the theoretical research stage, 

Figure 4. Surface modifications of borophene. (a–d) Top and side views as well as calculated band
structures of (a) C2/m, (b) Pbcm, (c) Cmmm, and (d) Pmmn BH structures. The red and blue lines rep‑
resent the unoccupied and occupied band dispersions near Fermi level, respectively. (e) Synthesis
process of BH sheets. (f) Proposed structure model of synthesized BH sheet. (g) Top and side views
of 2D sandwich structures of B2MgB2, B3MgB3, B4MgB4, and B5MgB5. (h) Calculated Tc as a func‑
tion of the formation enthalpy. (a–d) Reprinted with permission from Ref. [107]. Copyright 2016,
Wiley. (e,f) Reprinted with permission from Ref. [108]. Copyright 2017, American Chemical Society.
(g,h) Reprinted with permission from Ref. [102]. Copyright 2017, Royal Society of Chemistry.

Gallenene and thallene. The surface modifications of aluminene and indiene have not
been reported before, as studies on them are still in the theoretical research stage, without
experimental realization. Therefore, this section will focus on gallenene and thallene. In
2018, few‑layer gallenene was first obtained using the solid melt exfoliation technique [29].
Thereafter, the epitaxial growth method was used to prepare gallenene. The substrate and
the loading amount of gallium can modify the atomic and electronic structures of gallenene.
With a low loading amount of gallium, the monolayer gallenene grown on Si(111) displays
a 4 ×

√
13 superstructure (Figure 5a–d), while the second‑layer gallenene exhibits a hexago‑
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nal honeycomb structure with a high loading amount (Figure 5e,f) [110]. The buckled hon‑
eycomb gallenene shows metallic properties (Figure 5g) [110]. Nevertheless, the growth
behavior of gallenene on a GaN(0001) substrate is totally different, showing a bilayer flat
gallenene (Figure 5h,i) [111]. Excitingly, the bilayer hexagonal gallenene exhibits supercon‑
ducting with a Tc of 5.4 K (Figure 5j,k) [111]. However, thallene has rarely been reported.
Recently, honeycomb thallene was successfully formed on a NiSi2/Si(111) substrate [112].
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and fitting to BCS gap function for gallenene/GaN. (a–g) Reprinted with permission from Ref. [110].
Copyright 2018, IOP Publishing Ltd. (h–k) Reprinted with permission from Ref. [111]. Copyright
2015, American Physical Society.

3.2. Group IV
Graphene. The sp2 hybridization of carbon atoms leads to the formation of flat honey‑

comb graphene with a σ bond between neighboring carbon atoms [113]. The σ bond is the
key to the high robustness of graphene, with a Young’s modulus of 1T Pa and a fracture
strength of 130 GPa [114]. The unhybridized p orbit, perpendicular to the planar struc‑
ture of graphene, binds covalently with neighboring carbon atoms to form a π band that is
half‑filled. Graphene is a semimetal, showing linear dispersion bands near the Fermi level
with massless Dirac fermions [113]. As a result, graphene displays an ambipolar electric
field effect and high carrier mobility [115]. In addition to its excellent transparent prop‑
erties, graphene becomes a low‑cost alternative to indium tin oxides [116]. Furthermore,
graphene exhibits impressive thermal properties with a thermal conductivity ranging from
3000–5000 W m−1 K−1 [117].

Graphene’s distinct physical characteristics make it potentially useful for field‑effect
transistors (FET), sensors, transparent conductive films, energy devices, etc., but its intrin‑
sic gapless character still constrains its further applications. First, heteroatom‑doping or
chemical adsorption can effectively tune the electronic properties of graphene. N‑doping
can not only induce an n‑type‑doping effect (Figure 6a–c) [118] but can also give rise to
p‑type‑doping with different configurations of N substitutions. For example, graphitic
N induces n‑type‑doping, but pyridinic N induces p‑type‑doping [119]. In addition, B‑
doping can introduce p‑type transfer characteristics [120]. Chemical functional groups
can also produce various doping effects. For example, the adsorption of spiropyran and
DR1P molecules introduce n‑type and p‑type‑doping to graphene, respectively [36,121].
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Moreover, light can reversibly switch the molecular transformations, resulting in the con‑
trollable shift of the Dirac point of graphene (Figure 6d) [36,121]. By seamlessly and pre‑
cisely stitching the domains of graphene and h‑BN (Figure 6e), the hybrid atomic layers
of in‑plane heterostructures can be applied for intriguing electronic applications [42,122].
Interestingly, in the proper twisted angles of bilayer graphene, the electronic band struc‑
ture shows flat bands near Fermi energy, resulting in the correlated insulating states at
half‑filling and unconventional superconductivity with a Tc of 1.7 K (Figure 6f,g) [52].
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tively). (a) Scheme of a graphene‑based FET device. (b,c) The transport properties of (b) pristine
graphene and (c) graphene annealed in NH3 after irradiation measured at Vsd = 0.03 V. (d) Light‑
driven conductance modulation of graphene with adsorption of DR1P molecules. (e) Fabrication
of in‑plane graphene/h‑BN heterostructures. (f) Schematic of a twisted bilayer graphene device and
four‑probe measurement system. (g) Superconductivity in twisted bilayer graphene. (a–c) Reprinted
with permission from Ref. [118]. Copyright, 2010 American Chemical Society. (d) Reprinted with
permission from Ref. [36]. Copyright 2012, American Chemical Society. (e) Reprinted with permis‑
sion from Ref. [42]. Copyright 2013, Springer Nature Ltd. (f,g) Reprinted with permission from
Ref. [52]. Copyright 2018, Springer Nature Ltd.

Silicene. Silicene, the silicon analog of graphene, was first predicted in a theoretical
study [123] and first realized experimentally via epitaxial growth on Ag(110) [20]. Un‑
like the way the sp2 hybridization of carbon atoms induces a flat honeycomb structure
in graphene, silicon prefers mixed sp2‑sp3 hybridization to form low‑buckled honeycomb
silicene, retaining the existence of Dirac fermions [124,125]. Considering the spin‑orbit cou‑
pling (SOC) effect, silicene is predicted to have a spin‑orbit gap of 1.55 meV, much larger
than that of graphene [16]. Owing to its topologically nontrivial electronic structures, sil‑
icene exhibits many unique physical properties, including the quantum spin Hall (QSH)
effect [16,126], giant magnetoresistance [127,128], the field‑tunable bandgap [129,130], and
nonlinear electro‑optic effects [131]. Hence, silicene shows great potential for device ap‑
plications, especially for gate‑controlled topological FET [132]. Although silicene has been
prepared on many substrates, the poor air stability of silicene is the major challenge, re‑
quiring the proper encapsulation or passivation of the reactive surface for device fabrica‑
tion [133,134].

Due to the limitations of the poor air stability of silicene, it is difficult to experimen‑
tally perform surface modifications on silicene. Theoretical investigations on the surface
modifications of silicene focus on doping, strain, hydrogenation, intercalation, and chem‑
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ical adsorption. Transition metal adsorption can induce various doping effects in silicene
(n‑type via Cu, Ag, and Au adsorption; p‑type via Ir adsorption; and neutral type via Pt
adsorption in Figure 7a) [135], and so can applying strain [136]. Moreover, Mn‑doping can
induce a ferromagnetic state in silicene, which can be transformed into an antiferromag‑
netic state with the application of biaxial strain (Figure 7b) [137]. Under a certain level of
pressure strain, the spin‑orbit bandgap of silicene will increase from 1.55 to 2.9 meV [16].
One‑side semi‑hydrogenation can introduce ferromagnetism to silicene, as well as make
it semiconducting with a direct bandgap of 1.74 eV (Figure 7c,d) [138]. Oxygen interca‑
lation into underlying silicene on a Ag(111) surface can effectively reduce the orbital hy‑
bridization of the top‑layer silicene and Ag substrate, leading to massless Dirac fermions
(Figure 7e–g) [139]. However, in K‑intercalated bilayer silicene, the Dirac cones are re‑
covered with a small bandgap of 0.27 eV [140]. Chemical adsorption (gas and organic
molecules) can tune the electronic properties of silicene, which could be a better candidate
for detecting gas and organic molecules compared with graphene [109,141,142].
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Ir‑covered silicene with a coverage of 5.6%. The Fermi level is set to zero. (b) Strain‑controlled
magnetic exchange coupling in Mn‑doped silicene. (c) Top and side views of the atomic struc‑
ture for one‑side semi‑hydrogenated silicene. (d) Partial density of states calculated by HSE06 for
semi‑hydrogenated silicene. (e) High‑resolution STM image of oxygen‑intercalated epitaxial silicene
grown on Ag(111). (f) Atomic structure of silicene/SiOx/Ag(111) from ab initio molecular dynamics
(AIMD) simulation. (g) Energy versus k dispersion measured using ARPES for clean Ag(111) surface
(A), as‑grown

√
3 ×

√
3 silicene formed on buffer layer (B), oxygen‑intercalated silicene with an oxy‑

gen dose of 600 L (C), and intercalated silicene with an oxygen dose of 1200 L (D). (a) Reprinted with
permission from Ref. [135]. Copyright 2014, Royal Society of Chemistry. (b) Reprinted with permis‑
sion from Ref. [137]. Copyright 2017, American Chemical Society. (c,d) Reprinted with permission
from Ref. [138]. Copyright 2012, Royal Society of Chemistry. (e–g) Reprinted with permission from
Ref. [139]. Copyright 2016, American Association for the Advancement of Science.

Germanene. Germanene, similar to silicene, shows a low‑buckled honeycomb struc‑
ture, leading to a topologically nontrivial electronic structure with a spin‑orbit bandgap
of 23.9 meV due to a greater SOC than that of graphene and silicene [16,143,144]. These
characteristics make germanene a promising candidate for applications in high‑speed and
low‑energy‑consumption devices since it has high charge‑carrier mobility and exhibits
QSHE [144]. Germanene has also been successfully prepared via epitaxial growth on vari‑
ous substrates.

Doping various atoms can introduce totally different influences on the physical proper‑
ties of germanene. For instance, the adsorption of alkali metal atoms makes semi‑metallic ger‑
manene become metallic, with the Dirac point moving below the Fermi level and an opened
small bandgap at the Dirac point, while the adsorption of halogen atoms could lead to rela‑
tively large bandgaps, ranging from 0.416 to 1.596 eV, which is promising for optoelectronic
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applications [145–147]. The adsorption of transition metal atoms (e.g., Ti, Sc, V, Cr, Mn, Fe,
and Co) can induce magnetism, while nonmagnetic semiconducting states can be realized for
Ni, Cu, and Zn adsorption [148,149]. The atomic structures of germanene can be controlled
with supported substrate and growth conditions. Directly grown on a Ag(111) surface, two
distinct phases of germanene can be observed: one shows a striped phase, a honeycomb lattice
partially commensurate with the substrate; the other is a quasi‑freestanding phase, a honey‑
comb lattice incommensurate with the substrate [150]. By epitaxially preparing it on Ag(111)
thin‑film grown on Ge(111) with a segregation method, the germanene shows a highly or‑
dered long‑range superstructure with two types of protrusions (hexagon and line), resulting
in a (7

√
7 × 7

√
7)R19.1◦ supercell with respect to Ag(111) (Figure 8a,b) [151]. However, the

single domain (3 × 3) and multidomain (
√

7 ×
√

7)R(±19.1◦) of germanene can exist simulta‑
neously on an Al(111) surface (Figure 8c) [152]. On MoS2 substrate, germanene islands can be
formed at high deposition rates, whereas Ge atoms prefer to intercalate between MoS2 layers
to form Ge clusters at low deposition rates [147,153]. On a Au(111) surface, honeycomb
(1 × 1) germanene with a buckled structure was identified in a (

√
7 ×

√
7) superstructure,

exhibiting distinctive vibrational phonon modes and enhancing electron–phonon coupling
induced by the tensile strain [154].
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Figure 8. Surface modifications of germanene. (a) Atomic‑scale STM image of germanene grown
on a Ag(111) thin film. (b) Structural model of germanene on Ag(111). (c) Two different phases of
germanene grown on an Al(111) surface. (a,b) Reprinted with permission from Ref. [151]. Copyright
2018, American Chemical Society. (c) Reprinted with permission from Ref. [152]. Copyright 2019,
Springer Nature Ltd.

Stanene. Analogously, monolayer Sn prefers to form a low‑buckled structure due to the
mixed sp2‑sp3 hybridization of Sn atoms [155]. Stanene has been predicted to have massless
Dirac fermions and open a spin‑obit bandgap of 0.1 eV at the K point with SOC [155]. The
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bandgap at the Dirac point can produce a conductive 1D helical edge state with opposite
spin polarization, allowing for low‑power spintronic applications [13,156].

Double‑side‑decorated stanene created by chemical functional groups appears in the
most stable configuration (Figure 9a). For pristine stanene, SOC can open a bandgap of
0.1 eV at the K point; thus, stanene becomes a QSH insulator (Figure 9c). After hydorgena‑
tion or fluorination, the bandgap at the K point is substantially enlarged because of the
saturation of the π orbital (Figure 9d,e). Fluorination induces a parity exchange between
the occupied and unoccupied bands at the Γ point. In detail, a negative‑parity Bloch state
shifts downward into valence bands, leaving a positive‑parity Bloch state as the conduction
band minimum (Figure 9d), leading to a topologically nontrivial band structure. Nonethe‑
less, the band inversion at the Γ point cannot be seen in hydrogenated stanene (Figure 9e).
In fact, the band inversion exists for several chemical functional groups (halogen atoms
and ‑OH) (Figure 9b).
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Figure 9. Surface modifications of stanene. (a) Crystal structure of decorated stanene by hydrogen
or halogen atoms on both sides. (b) The calculated energy gaps of stanene and decorated stanene.
(c–e) Band structures for (c) stanene, (d) fluorinated stanene, and (e) stanene with (red solid lines) and
without (black dash‑dotted lines) SOC. Parities of the Bloch states at the Γ point are denoted by +, −.
(f) Structural model of stanene for the adsorption of various molecules and work function of stanene
with various adsorbed molecules. (a–e) Reprinted with permission from Ref. [155]. Copyright 2013,
American Physical Society. (f) Reprinted with permission from Ref. [157]. Copyright 2016, American
Chemical Society.

Stanene is predicted to show superior sensing performance for small molecules. CO,
O2, NO, NO2, and SO2 molecules act as charge acceptors, whereas H2O, NH3, and H2S
molecules act as charge donors [157,158]. In addition, molecule adsorption can effectively
tune the work function of stanene (Figure 9f) [157]. The edge shapes of stanene play a
key role in the physical properties of stanene nanoribbons (NRs). Armchair stanene NRs
are nonmagnetic semiconductors with tunable bandgaps by ribbon width, whereas zigzag
stanene NRs present antiferromagnetic ground states with an opposite spin order between
the two edges [159]. Generally, the energy gap (0.1 eV) of monolayer stanene rules out
phonon‑mediated superconductivity. Interestingly, doping with Ca (Li) can lead to super‑
conductivity with a low Tc of ~1.3 K (~1.4 K), lower than the value (3.7 K) of bulkβ‑tin [160].

Plumbene. Unlike the other four Xenes in main group IV, no Dirac point crosses lin‑
early from the Pb pz orbit at the K point without SOC. Although turning on SOC opens
a large bandgap of ~400 meV, no Dirac edge state has been observed in the bandgap of
plumbene [161]. In addition, resulting from the energy decrease in the s antibonding state
from graphene to plumbene, the s antibonding state is lower than all p bonding and an‑
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tibonding states at the Γ point in plumbene, totally different from graphene, silicene, ger‑
manene, and stanene [162]. Therefore, plumbene is a normal insulator with a topologically
trivial character. However, through electron‑doping, plumbene can become a topological
insulator with a large bulk gap (~200 meV) [163]. Plumbene decorated by chemical func‑
tion groups (hydrogen and halogen atoms) can transform from a normal insulator to a
QSH insulator with giant bulk gaps from 1.03 to 1.34 eV [161]. Plumbene has been pre‑
dicted to be magnetic with Ti‑, V‑, Cr‑, Mn‑, Fe‑, and Co‑doping, while Sc‑ and Ni‑doped
plumbene is nonmagnetic [164]. It is interesting that plumbene can be successfully grown
using segregation on a Pd1−xPbx(111) alloy surface [30]. Furthermore, a c(2 × 4) structure
of Pb forms on Ir(111) substrate, whereas a flat honeycomb plumbene can be formed on an
Fe monolayer on Ir(111) [165].

3.3. Group V
Phosphorene. Puckered and buckled structures in phosphorene are the most com‑

mon allotropic monolayer structures, corresponding to the individual atomic layers of
black phosphorous and blue phosphorous crystals, respectively [166]. Puckered mono‑
layer phosphorene is semiconducting with a direct bandgap of 1.83 eV, whereas buckled
monolayer phosphorene is a semiconductor with an indirect bandgap of 2.0 eV. Phos‑
phorene can be obtained through mechanical exfoliation, liquid phase exfoliation, electro‑
chemical exfoliation, chemical vapor deposition, epitaxial growth, etc. [166]. To date, the
semiconducting character of phosphorene has led to some experimental demonstrations
in various applications, including electronics, optoelectronics, photovoltaics, supercapaci‑
tors, and catalysis [73,167].

Transition metal‑doped black phosphorene possesses dilute magnetic semiconduct‑
ing properties. In particular, the substitutional doping of Ti, Cr, and Mn can create a
spin‑polarized semiconducting state, while a half‑metallic state is realized via V‑ and Fe‑
doping (Figure 10a) [168]. Both Fe‑doping and N‑doping can significantly improve the
electrocatalytic activity of black phosphorene for nitrogen reduction reactions [169,170].
For blue phosphorene, B‑doping and C‑doping can both improve the sensitivity of NH3 gas
molecules, and the sensitivity of CO gas molecules can be enhanced by B‑doping [171]. With
a monotonic increase in an external electric field, black phosphorene can transition from a
normal insulator to a topological insulator and, eventually, to a metal (Figure 10c–e) [172].
In addition, an external electric field can realize reversible potassium intercalation in a blue
phosphorene–Au network (Figure 10b) [173]. When axial strain is applied in the zigzag or
armchair direction, the bandgap of black phosphorene will exhibit a direct–indirect–direct
transition (Figure 10f,g) [51]. Moreover, a topological phase transition of black phospho‑
rene can be realized via the application of compressive biaxial in‑plane strain and perpen‑
dicular tensile strain [174].

Arsenene. Arsenene mainly has two kinds of allotropic structures, including buck‑
led and puckered [166]. Buckled honeycomb monolayer arsenene, derived from semi‑
metallic gray arsenic, has an indirect bandgap of 2.49 eV [24], while puckered monolayer
arsenene, exfoliated from black semiconducting arsenic, possesses an indirect bandgap of
0.831 eV [75]. Both buckled arsenene and puckered arsenene have thickness‑dependent
bandgaps. The methods to obtain arsenene include top‑down (mechanical exfoliation and
liquid phase exfoliation) and bottom‑up strategies (molecular beam epitaxy, chemical va‑
por deposition, physical vapor deposition, etc.) [175]. For epitaxial growth, monolayer
buckled arsenene was successfully grown on a Ag(111) substrate [176], whereas mono‑
layer armchair arsenene nanochains have been formed on a Au(111) surface [32]. Two‑
dimensional arsenene has been theoretically predicted to exhibit various physical proper‑
ties, such as an indirect‑to‑direct bandgap transition, a semimetal‑to‑semiconductor tran‑
sition, superconductivity, and a QSH effect, deserving many research efforts [24,177,178].
Recently, few‑layer black arsenene was proved to exhibit a particle–hole asymmetric Rashba
valley and exotic quantum Hall states due to synergetic effects between the spin‑orbit in‑
teraction and the Stark effect [179].
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Figure 10. Surface modifications of phosphorene. (a) Electronic and magnetic properties of
transition‑metal‑doped phosphorene. (b) STM images of blue phosphorene–Au network with 1 ML
K deposition scanned with different bias voltages. (c–e) Band structures of 4‑layer phosphorene
with an external electric field of (c) 0 V Å−1, (d) 0.45 V Å−1, and (e) 0.6 V Å−1. (f,g) Bandgap of
phosphorene as a function of strain: (f) εx, applied in the zigzag and (g) εy, in the armchair di‑
rections. (a) Reprinted with permission from Ref. [168]. Copyright 2015, American Chemical So‑
ciety. (b) Reprinted with permission from Ref. [173]. Copyright 2020, American Chemical Soci‑
ety. (c–e) Reprinted with permission from Ref. [172]. Copyright 2015, American Chemical Society.
(f,g) Reprinted with permission from Ref. [51]. Copyright 2014, American Physical Society.

Substrate temperatures can modify the formation of arsenic nanostructures. On Au(111)
substrate, the arsenic monolayer formed by 0D tetrahedral As4 clusters can transform into a
monolayer formed by 1D armchair arsenene nanochains (Figure 11a) [32]. The application
of biaxial tensile strain can effectively tune the band structures of arsenene. Under low ten‑
sile strain, arsenene can transform from an indirect to a direct bandgap (Figure 11b,c) [24].
By further enlarging the tensile strain, the direct bandgap will gradually disappear, caus‑
ing band inversion at the Γ point (Figure 11d,e) [177]. The consideration of SOC can open
a spin‑orbit bandgap (~131 meV) under a tensile strain of 18.4% (Figure 11f), indicating a
QSH effect in arsenene [177]. Intriguingly, under proper biaxial tensile strain and electron‑
doping, arsenene can be superconducting, with a Tc of 30.8 K [178]. Indeed, 3D‑transition‑
metal‑doping can strongly tailor the electronic and magnetic properties of arsenene. Ti‑,
V‑, Cr‑, Mn‑, and Fe‑doping can induce magnetic states for arsenene [180]. Meanwhile,
Ti‑ and Mn‑doping leads to a half‑metallic state, while V‑, Cr‑, and Fe‑doping results in a
spin‑polarized semiconducting state [180]. In addition, doping can further modify chem‑
ical properties, making arsenene potentially useful for hydrogen evolution and oxygen
evolution reactions (Figure 11g) [181].
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dependent arsenic nanostructures on Au(111) substrate. (b) Schematic representation of arsenene
under biaxial tensile strain. (c) Variations in electronic band structures of arsenene under various
biaxial strains. The arrows represent the transitions of the bandgaps. (d,e) Band structure of ar‑
senene under a biaxial tensile strain of 18.4% and an enlarged view. (f) Bandgap variation in ar‑
senene with the tensile strain. (g) Adsorption energy of hydrogen and oxygen on pristine and B‑,
N‑, O‑, Ga‑, Ge‑, and Se‑doped arsenene. (a) Reprinted with permission from Ref. [32]. Copyright
2022, American Chemical Society. (b,c) Reprinted with permission from Ref. [24]. Copyright 2015,
Wiley. (d–f) Reprinted with permission from Ref. [177]. Copyright 2015, Royal Society of Chemistry.
(g) Reprinted with permission from Ref. [181]. Copyright 2018, Elsevier Ltd.

Antimonene and bismuthene. The most stable structures of antimonene and bis‑
muthene are α‑form (puckered) and β‑form (buckled), which are the monolayers of black
andgray bulk allotropes, respectively. Monolayerβ‑Sb andβ‑Bi possess indirect bandgaps
of 2.28 and 0.99 eV, respectively, whereas the direct bandgaps of monolayer α‑Sb and
α‑Bi are 1.18 and 0.36 eV, respectively [74,182,183]. Notably, the calculated bandgaps
may vary depending on the methods used. Both antimonene and bismuthene exhibit tun‑
able bandgaps, high carrier mobility, high stability, and in‑plane anisotropy, providing
a basis for multifunctional applications in electronics, optoelectronics, sensors, batteries,
etc. [184–186].

Doping with 3d transition metal atoms for antimonene can lead to significant changes
in the bandgap and the magnetic moment [187]. For Cr‑doped β‑antimonene, a spin‑
polarized semiconducting state was predicted. For Ti‑, Mn‑, and V‑doped β‑antimonene,
half‑metallic behavior was calculated. Similarly, a Cr‑doped bismuthene structure leads to
a spin‑polarized semiconducting state, while V‑doped bismuthene can produce a magnetic
metal character, and Mn‑ and Fe‑replacing systems result in half‑metal features [188]. Ad‑
ditionally, V‑doped systems exhibit ferromagnetism (FM) when two V atoms are far apart,
but Cr‑, Mn‑, and Fe‑doped bismuthene exhibits anti‑ferromagnetism (AFM) when two
impurity atoms are close together or far apart [188]. Bivacancy‑doping in β‑antimonene
can reduce the bandgap of pristine β‑antimonene, but monovacancy‑doped β‑antimonene
exhibits a metallic character [189]. Electron‑doping and Ca‑intercalation can transform
bilayer β‑antimonene from a semimetal into a superconductor [190]. Moreover, the ph‑
ysisorption of the organic molecules tetrathiafulvalene and tetracyanoquinodimethane can
induce n‑type‑ and p‑type‑doping for antimonene, respectively [191]. Under a monotonic
increase in biaxial tensile strain, β‑antimonene and β‑bismuthene undergo indirect‑to‑
direct bandgap and semiconducting to semi‑metallic transitions and even topological phase
transitions [24,192,193].
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3.4. Group VI
Selenene and tellurene. Selenene has been predicted to have three allotropic struc‑

tures, including a 1T‑MoS2‑like structure (t‑Se orα‑Se), a tiled helical‑chain structure (c‑Se),
and s square structure (s‑Se) [194]. Both t‑Se and c‑Se are semiconductors with indirect
bandgaps of 0.71 and 1.74 eV, respectively, while s‑Se is semi‑metallic. The formation en‑
ergy of c‑Se is the lowest, indicating that c‑Se is the most stable phase. In addition, a ring
structure of selenene (r‑Se) is proposed [58]. However, theoretical investigations predict
the existence of three phases of tellurene, including α‑, β‑, and γ‑phases, possessing 1T‑
MoS2‑like, rectangle, and 2H‑MoS2‑like structures, respectively [27]. It was found that α‑
and β‑Te show semiconducting characteristics with indirect bandgaps of 0.76 and 1.17 eV,
respectively, whereas γ‑Te is a metal. It is interesting that the band structures of square
selenene and tellurene (s‑Se and s‑Te) show Dirac‑cone‑like dispersions. A large bandgap
(~0.1 eV) opened by SOC makes them become topological insulators and host nontrivial
edge states [58]. Therefore, square selenene and tellurene become promising candidates
for spintronic applications. The tensile strain can monotonically decrease the bandgaps
of α‑Se and α‑Te [195,196]. Meanwhile, for 2D square tellurene under a strain effect, the
system displays three structural phases, buckled square, buckled rectangle, and planar
square phases, which exhibit extraordinary topological properties [196]. In particular, the
buckled rectangle tellurene can act as a QSH insulator with a bandgap of 0.24 eV.

4. Applications of 2D Xenes
As mentioned above, 2D Xenes possess various physical and chemical properties,

such as flexibility, layer‑dependent semiconducting, high carrier mobility, molecule and
light sensitivity, topologically nontrivial band structures, etc.

In order to utilize 2D Xenes more effectively, surface modifications become partic‑
ularly important (Figure 12) to tune the properties of 2D Xenes. For instance, the FET
of acene‑type graphene nanoribbons exhibits excellent semiconductor characteristics with
an on/off ratio of 88 [197]. To enhance the mid‑infrared (MIR) absorption of graphene,
the localized surface plasmon resonance of B‑doped Si quantum dots (QDs) results in a
QD/graphene hybrid photodetector with ultrahigh responsivity, gain, and specific detec‑
tivity in the UV‑to‑MIR region [34]. A 2D bismuthene/Si(111) heterostructure exhibits ex‑
cellent photodetection performance in the Vis‑MIR region due to the promoted genera‑
tion and transportation of charge carriers in the heterojunction [198]. Solution‑exfoliated
black phosphorene flakes, as an electron transport layer, can enhance the performance
of organic solar cells [199]. In addition, layered black phosphorene exhibits the selective
detection of methanol [200]. The thermoelectric power (S) in black phosphorene can be ef‑
fectively controlled with ion‑gating. In the hole‑depleted state, the S of black phosphorene
can reach +510 µV/K at 210 K, much higher than the bulk single crystal value of +340 µV/K
at 300 K [201]. Under the proper electron‑doping and biaxial tensile strain, buckled ar‑
senene shows superconductivity with a high Tc of 30.8 K [178]. Iodine‑decorated stanene
exhibits a topologically nontrivial band structure with a larger gap of ~320 meV than that
of pristine stanene (~100 meV) [155]. Graphene/Pt(111) surfaces can cause CO adsorp‑
tion/desorption and CO oxidation surface reactions [202]. MoS2/graphene hybrids dec‑
orated by CdS nanocrystals can act as high‑performance photocatalysts for H2 evolution
under visible light irradiation [203]. Moreover, 2D Xenes are also regarded as promising
agents for biomedical applications [204]. For example, an ultrathin bismuthene can act as a
sensing platform to detect microRNA with a detection limit of 60 PM [205]. Polyethylene‑
coated antimonene quantum dots can be used as photothermal agents with a high pho‑
tothermal conversion efficacy of 45.5% for photothermal therapy in cancer theranostics [206].
Overall, thanks to surface modifications, 2D Xenes show great potential for applications in
plenty of fields.
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5. Conclusions
In total, except graphene, 15 different elemental 2D materials of the main group ele‑

ments have been experimentally created or theoretically predicted to date. In fact, 14 Xenes,
including borophene, graphene, silicene, phosphorene, gallenene, germanene, arsenene,
selenene, stanene, antimonene, tellurene, thallene, plumbene, and bismuthene, have been
successfully grown on proper substrates using epitaxial methods. Although a lot of re‑
search, engineering, and development related to 2D Xenes—most of which were investi‑
gated theoretically—has been reported in recent years, experimental studies are still des‑
perately required for the development of synthesis strategies and novel applications. Be‑
fore realizing the surface modifications of 2D Xenes for the applications of interest, three
significant challenges need to be overcome:

(i) The synthesis strategies of 2D Xenes must not only ensure reliably large‑scale pro‑
duction but also be tailored for the requirements of the application. For example, the appli‑
cations of electronics and batteries demand low costs and scalable techniques, while plas‑
monics and spintronics require high fidelity and reproducible techniques. Hence, reliable
synthesis approaches play a crucial role in functional design and practical applications.
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(ii) The strategies to enhance the environmental stability and mitigate the degradation
of 2D Xenes must be taken into consideration for certain applications. For instance, an op‑
toelectronic device based on black phosphorene must be concerned with ambient stability,
requiring appropriate encapsulation or the passivation of the surface.

(iii) Many of the predicted and fascinating properties of 2D Xenes require further ef‑
forts to find strategies for their implementation, which may offer opportunities to discover
revolutionary technologies. In addition, the exciting and novel properties necessitate not
just “one‑off” research, but also statistical evaluation to ascertain their viability and acces‑
sibility on a commercial scale.

Despite the challenges ahead, the exceptional properties of 2D Xenes will significantly
impact future applications in various fields. It is hoped that this review will inspire more
exhilarating discoveries and applications in the growing family of 2D Xenes.
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